

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

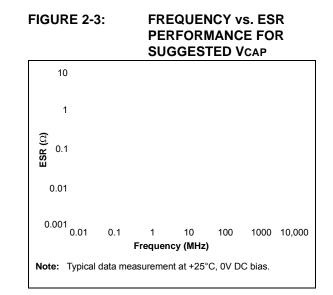
Details

E·XFl

Decans	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	101
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb412t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.4 Voltage Regulator Pin (VCAP)

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the output voltage of the on-chip voltage regulator. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

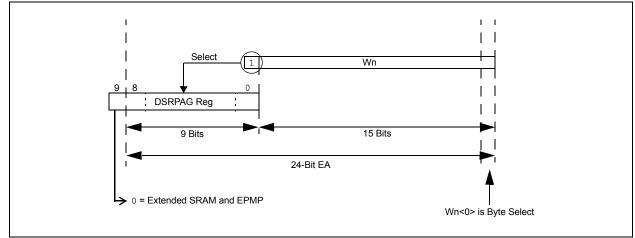
The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 36.0** "**Electrical Characteristics**" for additional information.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

Refer to **Section 33.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C


4.3.5.1 Data Read from EDS

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-7 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit (MSb) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS space address for read operations. Example 4-1 shows how to read a byte, word and double-word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles is required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

FIGURE 4-7: EDS ADDRESS GENERATION FOR READ OPERATIONS

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
              #0x0002, w0
   mov
              w0, DSRPAG
                           ;page 2 is selected for read
   mov
   mov
              #0x0800, w1 ;select the location (0x800) to be read
   bset
              w1, #15
                           ;set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
   mov.b
          [w1++], w2 ;read Low byte
   mov.b
              [w1++], w3
                            ;read High byte
;Read a word from the selected location
              [w1], w2
                           ;
   mov
;Read Double - word from the selected location
   mov.d
              [w1], w2
                           ;two word read, stored in w2 and w3
```

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/S-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	R/W-0	R/C-0, HSC ⁽²⁾	R-0	U-0	U-0
WR	WREN	WRERR	NVMPIDL	SFTSWP	P2ACTIV	—	—
bit 15		•					bit 8
						R/W-0 ⁽¹⁾	
U-0	U-0	U-0					R/W-0 ⁽¹⁾
				NVMOP3 ⁽³⁾	NVMOP2 ⁽³⁾	NVMOP1 ⁽³⁾	NVMOP0 ⁽³⁾
bit 7							bit (
Legend:		S = Settable bit		U = Unimpleme			
R = Readab		W = Writable b	t	HSC = Hardwar		arable bit	
-n = Value at		'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkn	own
C = Clearab	le bit	HC = Hardware	Clearable bit				
		- · · · · · · · (1)					
bit 15	WR: Write (n the energy		and the hit i
		s a Flash memo I by hardware on			n; the operation	on is sell-timed	and the bit i
		m or erase opera					
oit 14	WREN: Wri	te Enable bit ⁽¹⁾					
		s Flash program/					
		Flash program/e	•	าร			
bit 13		/rite Sequence E					
		proper program			, or terminati	on has occurr	ed (bit is se
		atically on any se ogram or erase o					
bit 12	-	NVM Power-Dov		-			
		es power from p			enters Idle mod	е	
		program memory					
bit 11	SFTSWP: S	Soft Swap Status	bit ⁽²⁾				
		tition Flash Mode					
		ns have been su g successful par				uction	
		artition Flash Mod	-	-	Instruction		
		nted, read as '0'.		<u>.07 – 11).</u>			
bit 10	•	Dual Active Partit	on Status bit				
		tition Flash Mode		:0> = 10 or 0x):			
		n 2 Flash is the A					
		n 1 Flash is the A					
		artition Flash Moon nted, read as '0'.	ie (BIMOD<1	: U> = <u>11):</u>			
bit 9-4	•	ented: Read as '	ז'				
	-			_			
		only be reset or					
		oftware, as well a					
3 : A	II other comb	inations of NVM	JP<3:0> are ι	inimplemented in	n this device fa	mily.	

4: Available only in Dual Partition modes (BTMOD<1:0> = 10 or 0x).

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

REGISTER 8-6: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 3 **T1IF:** Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

bit 0 INTOIF: External Interrupt 0 Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_			—	—	_	—	—		
it 15							bit 8		
							R/W-0		
U-0	U-0 R/W-0 R/W-0 R/W-0 R/W-0 — JTAGIF U6ERIF U6TXIF U6RXIF U5ERIF								
—	—	JTAGIF	U6ERIF	U6TXIF	U6RXIF	U5ERIF	U5TXIF		
oit 7							bit (
<u> </u>									
Legend:	-1		1. 14						
R = Readat		W = Writable		•	nented bit, read				
n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6	Unimpleme	nted: Read as '	٥'						
it 5	•	AG Controller In		atus hit					
511 5		t request has or							
		t request has no							
oit 4	U6ERIF: UA	RT6 Error Inter	rupt Flag Status	s bit					
		t request has o							
	•	t request has no							
oit 3		RT6 Transmitte		Status bit					
		t request has or t request has no							
oit 2	•	RT6 Receiver li		tatus bit					
511 2		t request has or							
		t request has no							
oit 1	U5ERIF: UA	RT5 Error Inter	rupt Flag Status	s bit					
		t request has o							
	0 = Interrup	t request has no	ot occurred						
oit O	U5TXIF: UA	RT5 Transmitte	r Interrupt Flag	Status bit					
		t request has o							
	0 = Interrup	t request has no	ot occurred						

REGISTER 8-13: IFS7: INTERRUPT FLAG STATUS REGISTER 7

REGISTER 8-15: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	 Interrupt request is enabled
	0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4** "**Clock Switching Operation**" for more information.

The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features, described in **Section 9.5** "**FRC Active Clock Tuning**".

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend:	end: CO = Clearable Only bit SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Reserved
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
 - 000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - 4: The default divisor of the postscaler is 2, which will generate a 4 MHz clock to the PLL module.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMODx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSMx Configuration bits in the FOSC Configuration Word must be programmed. (Refer to **Section 33.1** "**Configuration Bits**" for further details.) If the bits are unmodified, the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC<2:0> bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

TABLE 10-2: EXITING POWER-SAVING MODES

		Code							
Mode	Interrupts Resets					RTCC	WDT	VDD	Execution
	All	INT0	All	POR	MCLR	Alarm	WDI	Restore ⁽²⁾	Resumes
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A	
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y(1)	N/A	Reset vector
VBAT	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Reset vector

Note 1: Deep Sleep WDT.

2: A POR or POR-like Reset results whenever VDD is removed and restored in any mode.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory, and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in **Section 10.4.1 "Entering Deep Sleep Mode**".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator result in some changes to the way that Sleep and Deep Sleep modes behave. See **Section 10.3 "Sleep Mode"** and **Section 10.4 "Deep Sleep Mode"** for additional information.

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

For Deep Sleep mode, interrupts that coincide with the execution of the PWRSAV instruction may be lost. The microcontroller resets on leaving Deep Sleep and the interrupt will be lost.

Interrupts that occur during the Deep Sleep unlock sequence will interrupt the mandatory five-instruction cycle sequence timing and cause a failure to enter Deep Sleep. For this reason, it is recommended to disable all interrupts during the Deep Sleep unlock sequence.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

```
// Syntax to enter Sleep mode:
          #SLEEP_MODE
PWRSAV
                            ; Put the device into SLEEP mode
11
//Synatx to enter Idle mode:
PWRSAV
          #IDLE MODE
                            ; Put the device into IDLE mode
11
// Syntax to enter Deep Sleep mode:
// First use the unlock sequence to set the DSEN bit (see Example 10-2)
BSET DSCON, #DSEN ; Enable Deep Sleep
          DSCON, #DSEN
BSET
                           ; Enable Deep Sleep(repeat the command)
PWRSAV
          #SLEEP_MODE
                            ; Put the device into Deep SLEEP mode
```

NOTES:

16.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 16-1 for PWM mode timing details. Table 16-1 and Table 16-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 16-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)}\right)}{\log_{10}^{(2)}} bits$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 16-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

TCY = 2 * TOSC = 62.5 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \ \mu s = (PR2 + 1) \cdot 62.5 \ ns \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz	
Timer Prescaler Ratio	8	1	1	1	1	1	1	
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh	
Resolution (bits)	16	16	15	12	10	7	5	

TABLE 16-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	 S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8-bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	—	—	—	MSK	<9:8>
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | MSK | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	_							
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	TXRPT1 ⁽²⁾	TXRPT0 ⁽²⁾	CONV	T0PD ⁽²⁾	PTRCL	SCEN			
bit 7							bit 0			
Legend:	-1- h:t		L :4		a suct as the state of the					
R = Readat		W = Writable		-	nented bit, read					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-6	Unimplomen	ted. Dood oo '	,							
	-	ted: Read as '		·+- (2)						
oit 5-4		: Transmit Rep		its(=)						
		mits the error b								
		mits the error b								
		mits the error b mits the error b								
oit 3		Convention Se	•							
	-	gic convention								
	0 = Direct log	•								
bit 2	TOPD: Pull-D	own Duration fo	or T = 0 Error H	landling bit ⁽²⁾						
	1 = 2 ETUs			-						
	0 = 1 ETU									
bit 1	PTRCL: Sma	rt Card Protoco	I Selection bit							
	1 = T = 1 prof									
	0 = T = 0 protocol									
oit 0		Card Mode Er								
		rd mode is ena		N (UxMODE<1	5>) = 1					
	0 = Smart Ca	rd mode is disa	bled							
Note 1: 7	This register is or	nly available for	UART1 and U	ART2.						
2: 1	These bits are ap	plicable to T =	0 only, see the	PTRCL bit (U)	(SCCON<1>).					

REGISTER 19-5: UxSCCON: UARTx SMART CARD CONTROL REGISTER⁽¹⁾

REGISTER 22-2: LCDREG: LCD CHARGE PUMP CONTROL REGISTER

RW-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
CPEN	—	—	—	—	—	—	—	
bit 15		•					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	RW-0	RW-0	
—	_	—	_	—	—	CKSEL1	CKSEL0	
bit 7		•					bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	t U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15 **CPEN:** 3.6V Charge Pump Enable bit

1 = The regulator generates the highest (3.6V) voltage

0 = Highest voltage in the system is supplied externally (AVDD)

bit 14-2 Unimplemented: Read as '0'

bit 1-0 CLKSEL<1:0>: Regulator Clock Select Control bits

11 **= SOSC**

10 = 8 MHz FRC

01 = 31 kHz LPRC

00 = Disables regulator and floats regulator voltage output

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3 CH0SB2		CH0SB1	CH0SB0			
bit 15	bit 15					·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown			
bit 15-13	1xx = Unimpl 011 = Unimpl 010 = AN1 001 = Unimpl 000 = VREF-//	emented emented emented AVss	-	ive Input Select						
bit 12-8	CH0SB<4:0>: Sample B Channel 0 Positive Input Select bits See Table 27-2 for available options.									
bit 7-5		: Sample A Ch ons as for CHC	•	ive Input Select	bits					
bit 4-0	CH0SA<4:0>: Sample A Channel 0 Positive Input Select bits									

REGISTER 27-6: AD1CHS: A/D SAMPLE SELECT REGISTER

Same definitions as for CHOSB<4:0>.

TABI F 27-2.	POSITIVE CHANNEL SELECT OPTIONS (CHOSA<4:0> OR CHOSB<4:0>)

CH0SA<4:0> or CH0SB<4:0>	Analog Channel	CH0SA<4:0> or CH0SB<4:0>	Analog Channel	
11111	VBAT/2 ⁽¹⁾	01111	AN15	
11110	AVDD ⁽¹⁾	01110	AN14	
11101	AVss ⁽¹⁾	01101	AN13	
11100	VBG ⁽¹⁾	01100	AN12	
11011	Reserved	01011	AN11	
11010	Reserved	01010	AN10	
11001	CTMU	01001	AN9	
11000	CTMU Temperature Sensor ⁽²⁾	01000	AN8	
10111	AN23 ⁽³⁾	00111	AN7	
10110	AN22 ⁽³⁾	00110	AN6	
10101	AN21 ⁽³⁾	00101	AN5	
10100	AN20 ⁽³⁾	00100	AN4	
10011	AN19 ⁽³⁾	00011	AN3	
10010	AN18 ⁽³⁾	00010	AN2	
10001	AN17 ⁽³⁾	00001	AN1	
10000	AN16 ⁽³⁾	00000	AN0	

Note 1: These input channels do not have corresponding memory-mapped result buffers.

2: Temperature sensor does not require AD1CTMENL<13> to be set.

3: These channels are not implemented in 64-pin devices.

34.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

34.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 36-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
DVR10	Vbg	Internal Band Gap Reference	_	1.2	—	V		
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	_	ms		
DVR20	Vrgout	Regulator Output Voltage		1.8	—	V	VDD > 2.0V	
DVR21	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series Resistance < 3Ω recommended; < 5Ω required.	
DVR	TVREG	Start-up Time	_	10	—	μS	PMSLP = 1 with any POR or BOR	
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	—	1.2	_	V	RETEN = 1, LPCFG = 0	

TABLE 36-12: VBAT OPERATING VOLTAGE SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DVB01	Vbt	Operating Voltage	1.6	_	3.6	V	Battery connected to the VBAT pin, VBTBOR = 0
DVB02			VBATBOR	_	3.6	V	Battery connected to the VBAT pin, VBTBOR = 1
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6	_	3.6	V	A/D is monitoring the VBAT pin using the internal A/D channel

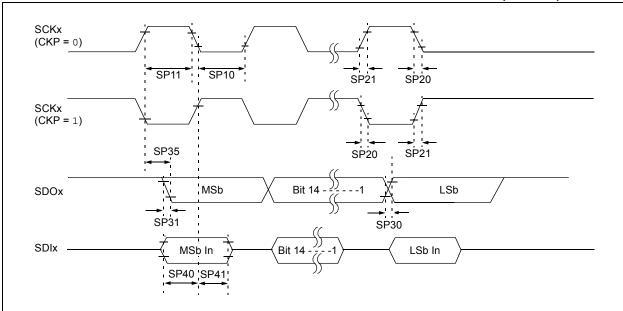

Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D.

TABLE 36-13: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions		
DCT10	IOUT1	CTMU Current Source, Base Range	—	550		nA	CTMUCON1L<1:0> = 00			
DCT11	IOUT2	CTMU Current Source, 10x Range	—	5.5	—	μA	CTMUCON1L<1:0> = 01	2.5V < VDD < VDDMAX		
DCT12	IOUT3	CTMU Current Source, 100x Range	—	55	—	μA	CTMUCON1L<1:0> = 10	2.5V < VDD < VDDMAX		
DCT13	Iout4	CTMU Current Source, 1000x Range	—	550	—	μA	CTMUCON1L<1:0> = 11 ⁽²⁾			
DCT21	VΔ	Temperature Diode Voltage Change per Degree Celsius		-3	_	mV/°C				

Note 1: Nominal value at center point of current trim range (CTMUCON1L<7:2> = 000000).

2: Do not use this current range with temperature sensing diode.

FIGURE 36-13: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \end{array}$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

NOTES: