

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	102
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga412-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 100-PIN

Feetures	PIC24FJXXXGA/GB410								
Features	64GA	128GA	256GA	64GB	128GB	256GB			
Operating Frequency			DC – 3	32 MHz					
Program Memory (bytes)	64K	128K	256K	64K	128K	256K			
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064			
Data Memory (bytes)	8K	8K 16K 8K 16							
Interrupt Sources (soft vectors/ NMI traps)			113 (1	107/6)					
I/O Ports			Ports A, B,	C, D, E, F, G					
Total I/O Pins		85			84				
Remappable Pins			44 (32 l/Os,	12 input only)					
Timers:									
Total Number (16-bit)			19	(1,2)					
32-Bit (from paired 16-bit timers)				9					
Input Capture w/Timer Channels				(2)					
Output Compare/PWM Channels			6	(2)					
Capture/Compare/PWM/Timer:									
Single Output (SCCP)			6	(2)					
Multiple Output (MCCP)			1	(2)					
Serial Communications:									
UART			6	(2)					
SPI (3-wire/4-wire)			4	(2)					
l ² C			:	3					
USB On-The-Go		No			Yes				
Cryptographic Engine			Y	es					
Parallel Communications (EPMP/PSP)			Y	es					
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			2	4					
Digital-to-Analog Converter (DAC)				1					
Analog Comparators				3					
CTMU Interface			Y	es					
LCD Controller (available pixels)			512 (64 SE	G x 8 COM)					
JTAG Boundary Scan			Y	es					
Resets (and delays)	C	MCLR, WI	POR, VBAT F DT, Illegal Opc Traps, Config (OST, P	ode, REPEAT	Instruction,	n,			
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing N	Node Variation	าร			
Packages			100-Pii	n TQFP					

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes, along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	_	CRYFREEIP2	CRYFREEIP1	CRYFREEIPO			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	0-0	SPI2IP2	SPI2IP1	SPI2IP0			
bit 7	011217(112	011217/111			0112112		bit (
							bit t			
Legend:										
R = Readab	ole bit	W = Writable b	oit	U = Unimple	emented bit, read	l as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkr	nown			
bit 15	-	ted: Read as '0								
bit 14-12		<2:0>: Cryptogr	•	•	ority bits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 11	Unimplement	ted: Read as 'o)'							
bit 10-8	CRYFREEIP<2:0>: Cryptographic Buffer Free Interrupt Priority bits									
	111 = Interru	pt is Priority 7 (highest priority	interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
		pt source is dis	abled							
bit 7	Unimplement	ted: Read as '0)'							
bit 6-4	SPI2TXIP<2:0	0>: SPI2 Transi	mit Interrupt Pr	iority bits						
	111 = Interru	pt is Priority 7 (highest priority	interrupt)						
	•									
	•									
	•	ntic Drievity (
	001 = Interru 000 = Interru		abled							
bit 3	000 = Interru	pt is Phonty 1 pt source is dis ted: Read as '0								
	000 = Interru	pt source is dis ted: Read as '0)'	v bits						
bit 3 bit 2-0	000 = Interru Unimplemen SPI2IP<2:0>:	pt source is dis ted: Read as '0 SPI2 General)' Interrupt Priorit	-						
	000 = Interru Unimplemen SPI2IP<2:0>:	pt source is dis ted: Read as '0)' Interrupt Priorit	-						
	000 = Interru Unimplemen SPI2IP<2:0>:	pt source is dis ted: Read as '0 SPI2 General)' Interrupt Priorit	-						
	000 = Interru Unimplemen SPI2IP<2:0>:	pt source is dis ted: Read as 'c SPI2 General ot is Priority 7 (f)' Interrupt Priorit	-						

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_	—	—		—	FSTIP2	FSTIP1	FSTIP0		
bit 15	15						bit 8		
U-0	U-0	U-0 U-0		U-0	U-0	U-0	U-0		
—	—			—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-11	Unimplement	ted: Read as '	0'						
bit 10-8	FSTIP<2:0>:	FRC Self-Tune	e Interrupt Prior	rity bits					
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)					
	•								
	•								
	•								
	001 = Interru		ablad						
		pt source is dis							
bit 7-0	Unimplemented: Read as '0'								
	omplomon		0						

REGISTER 8-48: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	_	_	
bit 15	·						bit 8
					D #44.0		
R/W-0	R/W-0	R/W-0 CLC4MD	R/W-0 CLC3MD	R/W-0 CLC2MD	R/W-0 CLC1MD	U-0	R/W-0
U6MD	U5MD	CRYMD					
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-8	Unimplemen	ted: Read as 'o)'				
bit 7	U6MD: UART	6 Module Disal	ole bit				
	1 = Module is						
		ower and clock		enabled			
bit 6		5 Module Disal	ole bit				
	1 = Module is 0 = Module p	s disabled ower and clock	sources are e	enabled			
bit 5		C4 Module Dis					
	1 = Module is						
	0 = Module p	ower and clock	sources are e	enabled			
bit 4	CLC3MD: CL	C3 Module Dis	able bit				
	1 = Module is						
	-	ower and clock		enabled			
bit 3		C2 Module Dis	able bit				
	1 = Module is			nablad			
L:1 0	-	ower and clock		enabled			
bit 2	1 = Module is	C1 Module Dis	able bit				
		ower and clock	sources are e	enabled			
bit 1		ted: Read as '0					
bit 0	-	otographic Engi					
	1 = Module is						

REGISTER 10-11: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1 R/W-1 R/W-1		R/W-1	
—	—	SCK1R5	SCK1R4	SCK1R3 SCK1R2 SCK1R		SCK1R1	SCK1R0
bit 15						bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplem	ented bit, read	l as '0'	
-n = Value at F	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			
•							

REGISTER 11-15: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-16: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

14.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA412/GB412 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 14-4: AUXILIARY OUTPUT

16.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 16-1 for PWM mode timing details. Table 16-1 and Table 16-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 16-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)}\right)}{\log_{10}^{(2)}} bits$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 16-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

TCY = 2 * TOSC = 62.5 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \ \mu s = (PR2 + 1) \cdot 62.5 \ ns \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz	
Timer Prescaler Ratio	8	1	1	1	1	1	1	
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh	
Resolution (bits)	16	16	15	12	10	7	5	

TABLE 16-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - 11001 = Comparator $2^{(2)}$ 11000 = Comparator $1^{(2)}$
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10110 = SCCP3 capture/compare
 - 10100 = SCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 = Input Capture 3⁽²⁾
 - 10001 =Input Capture 2⁽²⁾
 - 10000 =Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger
 - 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = SCCP3 sync/trigger
 - 00101 = SCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger
 - 00011 =Output Compare $5^{(1)}$
 - 00010 = Output Compare 3⁽¹⁾ 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 9	SMP: SPIx Data Input Sample Phase bit
	<u>Master Mode:</u> 1 = Input data is sampled at the end of data output time
	0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	1 = REFO is used by the BRG 0 = Fosc/2 is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1: 2:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value. When $FRMEN = 1$ SSEN is not used

- EN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = Data Source 1 inverted signal is enabled for Gate 2 0 = Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 1 0 = Data Source 3 inverted signal is disabled for Gate 1
bit 4	G1D3N: Gate 1 Data Source 3 Negated Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 1 0 = Data Source 3 inverted signal is disabled for Gate 1
bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1

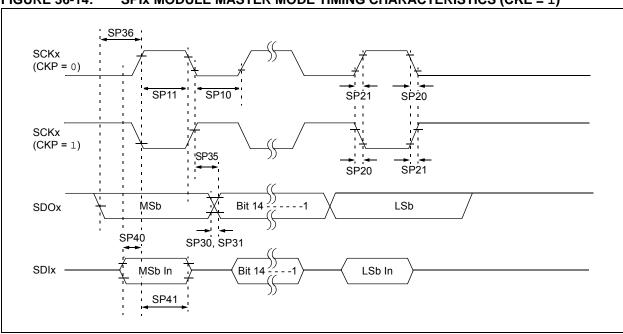
Mode of	KEVMOD 4.0		Key	Source	OTP Address	
Operation	KEYMOD<1:0>	KEYSRC<3:0> -	SKEYEN = 0	SKEYEN = 1	OTF Address	
		0000 (1)	CRYKE	_		
		0001	AES Key #1 Key Config Error ⁽²⁾		<127:0>	
		0010	AES Key #2		<255:128>	
		0011	AES	Key #3	<383:256>	
		0100	AES	Key #4	<511:384>	
128-Bit AES	00	1001	AES Key	/ #5 (RAM)	<127:0>	
		1010	AES Key #6 (RAM)		<255:128>	
		1011	AES Key	/ #7 (RAM)	<383:256>	
		1100	AES Key	/ #8 (RAM)	<511:384>	
		1111	Rese	Reserved ⁽²⁾		
		All Others	Key Config Error ⁽²⁾		_	
		₀₀₀₀ (1)	CRYKEY<191:0>		_	
		0001	AES Key #1	ES Key #1 Key Config Error ⁽²⁾		
		0010	AES Key #2		<383:192>	
192-Bit AES	01	1001	AES Key	/ #3 (RAM)	<191:0>	
		1010		/ #4 (RAM)	<383:192>	
		1111	Rese	erved ⁽²⁾	_	
		All Others	Key Con	ifig Error ⁽²⁾	_	
		0000 (1)	CRYKE	Y<255:0>	—	
		0001	AES Key #1	Key Config Error ⁽²⁾	<255:0>	
		0010	AES	Key #2	<511:256>	
256-Bit AES	10	1001	AES Key	/ #3 (RAM)	<255:0>	
		1010	AES Key #4 (RAM)		<511:256>	
		1111	Rese	erved ⁽²⁾		
		All Others		ifig Error ⁽²⁾		
(Reserved)	11	xxxx	Key Con	ifig Error ⁽²⁾		

TABLE 25-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a key configuration error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

REGISTER 29-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)


R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC
CON	COE	CPOL	—	—	_	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	_	CREF	—	_	CCH1	CCH0
bit 7							bit 0
Legend:		HS = Hardware	Settable bit	HSC = Hardw	/are Settable/0	Clearable bit	
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'				ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	CON: Compa	arator Enable bit					
		ator is enabled					
	0 = Compara	ator is disabled					
bit 14		arator Output Ena					
		ator output is pres ator output is inte		OUT pin			
bit 13	CPOL: Com	parator Output Po	plarity Select b	bit			
		ator output is inve ator output is not					
bit 12-10	-	nted: Read as '0'					
bit 9	-	parator Event bit					
	1 = Compara are disal	ator event that is bled until the bit i ator event has no	s cleared	POL<1:0> has c	occurred; subs	sequent triggers	and interrupts
bit 8	-	parator Output bi					
bito	When CPOL	-					
	1 = VIN + > VI						
	0 = VIN + < VI	IN-					
	When CPOL						
	1 = VIN+ < VI 0 = VIN+ > VI						
bit 7-6	• • • • • •	Trigger/Event/l	nterrunt Polar	ity Select hits			
		/event/interrupt is		•	the comparat	or output (while	CEVT = 0
		/event/interrupt is					0211 0)
		_ = 0 (non-inverte			·		
	-	-low transition or	•				
		= 1 (inverted po					
		high transition or	-				
		/event/interrupt is		transition of th	e comparator	output:	
		<u>= 0 (non-inverte</u> high transition or					
		$_{-}$ = 1 (inverted po	-				
		-low transition on					
	00 = Trigger/	/event/interrupt g	eneration is di	sabled			
bit 5	Unimplemer	nted: Read as '0'					

NOTES:

REGISTER 33-5: FOSC: OSCILLATOR CONFIGURATION WORD

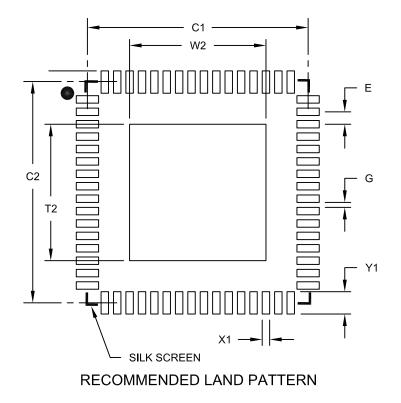
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
_	—	_	_	—		_				
bit 23							bit 16			
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	_						—			
bit 15							bit 8			
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	OSCIOFCN	POSCMOD1	POSCMODO			
bit 7				1			bit (
<u> </u>			0							
Legend:	1. 1.9	PO = Program								
	Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 23-8	Unimplemen	ted: Read as '	1'							
bit 7-6	-			afe Clock Monit	tor Configuratio	on bits				
			-	Monitor are disa	-					
		•		Clock Monitor						
	00 = Clock sv	witching is enal	oled, Fail-Safe	Clock Monitor	is enabled					
bit 5	IOL1WAY: IO	LOCK One-Wa	ay Set Enable I	oit						
				n be set once,						
				in Select registe						
	0 = The IOLO complete		e set and clea	ared as needed	d, provided the	e unlock seque	nce has beer			
bit 4	-		rv Selection C	onfiguration bit	(1)					
		ven by the Prin								
		ven by the FR								
bit 3		OSC Selection								
	1 = SOSC cir	rcuit is selected	ł							
	0 = Digital (S	CLKI) mode ⁽²⁾								
bit 2	OSCIOFCN:	OSCO Pin Cor	figuration bit							
		<1:0> = 11 or								
		1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2)								
		LKO/RC15 fun		I/O (RC15)						
		<1:0> = 10 or has no effect or		/RC15.						
bit 1-0		1:0>: Primary (
		Oscillator mod		0						
				node is used if	crystal ≥ 10 M⊦	łz)				

- 01 = XT Oscillator mode is selected (XT mode is used if crystal < 10 MHz)
- 00 = EC Oscillator mode is selected
- **Note 1:** Used only when the PLL block is not being used as the system clock source.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).

FIGURE 36-14: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 36-35: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			Standard O (unless oth Operating te	erwise sta	ted)	s: 2.0V to 3.6V ≤ TA ≤ +85°C for Industrial			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	—	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns			


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

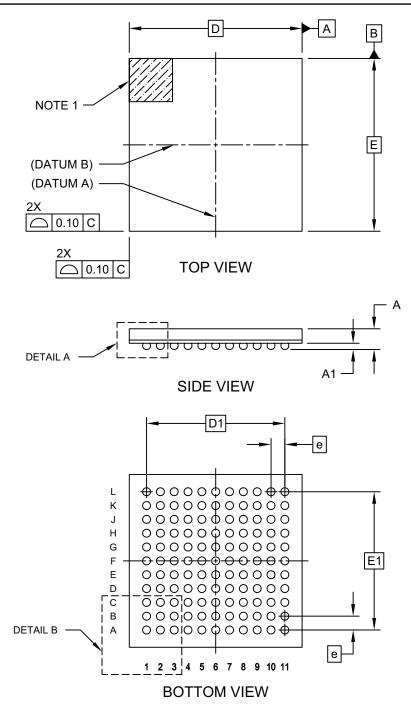
3: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Optional Center Pad Width	W2			5.50
Optional Center Pad Length	T2			5.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing N	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

CCPxCON1H (CCPx Control 1 High)	267
CCPxCON1L (CCPx Control 1 Low)	
CCPxCON2H (CCPx Control 2 High)	
CCPxCON2L (CCPx Control 2 Low)	
CCPxCON3H (CCPx Control 3 High)	
CCPxCON3L (CCPx Control 3 Low)	
CCPxSTATL (CCPx Status)	
CFGPAGE (Secure Array Configuration Bits)	415
CLCxCONH (CLCx Control High)	
CLCxCONL (CLCx Control Low)	384
CLCxGLSH (CLCx Gate Logic Input	
Select High)	389
CLCxGLSL (CLCx Gate Logic Input	
Select Low)	
CLCxSEL (CLCx Input MUX Select)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	453
CMxCON (Comparator x Control,	
Comparators 1-3)	
CORCON (CPU Control)	
CORCON (CPU Core Control)	
CRCCON1 (CRC Control 1)	
CRCCON2 (CRC Control 2)	
CRCXORH (CRC XOR Polynomial, High Byte)	
CRCXORL (CRC XOR Polynomial, Low Byte)	
CRYCONH (Cryptographic Control High)	
CRYCONL (Cryptographic Control Low)	411
CRYOTP (Cryptographic OTP Page Program Control)	444
Plogram Control)	414
CRYSTAT (Cryptographic Status)	
CTMUCON1H (CTMU Control 1 High) CTMUCON1L (CTMU Control 1 Low)	
CTMUCON2L (CTMU Control 2 Low)	
	400
CVRCON (Comparator Voltage	
CVRCON (Comparator Voltage Reference Control)	456
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control)	456
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH	456 446
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High)	456 446
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL	456 446 402
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low)	456 446 402 402
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low) DEVID (Device ID)	456 446 402 402 402 482
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low)	456 446 402 402 482 482
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low) DEVID (Device ID) DEVID (Device ID) DEVREV (Device Revision) DMACHn (DMA Channel n Control) DMACON (DMA Engine Control)	456 446 402 402 482 482 100 99
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low) DEVID (Device ID) DEVID (Device ID) DEVREV (Device Revision) DMACHn (DMA Channel n Control) DMACON (DMA Engine Control)	456 446 402 402 482 482 100 99
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low) DEVID (Device ID) DEVID (Device ID) DEVREV (Device Revision) DMACHn (DMA Channel n Control)	456 446 402 402 402 482 482 100 99 101
CVRCON (Comparator Voltage Reference Control) DACxCON (DACx Control) DATEH/ALMDATEH/TSADATEH/TSBDATEH (RTCC Date High) DATEL/ALMDATEL/TSADATEL/TSBDATEL (RTCC Date Low) DEVID (Device ID) DEVID (Device ID) DEVREV (Device Revision) DMACHn (DMA Channel n Control) DMACON (DMA Engine Control) DMAINTn (DMA Channel n Interrupt)	456 446 402 402 482 482 100 99 101 204
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 402 482 482 100 99 101 204 205 481
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 480
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 480 479
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 480 479 477
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 100 99 101 204 205 481 470 480 479 477 476
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 100 99 101 204 205 481 470 480 479 477 476
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 470 479 477 476 472
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 470 479 477 476 472 471
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 470 479 477 476 472 471 475
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 470 470 477 476 472 471 475 469
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 100 99 101 204 205 481 470 470 470 477 476 472 471 475 469 470
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 482 482 100 99 101 204 205 481 470 470 477 476 472 471 475 469 473
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 482 482 100 99 101 204 205 481 470 470 470 477 476 472 471 475 469 473 466
CVRCON (Comparator Voltage Reference Control)	456 446 402 402 482 482 482 482 482 482 482 482 482 482 482 49 470 476 477 476 477 476 477 476 472 473 466 312

I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
ICxCON1 (Input Capture x Control 1)
ICxCON2 (Input Capture x Control 2) 278
IEC0 (Interrupt Enable Control 0) 137
IEC1 (Interrupt Enable Control 1) 139
IEC2 (Interrupt Enable Control 2) 141
IEC3 (Interrupt Enable Control 3)
IEC4 (Interrupt Enable Control 4) 145
IEC5 (Interrupt Enable Control 5) 146
IEC6 (Interrupt Enable Control 6) 148
IEC7 (Interrupt Enable Control 7) 149
IFS0 (Interrupt Flag Status 0)
IFS1 (Interrupt Flag Status 1) 126
IFS2 (Interrupt Flag Status 2) 128
IFS3 (Interrupt Flag Status 3) 130
IFS4 (Interrupt Flag Status 4) 132
IFS5 (Interrupt Flag Status 5) 133
IFS6 (Interrupt Flag Status 6)
IFS7 (Interrupt Flag Status 7) 136
INTCON1 (Interrupt Control 1) 121
INTCON2 (Interrupt Control 2) 122
INTCON4 (Interrupt Control 4) 123
INTTREG (Interrupt Controller Test)
IOCSTAT (Interrupt-on-Change Status)
IPC0 (Interrupt Priority Control 0) 150
IPC1 (Interrupt Priority Control 1) 151
IPC10 (Interrupt Priority Control 10) 160
IPC11 (Interrupt Priority Control 11) 161
IPC12 (Interrupt Priority Control 12) 162
IPC13 (Interrupt Priority Control 13) 163
IPC14 (Interrupt Priority Control 14)
IPC15 (Interrupt Priority Control 15)
IPC16 (Interrupt Priority Control 16) 166
IPC17 (Interrupt Priority Control 17) 167
IPC18 (Interrupt Priority Control 18) 168
IPC19 (Interrupt Priority Control 19) 169
IPC2 (Interrupt Priority Control 2)
IPC20 (Interrupt Priority Control 20)
IPC21 (Interrupt Priority Control 21)
IPC22 (Interrupt Priority Control 22) 172
IPC23 (Interrupt Priority Control 23) 173
IPC24 (Interrupt Priority Control 24) 174
IPC25 (Interrupt Priority Control 25) 175
IPC26 (Interrupt Priority Control 26) 176
IPC27 (Interrupt Priority Control 27)
IPC28 (Interrupt Priority Control 28)
IPC29 (Interrupt Priority Control 29) 179
IPC3 (Interrupt Priority Control 3) 153
IPC4 (Interrupt Priority Control 4) 154
IPC5 (Interrupt Priority Control 5) 155
IPC6 (Interrupt Priority Control 6) 156
IPC7 (Interrupt Priority Control 7)
IPC8 (Interrupt Priority Control 8)
IPC9 (Interrupt Priority Control 9) 159
LCDCON (LCD Control)
LCDDATAx (LCD Data x)
LCDPS (LCD Phase)
LCDREF (LCD Reference Ladder Control) 379
LCDREG (LCD Charge Pump Control)
LCDSEx (LCD Segment x Enable)
NVMCON (Flash Memory Control)
OCxCON1 (Output Compare x Control 1)
OCxCON2 (Output Compare x Control 2) 288
OSCCON (Oscillator Control) 185