

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

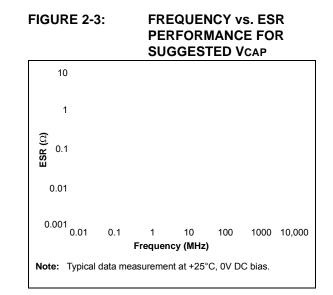
Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga406-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.4 Voltage Regulator Pin (VCAP)

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the output voltage of the on-chip voltage regulator. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 36.0** "**Electrical Characteristics**" for additional information.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

Refer to **Section 33.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

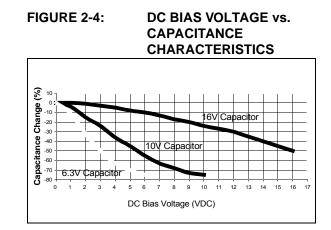
TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (i.e., $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

The $\overline{\text{MCLR}}$ connection from the ICSP header should connect directly to the $\overline{\text{MCLR}}$ pin on the device. A capacitor to ground (C1 in Figure 2-2) is optional, but if used, may interfere with ICSP operation if the value exceeds 0.01 μ F. In most cases, this capacitor is not required.

For more information on available Microchip development tools connection requirements, refer to **Section 34.0 "Development Support"**.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O (Continu	ed)		AD1CON1	746	000000000000000000000000000000000000000	RPINR13	7AA	0011111100111111
PORTJ	700	000000000000000000000000000000000000000	AD1CON2	748	000000000000000000000000000000000000000	RPINR14	7AC	0011111100111111
LATJ	702	000000000000000000000000000000000000000	AD1CON3	74A	000000000000000000000000000000000000000	RPINR15	7AE	0011111100111111
ODCJ	704	000000000000000000000000000000000000000	AD1CHS	74C	000000000000000000000000000000000000000	RPINR16	7B0	0011111100111111
IOCPJ	708	000000000000000000000000000000000000000	AD1CSSL	74E	000000000000000000000000000000000000000	RPINR17	7B2	0011111100111111
IOCNJ	70A	000000000000000000000000000000000000000	AD1CSSH	750	000000000000000000000000000000000000000	RPINR18	7B4	0011111100111111
IOCFJ	70C	000000000000000000000000000000000000000	AD1CON4	752	000000000000000000000000000000000000000	RPINR19	7B6	0011111100111111
IOCPUJ	70E	000000000000000000000000000000000000000	AD1CON5	754	000000000000000000000000000000000000000	RPINR20	7B8	0011111100111111
IOCPDJ	710	000000000000000000000000000000000000000	AD1CHITL	756	000000000000000000000000000000000000000	RPINR21	7BA	0011111100111111
A/D			AD1CHITH	758	000000000000000000000000000000000000000	RPINR22	7BC	0011111100111111
AD1BUF0	712	*****	ADC1CTMENL	75A	000000000000000000000000000000000000000	RPINR23	7BE	0011111100111111
AD1BUF1	714	*****	ADC1CTMENH	75C	000000000000000000000000000000000000000	RPINR24	7C0	0011111100111111
AD1BUF2	716	*****	ADC1RESDMA	75E	000000000000000000000000000000000000000	RPINR25	7C2	0011111100111111
AD1BUF3	718	*****	NVM Controller	•		RPINR26	7C4	0011111100111111
AD1BUF4	71A	*****	NVMCON	760	00000000000000000000(1)	RPINR27	7C6	0011111100111111
AD1BUF5	71C	*****	NVMADRL	762	000000000000000000000000000000000000000	RPINR28	7C8	0011111100111111
AD1BUF6	71E	*****	NVMADRH	764	000000000000000000000000000000000000000	RPINR29	7CA	0011111100111111
AD1BUF7	720	*****	NVMKEY	766	000000000000000000000000000000000000000	RPINR30	7CC	0011111100111111
AD1BUF8	722	*****	NVMSRCADRL	768	000000000000000000000000000000000000000	RPINR31	7CE	0011111100111111
AD1BUF9	724	*****	NVMSRCADRH	76A	000000000000000000000000000000000000000	RPOR0	7D4	000000000000000000
AD1BUF10	726	*****	JDATAL	77C	*****	RPOR1	7D6	000000000000000000
AD1BUF11	728	*****	JDATAH	77E	*****	RPOR2	7D8	000000000000000000
AD1BUF12	72A	*****	Peripheral Pin S	elect		RPOR3	7DA	000000000000000000
AD1BUF13	72C	*****	RPINR0	790	0011111100111111	RPOR4	7DC	000000000000000000
AD1BUF14	72E	*****	RPINR1	792	0011111100111111	RPOR5	7DE	000000000000000000
AD1BUF15	730	*****	RPINR2	794	0011111100111111	RPOR6	7E0	000000000000000000
AD1BUF16	732	*****	RPINR3	796	0011111100111111	RPOR7	7E2	000000000000000000
AD1BUF17	734	*****	RPINR4	798	0011111100111111	RPOR8	7E4	000000000000000000
AD1BUF18	736	*****	RPINR5	79A	0011111100111111	RPOR9	7E6	000000000000000000
AD1BUF19	738	*****	RPINR6	79C	0011111100111111	RPOR10	7E8	000000000000000000
AD1BUF20	73A	*****	RPINR7	7A2	0011111100111111	RPOR11	7EA	000000000000000000
AD1BUF21	73C	*****	RPINR8	7A0	0011111100111111	RPOR12	7EC	000000000000000000
AD1BUF22	73E	*****	RPINR9	7A2	0011111100111111	RPOR13	7EE	000000000000000000
AD1BUF23	740	*****	RPINR10	7A4	0011111100111111	RPOR14	7F0	000000000000000000
AD1BUF24	742	*****	RPINR11	7A6	0011111100111111	RPOR15	7F2	000000000000000000
AD1BUF25	744	*****	RPINR12	7A8	0011111100111111			

TABLE 4-12: SFR BLOCK 700h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write/erase operations or partition swap at the time of Reset.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF
bit 15	·				÷		bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIF	INT4IF	INT3IF	_	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Interrupt r	CP1 Capture/C request has occ request has not		ot Flag Status b	it		
bit 14	1 = Interrupt r	Time Clock and equest has occ equest has not		rupt Flag Statu	s bit		
bit 13	1 = Interrupt r	A Channel 5 In equest has occ equest has not		tus bit			
bit 12	SPI3RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 11	SPI2RXIF: SF 1 = Interrupt r	•	errupt Flag Stat curred	us bit			
bit 10	SPI1RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 9	SPI4RXIF: SF 1 = Interrupt r	-	errupt Flag Stat curred	us bit			
bit 8	KEYSTRIF: C 1 = Interrupt r	-	ey Store Progra	am Done Interru	upt Flag Status	bit	
bit 7	CRYDNIF: Cr 1 = Interrupt r		peration Done Ir	nterrupt Flag St	atus bit		
bit 6	INT4IF: Exter 1 = Interrupt r	•	Flag Status bit curred				
bit 5	INT3IF: Exter	•	Flag Status bit curred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3		P7 Timer Inter	rupt Flag Status curred	s bit			
		request has not					

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER	8-26: IPC4:											
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0					
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
0-0	MI2C1IP2	MI2C1IP1	MI2C1IP0	0-0	SI2C1IP2	SI2C1IP1	SI2C1IP0					
	IVII2CTIP2	WIZCTFT	IVIIZG HFU		3120 TIF2	SIZCTIFT	1					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15	Unimplemen	ted: Read as 'o)'									
bit 14-12	CNIP<2:0>:	nput Change N	otification Inte	rrupt Priority bi	ts							
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
		pt source is dis	abled									
bit 11	Unimplemen	ted: Read as 'o)'									
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority I	oits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interrupt is Priority 1											
	000 = Interru	pt source is dis	abled									
bit 7	Unimplemen	ted: Read as 'o)'									
bit 6-4	MI2C1IP<2:0	>: Master I2C1	Event Interrup	ot Priority bits								
	111 = Interru	at in Dainait 7 (
		pt is Priority 7 (highest priority	/ interrupt)								
	•	pt is Priority 7 (highest priority	/ interrupt)								
	•	pt is Priority 7 (highest priority	/ interrupt)								
	• • 001 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
				/ interrupt)								
bit 3	000 = Interru	pt is Priority 1	abled	/ interrupt)								
	000 = Interru Unimplemen	pt is Priority 1 pt source is dis	abled									
bit 3 bit 2-0	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis ted: Read as '0	abled ,' vent Interrupt	Priority bits								
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis t ed: Read as '0 >: Slave I2C1 E	abled ,' vent Interrupt	Priority bits								
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis t ed: Read as '0 >: Slave I2C1 E	abled ,' vent Interrupt	Priority bits								
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis ted: Read as '0 >: Slave I2C1 E pt is Priority 7 (abled ,' vent Interrupt	Priority bits								

REGISTER 8-26: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

9.5 FRC Active Clock Tuning

PIC24FJ256GA412/GB412 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"*, regarding full-speed USB devices.

Note:	The self-tune feature maintains sufficient										
	accuracy for operation in USB Device										
	mode. For applications that function as a										
	USB host, a high-accuracy clock source										
	(±0.05%) is still required.										

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the micro- controller must be configured for USB device operation and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.
-	the second s

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2%, in either direction, or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

TABLE 10-2: EXITING POWER-SAVING MODES

		Exit Conditions										
Mode	Inter	rupts		Resets		RTCC	WDT	Vdd	Code Execution			
	All	INT0	All	POR	MCLR	Alarm	WDI	Restore ⁽²⁾	Resumes			
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction			
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A				
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y(1)	N/A	Reset vector			
VBAT	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Reset vector			

Note 1: Deep Sleep WDT.

2: A POR or POR-like Reset results whenever VDD is removed and restored in any mode.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory, and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in **Section 10.4.1 "Entering Deep Sleep Mode**".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator result in some changes to the way that Sleep and Deep Sleep modes behave. See **Section 10.3 "Sleep Mode"** and **Section 10.4 "Deep Sleep Mode"** for additional information.

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

For Deep Sleep mode, interrupts that coincide with the execution of the PWRSAV instruction may be lost. The microcontroller resets on leaving Deep Sleep and the interrupt will be lost.

Interrupts that occur during the Deep Sleep unlock sequence will interrupt the mandatory five-instruction cycle sequence timing and cause a failure to enter Deep Sleep. For this reason, it is recommended to disable all interrupts during the Deep Sleep unlock sequence.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

```
// Syntax to enter Sleep mode:
          #SLEEP_MODE
PWRSAV
                            ; Put the device into SLEEP mode
11
//Synatx to enter Idle mode:
PWRSAV
          #IDLE MODE
                            ; Put the device into IDLE mode
11
// Syntax to enter Deep Sleep mode:
// First use the unlock sequence to set the DSEN bit (see Example 10-2)
BSET DSCON, #DSEN ; Enable Deep Sleep
          DSCON, #DSEN
BSET
                           ; Enable Deep Sleep(repeat the command)
PWRSAV
          #SLEEP_MODE
                            ; Put the device into Deep SLEEP mode
```

TABLE 11-4: PORTC REGISTER MAP⁽¹⁾

ster ne	ange									Bits							
Register Name	Bit Ra	15	14	13	12	11	10	9	8	7	6	5	4	4 3 2 1		0	
ANSC	15:0	—		—	—	—			—	_		—	ANSC<4:1>			—	
TRISC	15:0	TRISC15		—	TRISC12	—		-	—			—	TRISC<4:1>			—	
PORTC	15:0		PORTC	<15:12>		—			—	_		—	PORTC<4:1>				
LATC	15:0	LATC15			LATC12	—			—	_		—	LATC<4:1>				
ODCC	15:0	ODCC15			ODCC12	—			—	_		—		ODCC	<4:1>		
IOCPC	15:0		IOCPC<	<15:12>		—			—	_		—	IOCPC<4:1>				
IOCNC	15:0		IOCNC<	<15:12>		—			—	_		—		IOCNC	<4:1>		
IOCFC	15:0	IOCFC<15:12>				—			—	_		—	IOCFC<4:1>				
IOCPUC	15:0		IOCPUC	<15:12>		—			—	_		—	IOCPUC<4:1>				—
IOCPDC	15:0		IOCPDC	<15:12>		_			_	_		-		IOCPD	C<4:1>		—

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

TABLE 11-5: PORTD REGISTER MAP⁽¹⁾

ster ne	ange									Bits							
Register Name	Bit Range	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ANSD	15:0		ANSD<15:0>														
TRISD	15:0		TRISD<15:0>														
PORTD	15:0		PORTD<15:0>														
LATD	15:0		LATD<15:0>														
ODCD	15:0								O	DCD<15:0>							
IOCPD	15:0								10	CPD<15:0>							
IOCND	15:0								10	CND<15:0>							
IOCFD	15:0		IOCFD<15:0>														
IOCPUD	15:0								100	CPUD<15:0>	>						
IOCPDD	15:0								100	CPDD<15:0>	>						

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

U-0	U-0											
	0-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0					
bit 15							bit 8					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimplem								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown						
bit 15-14	Unimplement	ted: Read as 'o)'									
bit 13-8	RP9R<5:0>: RP9 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP9 (see Table 11-12 for peripheral function numbers).											

REGISTER 11-27: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

	•
bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP8 (see Table 11-12 for peripheral function numbers).

REGISTER 11-28: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writab		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-12 for peripheral function numbers).

bit 7-6

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾		TSIDL ⁽²⁾			—	TECS1 ^(2,3)	TECS0 ^(2,3)
bit 15							bit
		DAALO	DAMO			DAVO	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾		—	TCS ^(2,3)	— hit.
bit 7							bit
Legend:							
R = Reada	ıble bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
hit 1 <i>5</i>	TON: Timery	On hit(2)					
bit 15	1 = Starts 16-						
	1 = Starts 16-0 = Stops 16-0						
bit 14	•	ited: Read as '0)'				
bit 13	TSIDL: Time	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module ope			le mode		
		s module opera		de			
bit 12-10	-	ted: Read as '				TOO (23)	
bit 9-8		Timery Extende			selected wher	$1CS = 1)^{(2,3)}$	
	10 = LPRC C	Timer (TMRCK	.) external inpu	it i			
		xternal clock inp	out				
	00 = SOSC						
bit 7	-	ted: Read as '0		(0)			
bit 6		ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS = This bit is ign						
	When TCS =						
		ne accumulation	n is enabled				
	0 = Gated tir	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input (Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3-2	Unimplemen	ted: Read as 'd)'				
bit 1	TCS: Timery	Clock Source S	elect bit ^(2,3)				
		clock from pin, ⁻ lock (Fosc/2)	TyCK (on the ri	sing edge)			
bit 0		ited: Read as '()'				
	Changing the value reset and is not re	-	ile the timer is	running (TON :	= 1) causes th	ne timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
	If TCS = 1 and T		-			nust be configure	ed to an

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

14.3 Output Compare Mode

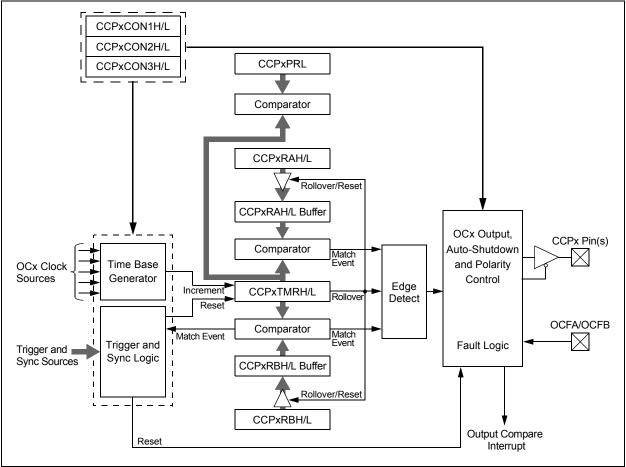

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 14-2 shows the various modes available in Output Compare modes.

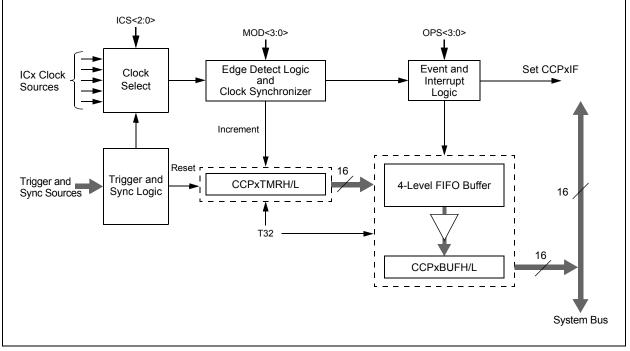
MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode		
0001	0	Output High on Compare (16-bit)		
0001	1	Output High on Compare (32-bit)		
0010	0	Output Low on Compare (16-bit)	Single Edge Mede	
0010	1	Output Low on Compare (32-bit)	Single Edge Mode	
0011	0	Output Toggle on Compare (16-bit)		
0011	1	Output Toggle on Compare (32-bit)		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode	
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode	
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM	
0111	0	Variable Frequency Pulse (16-bit)		
0111	1	Variable Frequency Pulse (32-bit)		

TABLE 14-2: OUTPUT COMPARE/PWM MODES

FIGURE 14-5: OUTPUT COMPARE x BLOCK DIAGRAM

14.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 14-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.


To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 14-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0000	0	Edge Detect (16-bit capture)			
0000	1	Edge Detect (32-bit capture)			
0001	0	Every Rising (16-bit capture)			
0001	1	Every Rising (32-bit capture)			
0010	0	Every Falling (16-bit capture)			
0010	1	Every Falling (32-bit capture)			
0011	0	Every Rise/Fall (16-bit capture)			
0011	1	Every Rise/Fall (32-bit capture)			
0100	0	Every 4th Rising (16-bit capture)			
0100	1	Every 4th Rising (32-bit capture)			
0101	0	Every 16th Rising (16-bit capture)			
0101	1	Every 16th Rising (32-bit capture)			

TABLE 14-3: INPUT CAPTURE MODES

INPUT CAPTURE x BLOCK DIAGRAM

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0	
BUSY	—	ERROR	TIMEOUT	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
RADDR23 ⁽¹⁾	RADDR22 ⁽¹⁾	RADDR21 ⁽¹⁾	RADDR20 ⁽¹⁾	RADDR19 ⁽¹⁾	RADDR18 ⁽¹⁾	RADDR17 ⁽¹⁾	RADDR16 ⁽¹⁾	
bit 7	•	•	•		•		bit 0	
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/Cl	learable bit		
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared HS = Hardware Settable bit			e Settable bit	
bit 15	BUSY: Busy b	oit (Master mod	e only)					
	1 = Port is bu							
	0 = Port is no	,						
bit 14	Unimplement	ted: Read as '0)'					
bit 13	ERROR: Erro	r bit						
		on error (illegal		as requested)				
	0 = Transacti	on completed s	successfully					
bit 12	TIMEOUT: Time-out bit							
	1 = Transacti							
	0 = Transacti	on completed s	successfully					
bit 11-8	Unimplement	ted: Read as 'd)'					
bit 7-0	RADDR<23:16>: Parallel Master Port Reserved Address Space bits ⁽¹⁾							

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFFh.

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single input transparent latch with S and R
 - 110 = JK flip-flop with R
 - 101 = Two-input D flip-flop with R
 - 100 = Single input D flip-flop with S and R
 - 011 = SR latch
 - 010 = Four-input AND
 - 001 = Four-input OR-XOR
 - 000 = Four-input AND-OR

REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—					—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7 bit 0							

l egend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted

24.5.4 DATE/ALARM/TIMESTAMP VALUE REGISTERS

REGISTER 2	24-9: DATE	L/ALMDATE	L/TSADATEL	EL/TSBDATEL: DATE REGISTER (LOW)			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
_	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-0
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'		

REGISTER 24-9: DATEL/ALMDATEL/TSADATEL/TSBDATEL: DATE REGISTER (LOW)

R = Readable bit	R = Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 13-12 **DAYTEN<1:0>:** Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.
- bit 11-8 **DAYONE<3:0>:** Binary Coded Decimal Value of Days '1' Digit bits Contains a value from 0 to 9.
- bit 7-3 Unimplemented: Read as '0'
- bit 2-0 **WDAY<2:0>:** Binary Coded Decimal Value of Weekdays '1' Digit bits Contains a value from 0 to 6.

REGISTER 24-10: DATEH/ALMDATEH/TSADATEH/TSBDATEH: DATE REGISTER (HIGH)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 | | | | | | | bit 8 |

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits	
-----------	---	--

bit 11-8 YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 Unimplemented: Read as '0'

- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 **MTHONE<3:0>:** Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

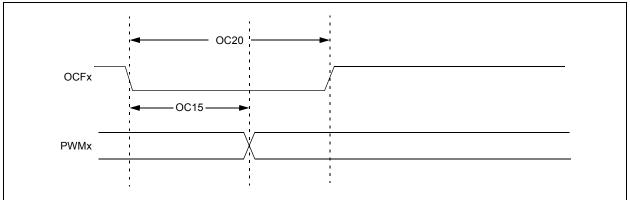
R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	U-0	U-0
PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	—	_
bit 15		1					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS
bit 7							bit 0
Legend:		r = Reserved b					
R = Readabl		W = Writable b	bit	U = Unimplem		d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own
					Den finnen () en 1	- :	
bit 15-14		emented, do not		tage Reference (DITS	
	01 = External		use				
	00 = AVDD						
bit 13	1 = External VREF-						
	0 = AVss						
bit 12	Reserved: M						
bit 11	BUFREGEN: A/D Buffer Register Enable bit 1 = Conversion result is loaded into the buffer location determined by the converted channel						nnal
		t buffer is treate			ermined by the	e converted cha	nnei
bit 10				During Sample A	bit		
	1 = Scans inp	-		5 5 F			
	0 = Does not	scan inputs					
bit 9-8	-	ted: Read as '0					
bit 7		Fill Status bit ⁽¹⁾					
				31BUF25, user sho BUF12, user sho			
bit 6-2				nent Rate Select			D-ADCIDUF20
DIL 0-2	When DMAE	• •			DIIS		
			A address aft	er completion of	the 32nd sam	ple/conversion	operation
	11110 = Incr	ements the DMA	A address aft	er completion of	the 31st samp	le/conversion c	peration
	•••	amonts the DM	A address aft	er completion of	the 2nd samp	le/conversion o	neration
				er completion of			
	When DMAE	N = 0:			·	·	
				e conversion for			
	11110 = Inter	rrupts at the cor	npletion of th	e conversion for	each 31st san	nple	
		rrupts at the cor	npletion of th	e conversion for	every other sa	ample	
				e conversion for			
Note 1: Th	nese hits are on	ly applicable wh	en the huffer	is used in FIFO r	mode (BLIERE	GEN = 0 ln a	ddition BLIES

REGISTER 27-2: AD1CON2: A/D CONTROL REGISTER 2

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

DC CHARA	CTERISTIC	S		Operating Condit temperature		V to 3.6V (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial			
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions			
Power-Dov	vn Current (IPD)							
DC60	3.24	_	μA	-40°C					
	4.08	22	μA	+25°C	2.01/				
	7.81	_	μA	+60°C	2.0V				
	23.25	40	μA	+85°C					
	3.20	_	μA	-40°C					
	4.07	25	μΑ	+25°C	3.3V				
	7.94	_	μA	+60°C					
	19.85	42	μΑ	+85°C					
DC61	0.07	_	μA	-40°C	2.0V 3.3V				
	0.07	_	μA	+25°C					
	3.54	_	μA	+60°C					
	15.30	—	μA	+85°C		– Low-Voltage Sleep ⁽³⁾			
	0.10	_	μA	-40°C					
	0.06	_	μA	+25°C					
	3.68		μA	+60°C					
	15.65		μA	+85°C					
DC70	120	_	nA	-40°C					
	80	800	nA	+25°C	2.0V				
	620	_	nA	+60°C	2.0 V				
	1.13	5	μA	+85°C		Deep Sleep, capacitor on VCAP is			
	110	—	nA	-40°C	3.3V	fully discharged			
	110	1500	nA	+25°C					
	830	_	nA	+60°C					
	3.67	10	μA	+85°C					
DC74	0.6	3	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴			

TABLE 36-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The low-voltage/retention regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The low-voltage/retention regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (FPOR<2>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

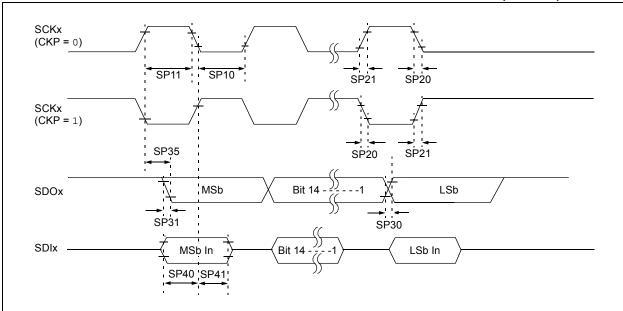

FIGURE 36-8: PWMx MODULE TIMING REQUIREMENTS

TABLE 36-29: PWMx TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Unit	Condition
OC15	Tfd	Fault Input to PWM I/O Change			25	ns	VDD = 3.0V, -40°C to +85°C
OC20	Tfh	Fault Input Pulse Width	50	—	_	ns	VDD = 3.0V, -40°C to +85°C

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 36-13: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	ol Characteristic Min Typ ⁽¹⁾ Max Units Cor					
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	_	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

Μ

Memory Organization	
Microchip Internet Web Site	552
MPLAB ASM30 Assembler, Linker, Librarian	488
MPLAB Integrated Development	
Environment Software	487
MPLAB PM3 Device Programmer	489
MPLAB REAL ICE In-Circuit Emulator System	489
MPLINK Object Linker/MPLIB Object Librarian	488
Ν	
Near Data Space	76
0	
On-Chip Voltage Regulator	
POR	
Standby Mode	483
Oscillator Configuration	
Clock Switching	189
Sequence	
Configuration Bit Values for Clock Selection	184
Control Registers	185
FRC Active Clock Tuning	190
Initial Configuration on POR	184
PLL Block	
Reference Clock	193
Secondary Oscillator	192
USB Operation	
Special Considerations	192
Output Compare	
32-Bit Cascaded Mode	281
Operations	282
Synchronous and Trigger Modes	
Output Compare with Dedicated Timers	281

Ρ

Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
Registers	
Selectable Input Sources	
Selectable Output Sources	
Pin Descriptions	
PIC24FJXXXGA406 Devices	4
PIC24FJXXXGA410 Devices	8
PIC24FJXXXGA412 Devices	
PIC24FJXXXGB406 Devices	6
PIC24FJXXXGB410 Devices	
PIC24FJXXXGB412 Devices	15
Pinout Descriptions	
PIC24FJ256GA412 Family	27
PIC24FJ256GB412 Family	
Power-Saving Features	
Clock Frequency and Clock Switching	
Deep Sleep WDT	
Doze Mode	
Hardware-Based Modes	199

Instruction-Based Modes	198
Deep Sleep	200
I/O Pins	201
Idle	199
Sleep	199
Low-Voltage/Retention Sleep	199
Overview of Modes	
Power-on Resets (PORs)	202
Selective Peripheral Control	
VBAT Mode	203
Product Identification System	554
Program Memory	
Access Using Table Instructions	91
Address Construction	89
Address Space	
Dual Partition Configuration Words	73
Flash Configuration Words	73
Hard Memory Vectors	
Organization	
OTP Memory	73
Reading from Program Memory Using EDS	92
Single and Dual Partition Memory Organization.	70
Program Memory Maps	
Default for PIC24FJ256GA412/GB412 Family	69
Single and Dual Partition Flash Modes	71
Pull-ups and Pull-Downs (I/O)	222
Pulse-Width Modulation (PWM) Mode	
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	284
R	
••	
Real-Time Clock and Calendar (RTCC) with	
Timestamp	391
Real-Time Clock and Calendar. See RTCC.	
Register Maps	
PORTA	
PORTB	217
PORTC	218
PORTD	218
PORTE	
PORTF	219
PORTG	
PORTH	
PORTJ	221
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	439
AD1CHITL (A/D Scan Compare Hit,	

/ B rorning (/ P B boan bomparo ring	
Low Word)	439
AD1CHS (A/D Sample Select)	437
AD1CON1 (A/D Control 1)	431
AD1CON2 (A/D Control 2)	433
AD1CON3 (A/D Control 3)	434
AD1CON4 (A/D Control 4)	435
AD1CON5 (A/D Control 5)	436
AD1CSSH (A/D Input Scan Select, High Word)	440
AD1CSSL (A/D Input Scan Select, Low Word)	440
AD1CTMENH (A/D CTMU Enable, High Word)	441
AD1CTMENL (A/D CTMU Enable, Low Word)	441
ANCFG (A/D Band Gap Reference	
Configuration)	438
BDnSTAT Prototype (Buffer Descriptor n Status,	
CPU Mode)	335
BDnSTAT Prototype (Buffer Descriptor n Status,	
USB Mode)	334