

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga406-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pir	/Pad Numl	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
PMACK1	50	77	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1
PMACK2	43	69	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2
PMBE0	51	78	B9	0	DIG	Parallel Master Port Byte Enable 0 Strobe
PMBE1	—	67	E8	0	DIG	Parallel Master Port Byte Enable 1 Strobe
PMCS1	—	18	G1	0	DIG	Parallel Master Port Chip Select 1 Strobe
PMCS2	—	9	E1	0	DIG	Parallel Master Port Chip Select 2 Strobe
PMD0	60	93	E12	I/O	DIG/ST/TTL	Parallel Master Port Data (Demultiplexed Master
PMD1	61	94	E15	I/O	DIG/ST/TTL	mode) or Address/Data (Multiplexed Master
PMD2	62	98	E19	I/O	DIG/ST/TTL	modes)
PMD3	63	99	A2	I/O	DIG/ST/TTL	
PMD4	64	100	A1	I/O	DIG/ST/TTL	
PMD5	1	3	D3	I/O	DIG/ST/TTL	
PMD6	2	4	C1	I/O	DIG/ST/TTL	
PMD7	3	5	D2	I/O	DIG/ST/TTL	
PMD8	_	90	A5	I/O	DIG/ST/TTL	
PMD9	_	89	E6	I/O	DIG/ST/TTL	
PMD10	—	88	A6	I/O	DIG/ST/TTL	
PMD11	—	87	B6	I/O	DIG/ST/TTL	
PMD12	_	79	A9	I/O	DIG/ST/TTL	
PMD13	—	80	D8	I/O	DIG/ST/TTL	
PMD14	—	83	D7	I/O	DIG/ST/TTL	
PMD15	—	84	C7	I/O	DIG/ST/TTL	
PMRD/PMWR	53	82	B8	I/O	DIG/ST/TTL	Parallel Master Port Read Strobe/Write Strobe
PMWR/PMENB	52	81	C8	I/O	DIG/ST/TTL	Parallel Master Port Write Strobe/Enable Strobe
PWRGT	21	32	K4	0	DIGMV	Real-Time Clock Power Control Output
PWRLCLK	48	74	B11	I	STMV	Real-Time Clock 50/60 Hz Clock Input
RA0	—	17	G3	I/O	DIG/ST	PORTA Digital I/Os
RA1	—	38	J6	I/O	DIG/ST	-
RA2	—	58	H11	I/O	DIG/ST/TTL	
RA3	—	59	G10	I/O	DIG/ST/TTL	
RA4	—	60	G11	I/O	DIG/ST	
RA5	—	61	G9	I/O	DIG/ST	
RA6	—	91	E10	I/O	DIG/ST	
RA7	—	92	E11	I/O	DIG/ST	
RA9	—	28	L2	I/O	DIG/ST/TTL	
RA10	—	29	K3	I/O	DIG/ST	
RA14	—	66	E11	I/O	DIG/ST/TTL	
RA15	—	67	E8	I/O	DIG/ST/TTL	

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

	Pir	n/Pad Numl	ber	İ		
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
SEG0	4	10	E3	0	ANA	LCD Driver Segment Outputs
SEG1	8	14	F3	0	ANA	
SEG2	11	20	H1	0	ANA	
SEG3	12	21	H2	0	ANA	
SEG4	13	22	J1	0	ANA	
SEG5	14	23	J2	0	ANA	
SEG6	15	24	K1	0	ANA	
SEG7	16	25	K2	0	ANA	
SEG8	29	43	K7	0	ANA	
SEG9	30	44	L8	0	ANA	
SEG10	31	49	L10	0	ANA	
SEG11	32	50	L11	0	ANA	
SEG12	33	51	K10	0	ANA	
SEG13	42	68	E9	0	ANA	
SEG14	43	69	E10	0	ANA	
SEG15	44	70	D11	0	ANA	
SEG16	45	71	C11	0	ANA	
SEG17	46	72	D9	0	ANA	
SEG18	27	41	J7	0	ANA	
SEG19	28	42	L7	0	ANA	
SEG20	49	76	A11	0	ANA	
SEG21	50	77	A10	0	ANA	
SEG22	51	78	B9	0	ANA	
SEG23	52	81	C8	0	ANA	
SEG24	53	82	B8	0	ANA	
SEG25	54	83	D7	0	ANA	
SEG26	55	84	C7	0	ANA	
SEG27	58	87	B6	0	ANA	
SEG28	_	61	G9	0	ANA	
SEG29	23	34	H5	0	ANA	
SEG30	22	33	L4	0	ANA	
SEG31	21	32	K4	0	ANA	
SEG32	_	6	D1	0	ANA	
SEG33	_	8	E2	0	ANA	
SEG34	—	18	G1	0	ANA	1
SEG35	—	19	G2	0	ANA	1
SEG36	_	28	L2	0	ANA	1
SEG37	_	29	K3	0	ANA	1
SEG38	_	47	L9	0	ANA	1
SEG39	—	48	K9	0	ANA	1
SEG40	34	52	K11	0	ΔΝΔ	1

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: T

TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15	•=••						bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP6IF	CCP5IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7	·			·			bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
6:4 <i>4 E</i>			Interviet Floo	Ctatus hit			
DIUIS	1 = Interrupt		curred	Status Dit			
	0 = Interrupt	request has no	t occurred				
bit 14	U2RXIF: UA	RT2 Receiver Ir	nterrupt Flag S	tatus bit			
	1 = Interrupt	request has oc	curred				
1.1.10	0 = Interrupt	request has no	t occurred				
DIT 13	1 = Interrupt	rnal Interrupt 2	Flag Status bit	I			
	0 = Interrupt	request has no	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 11	14IF: limer4	Interrupt Flag s	Status bit				
	0 = Interrupt	request has no	t occurred				
bit 10	OC4IF: Outp	ut Compare Ch	annel 4 Interru	upt Flag Status I	bit		
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 9	OC3IF: Outp	ut Compare Ch	annel 3 Interru	upt Flag Status I	bit		
	0 = Interrupt	request has no	t occurred				
bit 8	DMA2IF: DM	IA Channel 2 In	terrupt Flag St	tatus bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 7	CCP6IF: SC	CP6 Capture/Co	ompare Interru	ipt Flag Status I	oit		
	0 = Interrupt	request has od	t occurred				
bit 6	CCP5IF: SC	CP5 Capture/Co	ompare Interru	ipt Flag Status I	oit		
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 5	Unimplemen	ted: Read as ')' 				
bit 4	INT1IF: Exter 1 = Interrupt	rnal Interrupt 1 request has or	Flag Status bit	l			
	0 = Interrupt	request has no	t occurred				
bit 3	CNIF: Interru	pt-on-Change I	nterrupt Flag S	Status bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				

REGISTER 8-7: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIF	INT4IF	INT3IF	—	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	CCP1IF: MCC 1 = Interrupt r 0 = Interrupt r	CP1 Capture/Co equest has occ equest has not	ompare Interrup urred occurred	ot Flag Status b	it		
bit 14	RTCIF: Real-	Time Clock and	I Calendar Inter	rupt Flag Statu	s bit		
	1 = Interrupt r	equest has occ	curred				
bit 13	DMA5IF: DM	A Channel 5 Int	errupt Flag Sta	tus bit			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 12	SPI3RXIF: SH	PI3 Receive Inte	errupt Flag Stat	us bit			
	0 = Interrupt r	equest has occ	occurred				
bit 11	SPI2RXIF: SP	PI2 Receive Inte	errupt Flag Stat	us bit			
	1 = Interrupt r	equest has occ	urred				
hit 10		equest has not	OCCUITED	ue hit			
	1 = Interrupt r 0 = Interrupt r	equest has occ	urred occurred				
bit 9	SPI4RXIF: SF	PI4 Receive Inte	errupt Flag Stat	us bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 8	KEYSTRIF: C	Cryptographic K	ey Store Progra	am Done Interru	upt Flag Status	bit	
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	occurred				
bit 7	CRYDNIF: Cr	yptographic Op	eration Done Ir	nterrupt Flag St	atus bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 6	INT4IF: Exter	mal Interrupt 4	Flag Status bit				
	1 = Interrupt r	equest has occ	contred				
bit 5	INT3IF: Exter	nal Interrunt 3	Flag Status bit				
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	CCT7IF: SCC	P7 Timer Inter	rupt Flag Status	s bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER 8-19: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- bit 3 U3TXIE: UART3 Transmitter Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 2 U3RXIE: UART3 Receiver Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 U3ERIE: UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0			
bit 15	·					•	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	U3ERIP2	U3ERIP1	U3ERIP0	—	_	—	—			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '	0'							
bit 14-12	U3TXIP<2:0>	UART3 Trans	smitter Interrup	ot Priority bits						
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 11	Unimplemen	ted: Read as '	0'							
bit 10-8	U3RXIP<2:0>	-: UART3 Rece	eiver Interrupt	Priority bits						
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4	U3ERIP<2:0>	-: UART3 Error	Interrupt Prio	rity bits						
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 3-0	Unimplemen	ted: Read as '	0'							

REGISTER 8-42: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0		SPI3IP2	SPI3IP1	SPI3IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_	U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-12	SPI3TXIP<2:	0>: SPI3 Trans	mit Interrupt P	riority bits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1	ablad						
bit 11		000 = Interrupt source is disabled							
bit 10-8		SPI3 General	unterrunt Priori	ty hite					
	111 = Interru	ot is Priority 7 (highest priority	interrupt)					
	•		ingricer priority	interrept)					
	•								
	• 001 – Interru	ot is Priority 1							
	000 = Interru	pt is i nonty i pt source is dis	abled						
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-4	U4TXIP<2:0>	UART4 Trans	smitter Interrup	t Priority bits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	U4RXIP<2:0>	: UART4 Rece	eiver Interrupt F	Priority bits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	ot is Priority 1							
	000 = Interru	pt source is dis	apied						

REGISTER 8-44: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note:	At a devic	e Rese	et, the	PC	Cx regi	isters are
	initialized	such	that	all	user	interrupt
	sources a	re assi	gned t	to Pi	riority I	_evel 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.6 PLL Block

PIC24FJ256GA412/GB412 family devices include a versatile PLL block as part of the clock generation system. This allows for economical high-speed operation up to FOSCMAX (32 MHz) without the need of an external HS crystal for most applications. It also provides the option to generate a high-precision 48 MHz clock for USB operation, without regard for the system clock frequency. The PLL block is shown in Figure 9-2.

The PLL block has two separate branches:

- A Fixed PLL branch that multiplies the input clock frequency by a factor of 4, 6 or 8. The output frequency is provided as the system clock, as well as an input for the reference clock.
- A 96 MHz PLL that multiplies the input frequency to 96 MHz. The PLL is able to generate a system clock output of 4 MHz, 8 MHz, 16 MHz or 32 MHz. In USB devices, this branch also generates the 48 MHz full-speed USB clock. The 96 MHz output is provided directly as an input for the reference clock.

The PLL block uses either the Primary Oscillator or the FRC as its input source, as selected by the COSC<2:0> or NOSC<2:0> oscillator select bits. For both PLL branches, the minimum input frequency is 4 MHz. For the FRC, the only valid input options are 4 MHz or 8 MHz. The input from the Primary Oscillator can range from up to 48 MHz, in 4 MHz increments.

The fixed PLL multiplier is selected by the PLLMODE<3:0> Configuration bits. As it does not automatically sense the input frequency, the user must select a frequency that will not result in an output frequency greater than 32 MHz.

The 96 MHz PLL branch does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL for the input frequency in order to generate the 96 MHz output, using the PLLMODE<3:0> Configuration bits. This limits the choices for input frequencies to a total of 8 possibilities, shown in Table 9-2. The CPDIV<1:0> bits independently select the system clock speed; available clock options are listed in Table 9-3.

TABLE 9-2: VALID OSCILLATOR INPUTS FOR 96 MHz PLL

Input Oscillator Frequency	Clock Mode	PLL Multiplier (PLLMODE<3:0>)
48 MHz	ECPLL	2(0111)
32 MHz	HSPLL, ECPLL	3(0110)
24 MHz	HSPLL, ECPLL	4(0101)
20 MHz	HSPLL, ECPLL	4.8 (0100)
16 MHz	HSPLL, ECPLL	6(0011)
12 MHz	HSPLL, ECPLL	8(0010)
8 MHz	ECPLL, XTPLL, FRCPLL ⁽¹⁾	12 (0001)
4 MHz	ECPLL, XTPLL, FRCPLL ⁽¹⁾	24 (0000)

Note 1: This requires the use of the FRC self-tune feature to maintain required clock accuracy.

FIGURE 9-2: PLL SYSTEM BLOCK

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7		•	•		•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	כ'				
bit 13-8	RP9R<5:0>:	RP9 Output Pir	n Mapping bits				
	Peripheral Ou	tput Number n	is assigned to	pin, RP9 (see T	able 11-12 for	peripheral func	tion numbers).

REGISTER 11-27: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP8 (see Table 11-12 for peripheral function numbers)

REGISTER 11-28: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	/alue at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
I							

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-12 for peripheral function numbers).

bit 7-6

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	—	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15							bit 8
		D 444.0		D 444 0	D 444 0	D 444 0	
0-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	POLACE	POLBDF	PSSACE1	PSSACE0	PSSBDF1	PSSBDF0
Dit 7							DIT U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
				0 21110 0.00			
bit 15	OETRIG: CCF	Px Dead-Time	Select bit				
	1 = For Trigge	ered mode (TR	RIGEN = 1): Mo	dule does not	drive enabled of	output pins until	l triggered
	0 = Normal o	utput pin opera	ition				
bit 14-12	OSCNT<2:0>	: One-Shot Eve	ent Count bits				
	111 = Extends	s one-shot eve	nt by 7 time ba	se periods (8 ti se periods (7 ti	ime base perio	ds total)	
	101 = Extends	s one-shot eve	nt by 5 time ba	se periods (7 ti se periods (6 ti	ime base perio	ds total)	
	100 = Extends	s one-shot eve	nt by 4 time ba	se periods (5 t	ime base perio	ds total)	
	011 = Extends	s one-shot eve	nt by 3 time ba	se periods (4 t	ime base perio	ds total)	
	001 = Extends	s one-shot eve	nt by 1 time ba	se periods (3 ti se period (2 tir	ne base period	ls total)	
	000 = Does n	ot extend one-	shot trigger eve	ent		,	
bit 11	Unimplement	ted: Read as '	כי				
bit 10-8	OUTM<2:0>:	PWMx Output	Mode Control I	oits ⁽¹⁾			
	111 = Reserv	ed					
	110 = Output	Scan mode	le forward				
	100 = Brush [DC Output mod	le, reverse				
	011 = Reserv	ed					
	010 = Half-Bri	idge Output mo	ode				
	000 = Steerat	ble Single Outp	out mode				
bit 7-6	Unimplement	ted: Read as ')'				
bit 5	POLACE: CC	Px Output Pine	s, OCMx, OCM	xA, OCMxC ar	nd OCMxE, Po	larity Control bi	t
	1 = Output pi	n polarity is act	tive-low				
	0 = Output pi	n polarity is act	tive-high				
bit 4	POLBDF: CC	Px Output Pins	s, OCxB, OCxD	and OCxF, Po	plarity Control b	Dit ⁽¹⁾	
	1 = Output pin0 = Output pin	n polarity is act n polarity is act	tive-low tive-high				
bit 3-2	PSSACE<1:0:	>: PWMx Outp	ut Pins, OCMx,	OCMxA, OCM	xC and OCMxE	E, Shutdown Sta	te Control bits
	11 = Pins are	driven active v	when a shutdow	n event occurs	S		
	10 - Pins are 0x = Pins are	tri-stated wher	a shutdown e	vent occurs	5 IL		
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins. OCxB.	OCxD. and O	CxF, Shutdowr	State Control	bits ⁽¹⁾
	11 = Pins are	driven active v	when a shutdow	vn event occurs	3		
	10 = Pins are	driven inactive	when a shutdo	own event occu	urs		
	0x = Pins are	in a high-impe	dance state wh	ien a shutdowr	event occurs		

REGISTER 14-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_			_	_	_	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

32: Cascade Two IC Modules Enable bit (32-bit operation)
 ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) ICx functions independently as a 16-bit module
TRIG: ICx Sync/Trigger Select bit
 Triggers ICx from the source designated by the SYNCSELx bits
Synchronizes ICx with the source designated by the SYNCSELx bits
RIGSTAT: Timer Trigger Status bit
 Timer source has been triggered and is running (set in hardware, can be set in software) Timer source has not been triggered and is being held clear
implemented: Read as '0'

- **Note 1:** Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

16.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA412/GB412 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- Two Separate Period Registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event, or Continuous PWM Waveform Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

16.1 General Operating Modes

16.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

16.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual",* **"Output Compare with Dedicated Timer"** (DS70005159).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
PMEN	_	PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0
bit 15						L	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	0-0	R/W-0	R/W-0	R/W-0
LSF1	CSFU	ALP	ALMODE		BUSKEEP	IRQMI	IRQIMU bit 0
							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	PMFN · Paralle	el Master Port	Enable bit				
	1 = EPMP is (enabled					
	0 = EPMP is	disabled					
bit 14	Unimplement	ted: Read as '	כ'				
bit 13	PSIDL: Paralle	el Master Port	Stop in Idle Mo	ode bit			
	1 = Discontinue	ues module op s module oper	eration when o	device enters lo	lle mode		
bit 12-11		>: Address/D:	ation in fule inc	a Selection bits			
511 12 11	11 = Lower ac	ddress bits are	multiplexed wi	th data bits usi	ng 3 address p	hases	
	10 = Lower ad	ddress bits are	multiplexed wi	th data bits usi	ng 2 address p	hases	
	01 = Lower ac	ddress bits are	multiplexed wi	th data bits usi	ng 1 address p	hase	
hit 10	Unimplement	anu uata appe anu uata appe	ar on separate	e pins			
bit 9-8	MODE<1:0>:	Parallel Port M	o lode Select bit	S			
	11 = Master n	node					
	10 = Enhance	ed PSP; pins u	sed are PMRD	, PMWR, PMC	S, PMD<7:0> a	and PMA<1:0>	
	01 = Buffered	PSP; pins use Parallel Slave I	ed are PMRD, I Port: pins used	PMWR, PMCS	and PMD<7:0>	> nd PMD<7·0>	
bit 7-6	CSF<1:0>: Ch	nip Select Fund	ction bits		intra, r moo a		
	11 = Reserve	d					
	10 = PMA15 i	s used for Chi	Select 2, PM	A14 is used for	Chip Select 1		
	01 = PMA15 I 00 = PMCS2 i	s used for Chi is used for Chi	n Select 2, PM	CS1 is used for CS1 is used for	r Chip Select 1		
bit 5	ALP: Address	Latch Polarity	bit				
	1 = Active-hig	, h (PMALL, PN)	ALH and PMA	ALU)			
	0 = Active-lov	v (PMALL, PM	ALH and PMA	LŪ)			
bit 4	ALMODE: Ad	dress Latch St	robe Mode bit				
	1 = Enables	smart addres	s strobes (eacr	haddress phas han the previou	e is only presei is address)	nt if the current	access would
	0 = Disables '	"smart" addres	s strobes				
bit 3	Unimplement	ted: Read as '	כי				
bit 2	BUSKEEP: B	us Keeper bit					
	1 = Data bus 0 = Data bus	keeps its last v is in a high-im	/alue when not pedance state	actively being when not active	driven elv beina driver	ı	
bit 1-0	IRQM<1:0>:	nterrupt Reque	est Mode bits				
	11 = Interrupt	is generated w	hen Read Buff	er 3 is read or V	Vrite Buffer 3 is	written (Buffere	d PSP mode),
		ead or write op d	peration when I	PMA<1:0> = 11	(Addressable	PSP mode onl	y)
	01 = Interrunt	u is generated a	at the end of a	read/write cvcle	9		
	00 = No interr	upt is generate	ed				

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

REGISTER 22-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDIRE		LCDCST2	LCDCST1	LCDCST0	VLCD3PE	VLCD2PE	VLCD1PE
bit 15				•	•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
LRLAP1	LRLAP0	LRLBP1	LRLBP0		LRLAT2	LRLAT1	LRLAT0
bit 7					•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	LCDIRE: LCI	D Internal Refer	ence Enable b	it			
	1 = Internal L	_CD reference i	s enabled and	connected to t	he internal con	trast control cir	cuit
	0 = Internal L	_CD reference	s disabled				
bit 14	Unimplemen	ted: Read as ')'				
bit 13-11	LCDCST<2:0	>: LCD Contra	st Control bits				
	Selects the R	esistance of the	<u>e LCD Contras</u>	t Control Resis	tor Ladder:		
	110 = Resist	or ladder is at f	7th of maximu	im resistance	r contrast)		
	101 = Resiste	or ladder is at 5	/7th of maximu	im resistance			
	100 = Resist	or ladder is at 4	/7th of maximu	im resistance			
	011 = Resist	or ladder is at 3	7th of maximu	im resistance			
	010 = Resist	or ladder is at 2	7 th of maximu	im resistance			
	000 = Minimu	um resistance (maximum cont	rast); resistor la	adder is shorted	d	
bit 10	VLCD3PE: LO	CD Bias 3 Pin B	Enable bit				
	1 = Bias 3 le	vel is connecte	d to the externation	al pin, LCDBIA	S3		
	0 = Bias 3 le	vel is internal (i	nternal resistor	ladder)			
bit 9	VLCD2PE: L	CD Bias 2 Pin E	Enable bit				
	1 = Bias 2 let	vel is connecte	d to the externa	al pin, LCDBIA	S2		
h :+ 0		vei is internal (i	nternal resistor	ladder)			
DIT 8		CD Blas 1 Pln E	nable bit		C1		
	0 = Bias 1 le	vel is internal (i	nternal resistor	ladder)	51		
bit 7-6	LRLAP<1:0>	: LCD Referen	ce Ladder A Tir	me Power Cont	trol bits		
	During Time I	nterval A:					
	11 = Internal	LCD reference	ladder is powe	ered in High-Po	wer mode		
	10 = Internal LCD reference ladder is powered in Medium Power mode						
	01 = Internal	LCD reference	ladder is powe	ered in Low-Pov	wer mode		
hit 5-4			nauuei is puwe ne l adder R Tii	me Power Cont			
	During Time I	nterval R.					
	11 = Internal	LCD reference	ladder is powe	ered in High-Po	wer mode		
	10 = Internal	LCD reference	ladder is powe	ered in Medium	Power mode		
	01 = Internal	LCD reference	ladder is powe	ered in Low-Pov	wer mode		
1		LCD reference	ladder is powe	ered down and	unconnected		
bit 3	Unimplemen	Unimplemented: Read as '0'					

24.3 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current lower power mode.

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCCON1L<10>).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and OUTSEL<2:0> = 011).

The polarity of the PWC control signal is selected by the PWCPOL bit (RTCCON1L<9>). An active-low or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL<2:0> = 011) and is used to power-up or power-down the device, as described above.

Once the control output is asserted, the Stability Window begins, in which the external device is given enough time to power-up and provide a stable output.

Once the output is stable, the RTCC provides a sample gate during the Sample Window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.

Finally, both the Stability and the Sample Windows close after the expiration of the Sample Window, and the external device is powered down.

24.3.1 POWER CONTROL CLOCK SOURCE

The Stability and Sample Windows are controlled by the PWCSAMP<7:0> and PWCSTAB<7:0> bits field in the RTCCON3L register (RTCCON3L<15:8> and <7:0>, respectively). As both the Stability and Sample Windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period. The 8-bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 clock periods.

The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS<1:0> bits (RTCCON2L<7:6>).

In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00h, the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the Stability Window remains active continuously, even if power control is disabled.

24.4 Event Timestamping

The RTCC includes two sets of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC triggers the timestamps for two events:

- For Timestamp A, a falling edge on the TMPR pin
- For Timestamp B, when the devices transition from VDD to VBAT power

A Timestamp A event can be triggered while running the device in VBAT mode if the TMPR pin is pulled up to VBAT.

24.4.1 TIMESTAMP OPERATION

The event input is enabled for timestamping using the TSAEN bit (RTCCON1L<0>). When the timestamp event occurs, the present time and date values are stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL<3>) becomes set and an RTCC interrupt occurs. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

24.4.2 MANUAL TIMESTAMP

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a '1' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN = 1). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.

24.5.3 TIME/ALARM/TIMESTAMP VALUE REGISTERS

REGISTER 24-7: TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL: TIME REGISTER (LOW)

-						、 /	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-12	SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

REGISTER 24-8: TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH: TIME REGISTER (HIGH)

						· · ·	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

0-0	R/W-U	F(/VV-U	R/W-U	R/W-U	F(/VV-U	R/VV-U	FV/VV-U
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits
	Contains a value from 0 to 2.
bit 11-8	HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits
	Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

© 2015-2016 Microchip Technology Inc.

FIGURE 27-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

TABLE 27-1: INDIRECT ADDRESS GENERATION IN PIA MODE

DMABL<2:0>	Buffer Size per Channel (words)	Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	0cc cccn nnn0	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits),

x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
	CTMEN<30:28>			—	CTMEN	<25:24>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CTMEN	I<23:16> ⁽¹⁾					
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimplemer	nted: Read as '	0'						
bit 14-12	CTMEN<30:	28>: CTMU Ena	abled During (Conversion bits					
	1 = CTMU is enabled and connected to the selected internal channel during conversion								
	0 = CTMU is	not connected	to this channe	el .					
bit 11-10	Unimplemer	nted: Read as '	0'						
bit 9-8	CTMEN<25:	24>: CTMU Ena	abled During (Conversion bits					
	1 = CTMU is	enabled and co	onnected to th	e selected inter	nal channel dur	ing conversion			
	0 = CTMU is	not connected	to this channe		(4)				
bit 7-0	CTMEN<23:16>: CTMU Enabled During Conversion bits ⁽¹⁾								
1 = CTMU is enabled and connected to the selected A/D channel during conversion									
	0 = C I W O IS	not connected	to this channe	;1					

REGISTER 27-12: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 27-13: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	EN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTN	1EN<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected A/D channel during conversion

0 = CTMU is not connected to this channel

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820