

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betails	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga406t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
A1	SEG62/LVDIN/CTED8/PMD4/IOCE4/RE4	E1	SEG52/AN16/ RPI41 /PMCS2/IOCC4/RC4
A2	COM0/CTED9/PMD3/IOCE3/RE3	E2	SEG33/RPI40/IOCC3/RC3
A3	SEG61/CTED10/IOCG13/RG13	E3	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/IOCG6/RG6
A4	COM3/PMD0/IOCE0/RE0	E4	SEG51/RPI39/IOCC2/RC2
A5	SEG49/PMD8/IOCG0/RG0	E5	IOCJ1/RJ1
A6	SEG47/SCK4/PMD10/IOCF1/RF1	E6	SEG46/PMD9/IOCG1/RG1
A7	VBAT	E7	Vdd
A8	IOCH14/RH14	E8	SEG43/RPI35/SDA1/PMBE1/IOCA15/RA15
A9	SEG44/ RPI42 /PMD12/IOCD12/RD12	E9	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/IOCD8/RD8
A10	SEG21/RP23/PMACK1/IOCD2/RD2	E10	SEG14/ RP4 /PMACK2/IOCD9/RD9
A11	SEG20/ RP24 /U5TX/ICM4/IOCD1/RD1	E11	SEG42/RPI36/SCL1/PMA22/IOCA14/RA14
B1	COM4/IOCH1/RH1	F1	MCLR
B2	SEG50/OCM1C/CTED3/IOCG15/RG15	F2	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2/PMA3/IOCG8/RG8
B3	COM1/PMD2/IOCE2/RE2	F3	SEG1/AN20/C1INC/C2INC/C3INC/ RP27 /DAC1/PMA2/PMALU/ IOCG9/RG9
B4	COM2/PMD1/IOCE1/RE1	F4	VLCAP1/AN18/C1INC/ RP26 /OCM1B/PMA4/IOCG7/RG7
B5	SEG58/AN22/OCM1F/PMA17/IOCA7/RA7	F5	Vss
B6	SEG27/U5CTS/OC6/PMD11/IOCF0/RF0	F6	IOCH15/RH15
B7	VCAP	F7	IOCH12/RH12
B8	SEG24/ RP20 /PMRD/PMWR/IOCD5/RD5	F8	VDD
B9	SEG22/RP22/ICM7/PMBE0/IOCD3/RD3	F9	OSCI/CLKI/IOCC12/RC12
B10	Vss	F10	Vss
B11	SOSCO/SCLKI/RPI37/PWRLCLK/IOCC14/RC14	F11	OSCO/CLKO/IOCC15/RC15
C1	LCDBIAS1/SCL3/IC5/PMD6/IOCE6/RE6	G1	SEG34/RPI33/PMCS1/IOCE8/RE8
C2	Vdd	G2	SEG35/AN21/ RPI34 /PMA19/IOCE9/RE9
C3	SEG60/IOCG12/RG12	G3	TMS/SEG48/CTED14/IOCA0/RA0
C4	SEG59/CTED11/PMA16/IOCG14/RG14	G4	COM6/IOCH3/RH3
C5	SEG57/AN23/OCM1E/IOCA6/RA6	G5	Vdd
C6	Vss	G6	Vss
C7	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/IOCD7/RD7	G7	Vss
C8	SEG23/ RP25 /PMWR/PMENB/IOCD4/RD4	G8	IOCH11/RH11
C9	IOCH13/RH13	G9	TDO/SEG28/IOCA5/RA5
C10	SOSCI/IOCC13/RC13	G10	SEG56/SDA2/PMA20/IOCA3/RA3
C11	SEG16/C3INC/RP12/PMA14/PMCS/APMCS1/IOCD11/RD11	G11	TDI/PMA21/IOCA4/RA4
D1	SEG32/RPI38/OCM1D/IOCC1/RC1	H1	PGEC3/SEG2/AN5/C1INA/ RP18 /ICM3/OCM3/IOCB5/RB5
D2	LCDBIAS0/SDA3/IC6/PMD7/IOCE7/RE7	H2	PGED3/SEG3/AN4/C1INB/ RP28 /USBOE/IOCB4/RB4
D3	LCDBIAS2/IC4/CTED4/PMD5/IOCE5/RE5	H3	COM7/IOCH4/RH4
D4	COM5/IOCH2/RH2	H4	IOCH5/RH5
D5	IOCJ0/RJ0	H5	SEG29/CVREF/AN10/SDO4/PMA13/IOCB10/RB10
D6	VDD	H6	VDD
D7	SEG25/C3INB/U5RX/OC4/PMD14/IOCD6/RD6	H7	IOCH8/RH8
D8	SEG45/PMD13/IOCD13/RD13	H8	VBUS/IOCF7/RF7
D9	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/IOCD0/RD0	H9	VUSB3V3
D10	Vss	H10	D+/IOCG2/RG2
D11	SEG15/C3IND/RP3/PMA15/APMCS2/IOCD10/RD10	H11	SEG55/SCL2/IOCA2/RA2

TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB412

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

	Pi	n/Pad Num	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
SEG0	4	10	E3	0	ANA	LCD Driver Segment Outputs
SEG1	8	14	F3	0	ANA	
SEG2	11	20	H1	0	ANA	
SEG3	12	21	H2	0	ANA	
SEG4	13	22	J1	0	ANA	
SEG5	14	23	J2	0	ANA	1
SEG6	15	24	K1	0	ANA	1
SEG7	16	25	K2	0	ANA	1
SEG8	29	43	K7	0	ANA	
SEG9	30	44	L8	0	ANA]
SEG10	31	49	L10	0	ANA]
SEG11	32	50	L11	0	ANA]
SEG12	33	51	K10	0	ANA	
SEG13	42	68	E9	0	ANA]
SEG14	43	69	E10	0	ANA]
SEG15	44	70	D11	0	ANA	
SEG16	45	71	C11	0	ANA	
SEG17	46	72	D9	0	ANA	
SEG18	27	41	J7	0	ANA	
SEG19	28	42	L7	0	ANA]
SEG20	49	76	A11	0	ANA	
SEG21	50	77	A10	0	ANA	
SEG22	51	78	B9	0	ANA	
SEG23	52	81	C8	0	ANA	
SEG24	53	82	B8	0	ANA	
SEG25	54	83	D7	0	ANA	
SEG26	55	84	C7	0	ANA	
SEG27	58	87	B6	0	ANA	
SEG28	—	61	G9	0	ANA	
SEG29	23	34	H5	0	ANA	
SEG30	22	33	L4	0	ANA	
SEG31	21	32	K4	0	ANA	
SEG32	—	6	D1	0	ANA	
SEG33	—	8	E2	0	ANA	
SEG34	-	18	G1	0	ANA	
SEG35	—	19	G2	0	ANA	
SEG36		28	L2	0	ANA	
SEG37	—	29	K3	0	ANA	
SEG38		47	L9	0	ANA	
SEG39		48	K9	0	ANA	
SEG40	34	52	K11	0	ANA	

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: T

TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

TABLE 4-	i				All D /			
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Core			Interrupt Cor	ntroller		IPC7	0B6	0100010001000100
WREG0	000	000000000000000000000000000000000000000	INTCON1	080	000000000000000000000000000000000000000	IPC8	0B8	0100010001000100
WREG1	002	000000000000000000000000000000000000000	INTCON2	082	10000000000000000	IPC9	0BA	0100010001000100
WREG2	004	000000000000000000000000000000000000000	INTCON4	086	000000000000000000000000000000000000000	IPC10	0BC	0100010001000100
WREG3	006	000000000000000000000000000000000000000	IFS0	088	000000000000000000000000000000000000000	IPC11	0BE	0100010001000100
WREG4	008	000000000000000000000000000000000000000	IFS1	08A	000000000000000000000000000000000000000	IPC12	0C0	0100010001000100
WREG5	00A	000000000000000000000000000000000000000	IFS2	08C	000000000000000000000000000000000000000	IPC13	0C2	0100010001000000
WREG6	00C	000000000000000000000000000000000000000	IFS3	08E	000000000000000000000000000000000000000	IPC14	0C4	0100010001000100
WREG7	00E	000000000000000000000000000000000000000	IFS4	090	000000000000000000000000000000000000000	IPC15	0C6	0100010001000100
WREG8	010	000000000000000000000000000000000000000	IFS5	092	000000000000000000000000000000000000000	IPC16	0C8	0100010001000100
WREG9	012	000000000000000000000000000000000000000	IFS6	094	000000000000000000000000000000000000000	IPC17	0CA	0100010000000000
WREG10	014	000000000000000000000000000000000000000	IFS7	096	000000000000000000000000000000000000000	IPC18	0CC	0000000001000100
WREG11	016	000000000000000000000000000000000000000	IEC0	098	000000000000000000000000000000000000000	IPC19	0CE	0000010001000000
WREG12	018	000000000000000000000000000000000000000	IEC1	09A	000000000000000000000000000000000000000	IPC20	0D0	0100010001000000
WREG13	01A	000000000000000000000000000000000000000	IEC2	09C	000000000000000000000000000000000000000	IPC21	0D2	0100010001000100
WREG14	01C	000000000000000000000000000000000000000	IEC3	09E	000000000000000000000000000000000000000	IPC22	0D4	0100010001000100
WREG15	01E	000000000000000000000000000000000000000	IEC4	0A0	000000000000000000000000000000000000000	IPC23	0D6	0100010001000100
SPLIM	020	xxxxxxxxxxxxxxx0	IEC5	0A2	000000000000000000000000000000000000000	IPC24	0D8	0100010001000100
PCL	02E	000000000000000000000000000000000000000	IEC6	0A4	000000000000000000000000000000000000000	IPC25	0DA	0000010001000100
PCH	030	000000000000000000000000000000000000000	IEC7	0A6	000000000000000000000000000000000000000	IPC26	0DC	0000010000000000
DSRPAG	032	000000000000000000000000000000000000000	IPC0	0A8	0100010001000100	IPC27	0DE	0100010001000000
DSWPAG	034	000000000000000000000000000000000000000	IPC1	0AA	0100010001000100	IPC28	0E0	0100010001000100
RCOUNT	036	*****	IPC2	0AC	0100010001000100	IPC29	0E2	000000001000100
SR	042	000000000000000000000000000000000000000	IPC3	0AE	0100010001000100	INTTREG	0E4	000000000000000000
CORCON	044	000000000000000000000000000000000000000	IPC4	0B0	0100010001000100			
DISICNT	052	00xxxxxxxxxxxx	IPC5	0B2	0100010000000100			
TBLPAG	054	000000000000000000000000000000000000000	IPC6	0B4	0100010001000100			

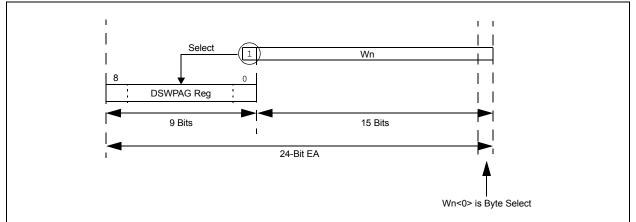
TABLE 4-5: SFR BLOCK 000h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

4.3.5.2 Data Write into EDS

In order to write data to EDS space, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address and the accessed location can be written.

Figure 4-8 illustrates how the EDS space address is generated for write operations.


When the MSb of EA is '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double-word to EDS.

The DS Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to 0x8000.

While developing code in assembly, care must be taken to update the DS Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the DS Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
 - 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
 - **3:** Use the DSRPAG register while performing Read/Modify/Write operations.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
   mov
          #0x0002, w0
   mov
          w0, DSWPAG
                         ;page 2 is selected for write
                       ;select the location (0x800) to be written
          #0x0800, w1
   mov
   bset
          w1, #15
                        ;set the MSB of the base address, enable EDS mode
;Write a byte to the selected location
          #0x00A5, w2
   mov
          #0x003C, w3
   mov
   mov.b w2, [w1++]
                         ;write Low byte
   mov.b w3, [w1++]
                         ;write High byte
;Write a word to the selected location
   mov #0x1234, w2 ;
          w2, [w1]
   mov
                         ;
;Write a Double - word to the selected location
   mov
          #0x1122, w2
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0						
DMAEN	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	_	PRSSEL
bit 7							bit 0

Legend:

Ecgena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	IDO #	IVT	Inte	errupt Bit Loca	ations
Interrupt Source	Number	IRQ #	Address	Flag	Enable	Priority
MCCP1 Capture/Compare	71	63	000092h	IFS3<15>	IEC3<15>	IPC15<14:12>
MCCP1 Timer	109	101	0000DEh	IFS6<5>	IEC6<5>	IPC25<6:4>
SCCP2 Capture/Compare	72	64	000094h	IFS4<0>	IEC4<0>	IPC16<2:0>
SCCP2 Timer	110	102	0000E0h	IFS6<6>	IEC6<6>	IPC25<10:8>
SCCP3 Capture/Compare	102	94	0000D0h	IFS5<14>	IEC5<14>	IPC23<10:8>
SCCP3 Timer	51	43	00006Ah	IFS2<11>	IEC2<11>	IPC10<14:12>
SCCP4 Capture/Compare	103	95	0000D2h	IFS5<15>	IEC5<15>	IPC23<14:12>
SCCP4 Timer	52	44	00006Ch	IFS2<12>	IEC2<12>	IPC11<2:0>
Output Compare 1	10	2	000018h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	14	6	000020h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	33	25	000046h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	34	26	000048h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	49	41	000066h	IFS2<9>	IEC2<9>	IPC10<6:4>
Output Compare 6	50	42	000068h	IFS2<10>	IEC2<10>	IPC10<10:8>
Real-Time Clock and Calendar (RTCC)	70	62	000090h	IFS3<14>	IEC3<14>	IPC15<10:8>
RTCC Timestamp	118	110	0000F0h	IFS6<14>	IEC6<14>	IPC27<10:8>
SCCP5 Capture/Compare	30	22	000040h	IFS1<6>	IEC1<6>	IPC5<10:8>
SCCP6 Capture/Compare	31	23	000042h	IFS1<7>	IEC1<7>	IPC5<14:12>
SCCP7 Capture/Compare	81	73	0000A6h	IFS4<9>	IEC4<9>	IPC18<6:4>
SCCP5 Timer	55	47	000072h	IFS2<15>	IEC2<15>	IPC11<14:12>
SCCP6 Timer	56	48	000074h	IFS3<0>	IEC3<0>	IPC12<2:0>
SCCP7 Timer	59	51	00007Ah	IFS3<3>	IEC3<3>	IPC12<14:12>
SPI1 General	17	9	000026h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Receive	66	58	000088h	IFS3<10>	IEC3<10>	IPC14<10:8>
SPI1 Transmit	18	10	000028h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 General	40	32	000054h	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 Receive	67	59	00008Ah	IFS3<11>	IEC3<11>	IPC14<14:12>
SPI2 Transmit	41	33	000056h	IFS2<1>	IEC2<1>	IPC8<6:4>
SPI3 General	98	90	0000C8h	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 Receive	68	60	00008Ch	IFS3<12>	IEC3<12>	IPC15<2:0>
SPI3 Transmit	99	91	0000CAh	IFS5<11>	IEC5<11>	IPC22<14:12>
SPI3 Transmit	101	93	0000CEh	IFS5<13>	IEC5<13>	IPC23<6:4>
SPI4 General	100	92	0000CCh	IFS5<12>	IEC5<12>	IPC23<2:0>
SPI4 Receive	65	57	000086h	IFS3<9>	IEC3<9>	IPC14<6:4>
Timer1	11	3	00001Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	15	7	000022h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	16	8	000024h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	35	27	00004Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	36	28	00004Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	73	65	000096h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	19	11	00002Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	20	12	00002Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	74	66	000098h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	38	30	000050h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	39	31	000052h	IFS1<15>	IEC1<15>	IPC7<14:12>

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0
bit 15					•	•	bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U1ERIP2	U1ERIP1	U1ERIP0	—	CCP2IP2	CCP2IP1	CCP2IP0
bit 7						•	bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	-	ted: Read as '0					
bit 14-12		CRC Generate					
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as 'o)'				
bit 10-8	U2ERIP<2:0>	: UART2 Error	Interrupt Prior	ity bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-4	U1ERIP<2:0>	-: UART1 Error	Interrupt Prior	ity bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
		pt source is dis	abled				
bit 3	Unimplemen	ted: Read as 'd)'				
DIL S	CCP2IP<2:0>	SCCP2 Capt	ure/Compare I	nterrupt Priorit	y bits		
bit 2-0				(interrupt)			
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	111 = Interruj •	pt is Priority 7 (highest priority	milenupi)			
	111 = Interrup •	pt is Priority 7(highest priority	niterrupt)			
	111 = Interrup • • • 001 = Interrup		highest priority	(interrupt)			

REGISTER 8-38: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

NOTES:

11.5.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

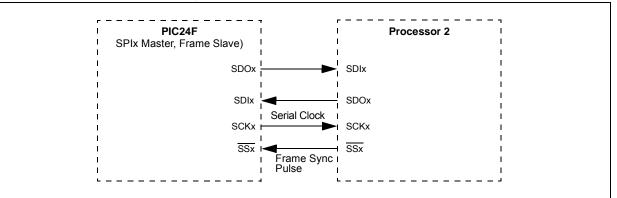
The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

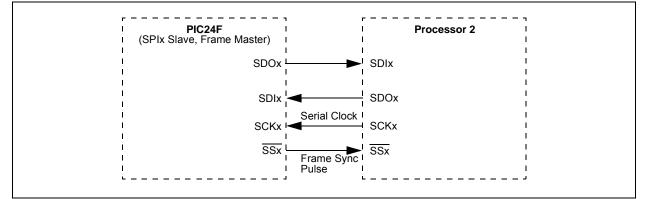
Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

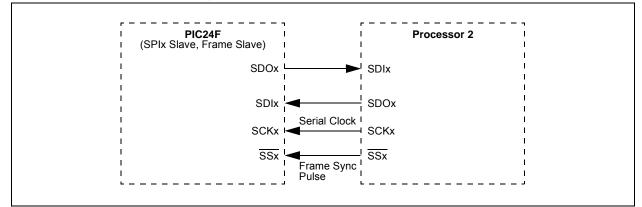
EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS


```
// Unlock Registers
__builtin_write_OSCCONL(OSCCON & 0xbf);
// Configure Input Functions (Table 11-11)
   // Assign U1RX To Pin RP0
   RPINR18bits.U1RXR = 0;
   // Assign UlCTS To Pin RP1
   RPINR18bits.U1CTSR = 1;
// Configure Output Functions (Table 11-12)
   // Assign U1TX To Pin RP2
   RPOR1bits.RP2R = 3;
   // Assign UlRTS To Pin RP3
   RPOR1bits.RP3R = 4;
// Lock Registers
asm volatile ("MOV #OSCCON, w1
                                     n''
               "MOV
                      #0x46, w2
                                     \n"
               "MOV
                      #0x57, w3
                                     \n"
               "MOV.b w2, [w1]
                                     \n"
               "MOV.b w3, [w1]
                                     \n"
               "BSET OSCCON, #6");
// or use the XC16 built-in macro:
// __builtin_write_OSCCONL(OSCCON | 0x40);
```

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)


bit 9	SMP: SPIx Data Input Sample Phase bit
	<u>Master Mode:</u> 1 = Input data is sampled at the end of data output time
	0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	1 = REFO is used by the BRG 0 = Fosc/2 is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1: 2:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value. When $FRMEN = 1$ SSEN is not used

- EN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.


FIGURE 17-6: SPIX MASTER, FRAME SLAVE CONNECTION DIAGRAM

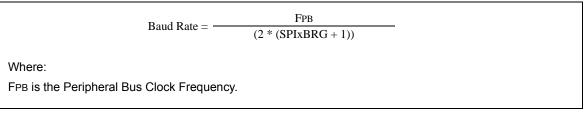

FIGURE 17-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 17-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 19.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write 55h to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the URXEN bit (UxSTAL<12>).
- 4. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 5. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 6. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single input transparent latch with S and R
 - 110 = JK flip-flop with R
 - 101 = Two-input D flip-flop with R
 - 100 = Single input D flip-flop with S and R
 - 011 = SR latch
 - 010 = Four-input AND
 - 001 = Four-input OR-XOR
 - 000 = Four-input AND-OR

REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—					—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

l egend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted

0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0							
	_	_			—									
bit 15							bit 8							
U-0	U-0	R/C-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC							
	—	ALMEVT	TSBEVT ⁽¹⁾	TSAEVT ⁽¹⁾	SYNC	ALMSYNC	HALFSEC ⁽²⁾							
bit 7		•				·	bit 0							
Legend:		C = Clearable	arable bit HSC = Hardware Settable/Clearable bit											
R = Read	able bit	W = Writable bit		U = Unimplemented bit, read as '0'										
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown								
bit 15-6	Unimplemen	ted: Read as ')'											
bit 5	ALMEVT: Ala	arm Event bit												
	1 = An alarm	event has occu	irred											
	0 = An alarm	0 = An alarm event has not occurred												
bit 4	TSBEVT: Tim	TSBEVT: Timestamp B Event bit ⁽¹⁾												
		1 = A Timestamp B event has occurred												
		0 = A Timestamp B event has not occurred												
bit 3	TSAEVT: Tim	TSAEVT: Timestamp A Event bit ⁽¹⁾												
 1 = A Timestamp A event has occurred 0 = A Timestamp A event has not occurred 														
bit 2	SYNC: Synch	SYNC: Synchronization Status bit												
		1 = Time registers may change during software read												
	0 = Time regi	sters may be re	ad safely											
bit 1	ALMSYNC: Alarm Synchronization Status bit													
		1 = Alarm registers (ALMTIME, ALMDATE) and AMASKx bits should not be modified and Alarm Control registers (ALRMEN, ALMRPT<7:0>) may change during software read												
	0 = Alarm re	0 = Alarm registers and Alarm Control registers may be written/modified safely												
bit 0	HALFSEC: Half Second Status bit ⁽²⁾													
	1 = Second half of 1-second period													
	0 = First half	of 1-second pe	riod											
Note 1: User software may write a '1' to this location to initiate a Timestamp A event; timestamp capture is not valid until TSAEVT reads as '1'.														

REGISTER 24-6: RTCSTATL: RTCC STATUS REGISTER (LOW) U-0

U-0

U-0

U-0

U-0

2: This bit is read-only; it is cleared to '0' on a write to the SECONE<3:0> bits in Register 24-7.

U-0

U-0

U-0

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
ASEN	LPEN	CTMREQ	BGREQ			ASINT1	ASINT0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	_	WM1	WM0	CM1	CM0		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	ASEN: Auto-S	Scan Enable bit	:						
	1 = Auto-scar 0 = Auto-scar								
bit 14	LPEN: Low-P	ower Enable bi	t						
		er is enabled aft r is enabled aft							
bit 13	CTMREQ: CTMU Request bit								
bit 12	 0 = CTMU is not enabled by the A/D BGREQ: Band Gap Request bit 								
	 1 = Band gap is enabled when the A/D is enabled and active 0 = Band gap is not enabled by the A/D 								
bit 11-10									
bit 9-8	ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode bits								
	10 = Interrupt	t after Threshol t after valid com t after Threshol rupt	pare has occu	irred		compare has c	occurred		
bit 7-4									
bit 3-2	WM<1:0>: Write Mode bits								
	11 = Reserved								
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match occurs, as defined by the CMx and ASINTx bits)								
	01 = Convert and save (conversion results are saved to locations as determined by the register bit								
	when a match occurs, as defined by the CMx bits) 00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)								
bit 1-0	CM<1:0>: Compare Mode bits								
	11 = Outside	Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)							
	10 = Inside W	 Inside Window mode (valid match occurs if the conversion result is inside the window defined b the corresponding buffer pair) 							
	01 = Greater	Greater Than mode (valid match occurs if the result is greater than the value in the corresponding buffer register)							
		an mode (valid	match occurs i	f the result is lea	ss than the valu	ue in the corres	ponding buffe		

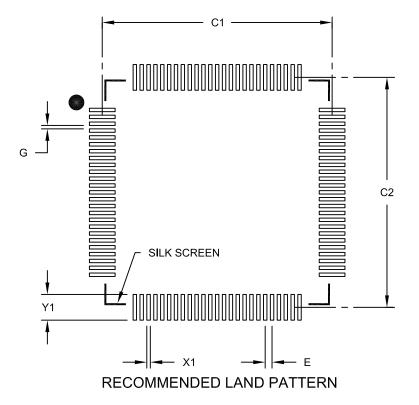

REGISTER 27-5: AD1CON5: A/D CONTROL REGISTER 5

TABLE 35-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{ }	Optional field or operation				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.W	Word mode selection (default)				
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0000h1FFFh}				
lit1	1-bit unsigned literal $\in \{0,1\}$				
lit4	4-bit unsigned literal ∈ {015}				
lit5	5-bit unsigned literal ∈ {031}				
lit8	8-bit unsigned literal ∈ {0255}				
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode				
lit14	14-bit unsigned literal ∈ {016383}				
lit16	16-bit unsigned literal ∈ {065535}				
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'				
None	Field does not require an entry, may be blank				
PC	Program Counter				
Slit10	10-bit signed literal ∈ {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal ∈ {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)				
Wn	One of 16 Working registers \in {W0W15}				
Wnd	One of 16 Destination Working registers ∈ {W0W15}				
Wns	One of 16 Source Working registers ∈ {W0W15}				
WREG	W0 (Working register used in file register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	Е		0.40 BSC		
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1157-4

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820