

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb410t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA406
 - 06 PIC24FJ64GB406
- PIC24FJ128GA406
 PIC24FJ256GA406
- PIC24FJ128GB406
 PIC24FJ256GB406
- PIC24FJ64GA410
 PIC24FJ64GB410
- PIC24FJ128GA410
 PIC24FJ128GB410
- PIC24FJ256GA410
 - PIC24FJ256GB410
- PIC24FJ64GA412
 - PIC24FJ64GB412
- PIC24FJ128GA412PIC24FJ256GA412
- PIC24FJ128GB412
 PIC24FJ256GB412
- The PIC24FJ256GA412/GB412 family expands the capabilities of the PIC24F family by adding a complete selection of advanced analog peripherals to its existing digital features. This combination, along with its ultra low-power features, Direct Memory Access (DMA) for peripherals, USB On-The-Go (OTG) and a built-in LCD Controller and driver, makes this family the new standard for mixed-signal PIC[®] microcontrollers in one economical and power-saving package.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ256GA412/GB412 family of devices incorporates a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep, with essential circuits being powered from a separate low-voltage regulator
- Deep Sleep without RTCC, for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC), to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, the PIC24FJ256GA412/ GB412 devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes

1.1.3 DUAL PARTITION FLASH PROGRAM MEMORY

A brand new feature to the PIC24F family is the use of Dual Partition Flash program memory technology. This allows PIC24FJ256GA412/GB412 family devices a range of new operating options not available before:

- Dual Partition Operation, which can store two different applications in their own code partition, and allows for the support of robust bootloader applications and enhanced security
- Live Update Operation, which allows the main application to continue operation while the second Flash partition is being reprogrammed – all without adding Wait states to code execution
- Direct Run-Time Programming from Data RAM, with the option of data compression in the RAM image

PIC24FJ256GA412/GB412 family devices can also operate with their two Flash partitions as one large program memory, providing space for large and complex applications.

	Pin/Pad Number					
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
AN0	16	25	K2	I	ANA	A/D Analog Inputs
AN1	15	24	K1	I	ANA	
AN1-	15	24	K1	I	ANA	
AN2	14	23	J2	I	ANA	
AN3	13	22	J1	I	ANA	
AN4	12	21	H2	I	ANA	
AN5	11	20	H1	I	ANA	
AN6	17	26	L1	I	ANA	
AN7	18	27	J3	I	ANA	
AN8	21	32	K4	I	ANA	
AN9	22	33	L4	I	ANA	
AN10	23	34	H5	I	ANA	
AN11	24	35	K5	I	ANA	
AN12	27	41	J7	I	ANA	
AN13	28	42	L7	I	ANA	
AN14	29	43	K7	I	ANA	
AN15	30	44	L8	I	ANA	
AN16	_	9	E1	I	ANA	
AN17	_	10	E3	I	ANA	
AN18	_	11	F4	I	ANA	
AN19	_	12	F2	I	ANA	
AN20	_	14	F3	I	ANA	
AN21	_	19	G2	I	ANA	
AN22	_	92	E11	I	ANA	
AN23	—	91	E10	I	ANA	
AVDD	19	30	J4	Р	—	Positive Supply for Analog modules
AVss	20	31	L3	Р	—	Ground Reference for Analog modules
C1INA	11	20	H1	I	ANA	Comparator 1 Input A
C1INB	12	21	H2	Ι	ANA	Comparator 1 Input B
C1INC	5,8	11,14	F4,F3	Ι	ANA	Comparator 1 Input C
C1IND	4	10	E3	I	ANA	Comparator 1 Input D
C2INA	13	22	J1	Ι	ANA	Comparator 2 Input A
C2INB	14	23	J2	I	ANA	Comparator 2 Input B
C2INC	8	14	F3	I	ANA	Comparator 2 Input C
C2IND	6	12	F2	I	ANA	Comparator 2 Input D
C3INA	55	84	C7	I	ANA	Comparator 3 Input A
C3INB	54	83	D7	I	ANA	Comparator 3 Input B
C3INC	8,45	14,71	F3,C11	I	ANA	Comparator 3 Input C
C3IND	44	70	D11	I	ANA	Comparator 3 Input D
CLC3OUT	46	72	D9	0	DIG	CLC3 Output
CLC4OUT	42	68	E9	0	DIG	CLC4 Output

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION

Legend: TTL = TTL input buffer

ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

TADLE 1-4.	1					
		n/Pad Numl			In most Dest()	Departmetter
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
RB0	16	25	K2	I/O	DIG/ST	PORTB Digital I/Os
RB1	15	24	K1	I/O	DIG/ST	
RB2	14	23	J2	I/O	DIG/ST/TTL	
RB3	13	22	J1	I/O	DIG/ST/TTL	
RB4	12	21	H2	I/O	DIG/ST/TTL	
RB5	11	20	H1	I/O	DIG/ST/TTL	
RB6	17	26	L1	I/O	DIG/ST	
RB7	18	27	J3	I/O	DIG/ST/TTL	
RB8	21	32	K4	I/O	DIG/ST	
RB9	22	33	L4	I/O	DIG/ST	
RB10	23	34	H5	I/O	DIG/ST	1
RB11	24	35	K5	I/O	DIG/ST]
RB12	27	41	J7	I/O	DIG/ST	1
RB13	28	42	L7	I/O	DIG/ST	
RB14	29	43	K7	I/O	DIG/ST	
RB15	30	44	L8	I/O	DIG/ST	
RC1		6	D1	I/O	DIG/ST	PORTC Digital I/Os
RC2	_	7	E4	I/O	DIG/ST	
RC3	_	8	E2	I/O	DIG/ST	
RC4		9	E1	I/O	DIG/ST	
RC12	39	63	F9	I/O	DIG/ST	
RC13	47	73	C10	I	ST	
RC14	48	74	B11	I	ST	
RC15	40	64	F11	I/O	DIG/ST	
RD0	46	72	D9	I/O	DIG/ST	PORTD Digital I/Os
RD1	49	76	A11	I/O	DIG/ST	
RD2	50	77	A10	I/O	DIG/ST	
RD3	51	78	B9	I/O	DIG/ST	
RD4	52	81	C8	I/O	DIG/ST	
RD5	53	82	B8	I/O	DIG/ST	
RD6	54	83	D7	I/O	DIG/ST	1
RD7	55	84	C7	I/O	DIG/ST	1
RD8	42	68	E9	I/O	DIG/ST	1
RD9	43	69	E10	I/O	DIG/ST	1
RD10	44	70	D11	I/O	DIG/ST	1
RD11	45	71	C11	I/O	DIG/ST	1
RD12	—	79	A9	I/O	DIG/ST	1
RD13	_	80	D8	I/O	DIG/ST	1
RD14	—	47	L9	I/O	DIG/ST	1
RD15	—	48	K9	I/O	DIG/ST	1

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated transceiver

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

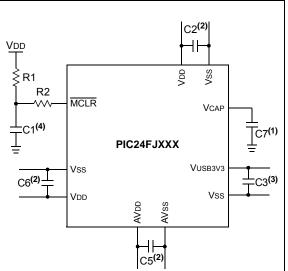
Getting started with the PIC24FJ256GA412/GB412 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All analog power pins (AVDD and AVSS), regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- The USB transceiver supply, VUSB3V3, regardless of whether or not the USB module is used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used


(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- Any voltage reference pins used when external voltage reference for analog modules is implemented (AVREF+/AVREF-, CVREF+/CVREFand DVREF+)
 - **Note:** All analog power supply and return pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100 Ω to 470 Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for details on selecting the proper capacitor for VCAP.
 - 2: The example shown is for a PIC24F device with five power and ground pairs (including analog and USB). Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
 - Implemented on PIC24FJXXXGB4XX devices only. See Section 20.1 "Hardware Configuration" for details on connecting the pins for USB operation.
 - 4: C1 is optional, see Section 2.3 "Master Clear (MCLR) Pin" and Section 2.5 "ICSP Pins" for more information.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 6.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

	99303	gram Space			
23 25	9 0200005 0200005 _		23		8 0
	200000k	versen versen versen versen vine address ha wine the care	defined by 1995 alions are chows)) flori is distanti REUPAO conje	ined by the data EA

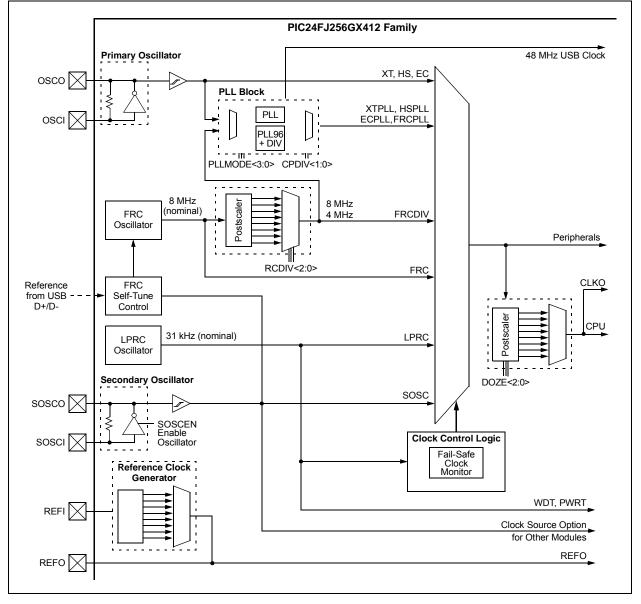
FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

	REGISTER 8-43:	IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0
bit 15			•		-		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
bit 7						•	bit 0
Legend:							

Legena:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	Unimple	mented: Read as '0'		
bit 14-12	U4ERIP•	<2:0>: UART4 Error Interrupt	Priority bits	
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
	000 = In	terrupt source is disabled		
bit 11	Unimple	mented: Read as '0'		
bit 10-8		<2:0>: USB1 (USB OTG) Inte		
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
		terrupt source is disabled		
bit 7	-	mented: Read as '0'		
bit 6-4		P<2:0>: I2C2 Bus Collision Ir		
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
1.1.0		terrupt source is disabled		
bit 3	-	mented: Read as '0'		
bit 2-0		P<2:0>: I2C1 Bus Collision In		
	•	terrupt is Priority 7 (highest p	nonty interrupt)	
	•			
	•			
		terrupt is Priority 1		
	$000 = \ln 3$	terrupt source is disabled		

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700). The information in this data sheet supersedes the information in the FRM.

The oscillator system for PIC24FJ256GA412/GB412 family devices has the following features:

 A Total of Four External and Internal Oscillator Options as Clock Sources, providing 11 Different Clock Modes

- An On-Chip PLL Block to provide a Wide Range of Precise Frequency Options for the System Clock, plus a Stable 48 MHz Clock for USB Devices
- Software-Controllable Switching between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable Reference Clock for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ256GA412/GB412 FAMILY GENERAL CLOCK DIAGRAM

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T5CKR<5:0>: Assign Timer5 Clock Input (T5CK) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	T4CKR<5:0>: Assign Timer4 Clock Input (T4CK) to Corresponding RPn or RPIn Pin bits

REGISTER 11-8: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as 'd)'				
bit 13-8	RP17R<5:0>:	RP17 Output I	⊃in Mapping b	its			

REGISTER 11-31: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-12 for peripheral function numbers).

Peripheral Output Number n is assigned to pin, RP17 (see Table 11-12 for peripheral function numbers).

REGISTER 11-32: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u			x = Bit is unkr	nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-12 for peripheral function numbers).

NOTES:

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with all 16-Bit Operating Modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep Modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

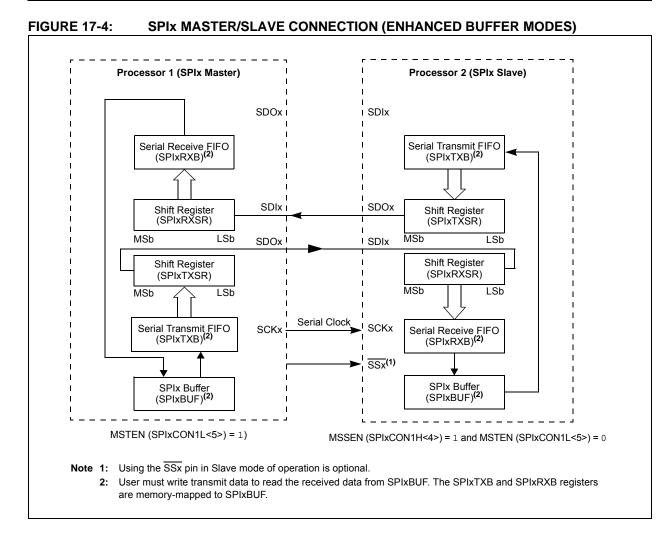
To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

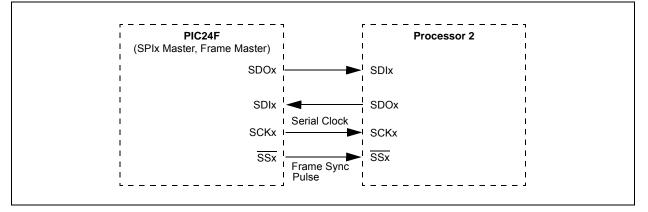
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾	—	TSIDL ⁽²⁾	—	_	_	TECS1 ^(2,3)	TECS0 ^(2,3)
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	_	_	TCS ^(2,3)	_
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timery	On bit ⁽²⁾					
	1 = Starts 16-						
	0 = Stops 16-						
bit 14	•	ted: Read as '					
bit 13		y Stop in Idle N					
		ues module opera module opera			le mode		
bit 12-10		ted: Read as '					
bit 9-8	TECS<1:0>:	Timery Extende	ed Clock Sourc	e Select bits (s	elected when	1 TCS = 1) ^(2,3)	
		Timer (TMRCk				,	
	10 = LPRC O						
	01 = TxCK ex 00 = SOSC	ternal clock inp	but				
bit 7		ted: Read as '	ı'				
bit 6	-	ery Gated Time		Enable hit(2)			
	When TCS =	•					
	This bit is ign	ored.					
	When TCS =						
		ne accumulatio					
bit 5-4		ne accumulatio : Timery Input (Soloot hito(2)			
DIL 3-4	11 = 1:256	. Timery input		Select bits ?			
	10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3-2		ted: Read as 'o					
bit 1	•	Clock Source S					
	1 = External o 0 = Internal c	clock from pin, ⁻ lock (Fosc/2)	TyCK (on the ri	sing edge)			
bit 0		ted: Read as ')'				
	Changing the valu	-	nile the timer is	running (TON :	= 1) causes th	e timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
3:	If TCS = 1 and Th	ECS<1:0> = x1	-	external timer i	nput (TyCK) r		

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾
bit 7							bit 0


Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture x Module Stop in Idle Control bit
	1 = Input capture module halts in CPU Idle mode
	0 = Input capture module continues to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture x Timer Select bits
	111 = System clock (Fosc/2)
	110 = Reserved 101 = Reserved
	100 = Timer1
	011 = Timer5
	010 = Timer4
	001 = Timer2 000 = Timer3
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture x Overflow Status Flag bit (read-only)
	1 = Input capture overflow has occurred
h :+ 0	0 = No input capture overflow has occurred
bit 3	ICBNE: Input Capture x Buffer Empty Status bit (read-only)
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture x Mode Select bits ⁽¹⁾
	111 = Interrupt mode: Input capture functions as an interrupt pin only when the device is in Sleep or
	Idle mode (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Prescaler Capture mode: Capture on every 16 th rising edge 100 = Prescaler Capture mode: Capture on every 4 th rising edge
	011 = Simple Capture mode: Capture on every rising edge
	010 = Simple Capture mode: Capture on every falling edge
	001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0> bits do not
	control interrupt generation for this mode
	000 = Input capture module is turned off

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

FIGURE 17-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

REGISTER 19-2: UxSTAL: UARTx STATUS LOW AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC	
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT	
bit 15		•					bit 8	
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC	
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	
bit 7							bit	
Legend:		C = Clearable	bit	HSC = Hardware Settable/Clearable bit				
R = Readable	bit	W = Writable b	pit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
HS = Hardwar	e Settable bit	HC = Hardware	e Clearable bit					
bit 15,13	UTXISEL<1:0)>: UARTx Trar	smission Interi	rupt Mode Seleo	ction bits			
		ed; do not use						

- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14	UTXINV: UARTx IrDA [®] Encoder Transmit Polarity Inversion bit ⁽¹⁾
--------	---

	For IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1' For IREN = 1: 1 = UxTX Idle state is '1' 0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	 1 = Receive is enabled, UxRX pin is controlled by UARTx 0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	 1 = Transmit is enabled, UxTX pin is controlled by UARTx 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
Note 1:	The value of this bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0

Legend:	HS = Hardware Settable b	HS = Hardware Settable bit			
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit,	read as '0'		
-n = Value at PO	R '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	RESUMEIF: Resume Interrupt bit
bito	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from STAT (clearing this bit causes the STAT FIFO to advance)
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	 0 = No USB Reset has occurred; individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared
	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

all set bits, at the moment of the write, to become cleared.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	_	_	_	_	_
bit 7	11021	11020					l bit (
Legend:	1.11		1.11			1	
R = Readable		W = Writable		-	nented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	CSDIS: Chip Select x Disable bit 1 = Disables the Chip Select x functionality 0 = Enables the Chip Select x functionality						
bit 14		elect x Polarity	bit				
	1 = Active-hi 0 = Active-lo						
bit 13		ICSx Port Enab	ole bit				
	1 = PMCSx port is enabled						
	0 = PMCSx port is disabled						
bit 12	BEP: Chip Select x Nibble/Byte Enable Polarity bit Nibble/byte enable is active-high (PMBE0, PMBE1) Nibble/byte enable is active-low (PMBE0, PMBE1) 						
bit 11		nted: Read as '	•				
bit 10	-	Select x Write		/ bit			
	For Slave Mo 1 = Write str	odes and Maste obe is active-hig obe is active-lo	<u>r Mode when s</u> gh <u>(PMWR</u>)				
For Master Mode when SM = 1: 1 = Enable strobe is active-high (PMENB) 0 = Enable strobe is active-low (PMENB)							
bit 9	RDSP: Chip	Select x Read S	Strobe Polarity	bit			
	1 = Read str	odes and Maste obe is active-hi obe is active-lo	gh <u>(PMRD</u>)	<u>SM = 0:</u>			
	For Master Mode when SM = 1: 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/Write strobe is active-low (PMRD/PMWR)						
bit 8	1 = Read/wr	lect x Strobe Mo ite and enable s d write strobes	strobes (PMRI	D/PMWR and P MWR)	MENB)		
bit 7		Select x Acknow					
	1 = ACK is a	nctive-high <u>(PM</u> nctive-low (PMA	ACK1)				
bit 6-5		Chip Select x P					
	11 = Reserve 10 = 16-bit p 01 = 4-bit po	-	15:0>) :0>)				
	00 - 0 - 0100		.0~1				

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

REGISTER 25-4: CRYOTP: CRYPTOGRAPHIC OTP PAGE PROGRAM CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	KEYPSEL
bit 15							bit 8
R-x, HSC ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-1, HC	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0, HC ⁽²⁾
		(2.4)					(2.4)

Legend:		S = Settable Or	nly bit	HSC = Hardwa	are Settable/Clea	arable bit	
bit 7							bit 0
PGMTST	OTPIE	CRYREAD ^(3,4)	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR ^(3,4)

Legend:	S = Settable Only bit	HSC = Hardware Settable/Cle	arable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HC = Hardware Clearable bit			

bit 15-9	Unimplemented: Read as '0'
bit 8	KEYPSEL: Key Storage Programming Select bit
	1 = Programming operations write to Key RAM
	0 = Programming operations write to the Secure OTP Array
bit 7	PGMTST: Key Storage/Configuration Program Test bit ⁽¹⁾
	This bit mirrors the state of the TSTPGM bit and is used to test the programming of the Secure OTP Array after programming. 1 = TSTPGM (CFGPAGE<30>) is programmed ('1') 0 = TSTPGM is not programmed ('0')
h:+ C	
bit 6	OTPIE: Key Storage/Configuration Program Interrupt Enable bit ⁽¹⁾
	 1 = Generates an interrupt when the current programming or read operation completes 0 = Does not generate an interrupt when the current programming or read operation completes; software must poll the CRYWR, CRYREAD or CRYBSY bit to determine when the current programming operation is complete
bit 5	CRYREAD: Cryptographic Key Storage/Configuration Read bit ^(3,4)
	 1 = This bit is set to start a read operation; read operation is in progress while this bit is set and CRYGO = 1 0 = Read operation has completed
bit 4-1	KEYPG<3:0>: Key Storage/Configuration Program Page Select bits ⁽¹⁾
	1111
	••• = Reserved
	1001
	1001 1000 = OTP Page 8
	1001 1000 = OTP Page 8 0111 = OTP Page 7
	1001 1000 = OTP Page 8
	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6
	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3
	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2
	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1
bit 0	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0)
bit 0	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0) CRYWR: Cryptographic Key Storage/Configuration Program bit ^(2,3,4)
bit 0	1001 1000 = OTP Page 8 0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0)

- 2: These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
- 3: Set this bit only when CRYON = 1 and CRYGO = 0. Do not set CRYREAD or CRYWR both, at any given time.
- 4: Do not clear CRYON or these bits while they are set; always allow the hardware operation to complete and clear the bits automatically.

NOTES:

INDEX

	Λ.
r	۰.

A/D	
Control Registers	
Extended DMA Operations	
Operation	
Transfer Functions	
10-Bit	444
12-Bit	443
AC Characteristics	
10-Bit DAC Specifications	528
A/D Conversion Timing	528
A/D Module	527
CLKO and I/O Timing Requirements	513
External Clock Timing	511
I2Cx Bus Data (Master Mode)	519
I2Cx Bus Data (Slave Mode)	521
I2Cx Bus Start/Stop Bits (Master Mode)	518
I2Cx Bus Start/Stop Bits (Slave Mode)	
Internal RC Accuracy	512
Load Conditions and Requirements for	
Specifications	
PLL Clock Timing	512
RC Oscillator Start-up Time	512
Reset and Brown-out Reset Requirements	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	525
UARTx Specifications	
Alternate Interrupt Vector Table (AIVT)	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit A/D Converter Analog Input Model	442
12-Bit A/D Converter	428
16-Bit Asynchronous Timer3 and Timer5	255
16-Bit Synchronous Timer2 and Timer4	255
16-Bit Timer1 Module	249
32-Bit Timer Mode	261
Accessing Program Memory Using	
Table Instructions	91
Addressing for Table Registers	103
BDT Mapping for Endpoint Buffering Modes	332
Buffer Address Generation in PIA Mode	430
CALL Stack Frame	
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	
CLCx Module	
Comparator Voltage Reference Module	
Conceptual MCCPx/SCCPx Modules	
CPU Programmer's Model	
CRC Module	421
CRC Shift Engine Detail	421
Cryptographic Engine	403
CTMU Connections and Internal Configuration	
Capacitance Measurement	458
Pulse Delay Generation	
Time Measurement	458

Data Access from Program Space	
Address Generation	90
Direct Memory Access (DMA) Functional	95
Dual 16-Bit Timer Mode	
EDS Address Generation for Read Operations	86
EDS Address Generation for Write Operations	87
High/Low-Voltage Detect (HLVD)	
High-Level RTCC	391
I2Cx Module	
Individual Comparator Configurations,	
CREF = 0	450
Individual Comparator Configurations,	
CREF = 1 and CVREFP = 0	451
Individual Comparator Configurations,	101
CREF = 1 and CVREFP = 1	451
Input Capture x Module	
LCD Controller	
MCLR Pin Connections Example	
On-Chip Regulator Connections	
Output Compare x (16-Bit Mode)	202
Output Compare x (Double-Buffered,	004
16-Bit PWM Mode)	
Output Compare x Module	
PIC24F CPU Core	
PIC24F256GA412 Family (General)	25
PIC24FJ256GB412 Family (General)	
PLL System	
PSV Operation (Lower Word)	
PSV Operation (Upper Word)	
Recommended Minimum Connections	
Reference Clock (Simplified)	193
Reset System	107
Shared I/O Port Structure	215
Simplified Single DAC	445
SPIx Master, Frame Master Connection	305
SPIx Master, Frame Slave Connection	306
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	305
SPIx Master/Slave Connection	
(Standard Mode)	304
SPIx Module (Enhanced Mode)	
SPIx Module (Standard Mode)	
SPIx Slave, Frame Master Connection	
SPIx Slave, Frame Slave Connection	
System Clock	
Timer Clock Generator	
Timer2/3 and Timer4/5 (32-Bit)	
Triple Comparator Module	
UARTx (Simplified)	
USB OTG Bus Power Only Interface Mode	320
USB OTG Dual Power Mode	320
USB OTG Host Interface Example	
USB OTG Interface Example	
USB OTG Interrupt Funnel USB OTG Module	
USB OTG Self-Power Only Mode	
Watchdog Timer (WDT)	484