

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	102
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga412t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	SEG50/OCM1C/CTED3/IOCG15/RG15	51	SEG12/ RP16 /IOCF3/RF3
2	Vdd	52	SEG40/ RP30 /IOCF2/RF2
3	LCDBIAS2/IC4/CTED4/PMD5/IOCE5/RE5	53	SEG41/ RP15 /IOCF8/RF8
4	LCDBIAS1/SCL3/IC5/PMD6/IOCE6/RE6	54	IOCF7/RF7
5	LCDBIAS0/SDA3/IC6/PMD7/IOCE7/RE7	55	IOCF6/RF6
6	SEG32/RPI38/OCM1D/IOCC1/RC1	56	SDA1/IOCG3/RG3
7	SEG51/RPI39/IOCC2/RC2	57	SCL1/IOCG2/RG2
8	SEG33/ RPI40 /IOCC3/RC3	58	SEG55/SCL2/IOCA2/RA2
9	SEG52/AN16/RPI41/PMCS2/IOCC4/RC4	59	SEG56/SDA2/PMA20/IOCA3/RA3
10	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/IOCG6/RG6	60	TDI/PMA21/IOCA4/RA4
11	VLCAP1/AN18/C1INC/RP26/OCM1B/PMA4/IOCG7/RG7	61	TDO/SEG28/IOCA5/RA5
12	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2/PMA3/IOCG8/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/IOCC12/RC12
14	SEG1/AN20/C1INC/C2INC/C3INC/ RP27 /DAC1/PMA2/PMALU/IOCG9/ RG9	64	OSCO/CLKO/IOCC15/RC15
15	Vss	65	Vss
16	Vdd	66	SEG42/RPI36/SCL1/PMA22/IOCA14/RA14
17	TMS/SEG48/CTED14/IOCA0/RA0	67	SEG43/RPI35/SDA1/PMBE1/IOCA15/RA15
18	SEG34/ RPI33 /PMCS1/IOCE8/RE8	68	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/IOCD8/RD8
19	SEG35/AN21/ RPI34 /PMA19/IOCE9/RE9	69	SEG14/RP4/PMACK2/IOCD9/RD9
20	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3/IOCB5/RB5	70	SEG15/C3IND/RP3/PMA15/APMCS2/IOCD10/RD10
21	PGED3/SEG3/AN4/C1INB/ RP28 /IOCB4/RB4	71	SEG16/C3INC/RP12/PMA14/PMCS/APMCS1/IOCD11/RD11
22	SEG4/AN3/C2INA/IOCB3/RB3	72	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/IOCD0/RD0
23	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/IOCB2/RB2	73	SOSCI/IOCC13/RC13
24	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/RP1/CTED12/IOCB1/RB1	74	SOSCO/SCLKI/RPI37/PWRLCLK/IOCC14/RC14
25	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/ RP0 /IOCB0/RB0	75	Vss
26	PGEC2/LCDBIAS3/AN6/ RP6 /IOCB6/RB6	76	SEG20/RP24/U5TX/ICM4/IOCD1/RD1
27	PGED2/SEG63/AN7/ RP7 /U6TX/IOCB7/RB7	77	SEG21/RP23/PMACK1/IOCD2/RD2
28	SEG36/VREF-/CVREF-/PMA7/IOCA9/RA9	78	SEG22/RP22/ICM7/PMBE0/IOCD3/RD3
29	SEG37/VREF+/CVREF+/DVREF+/PMA6/IOCA10/RA10	79	SEG44/ RPI42 /PMD12/IOCD12/RD12
30	AVDD	80	SEG45/PMD13/IOCD13/RD13
31	AVss	81	SEG23/RP25/PMWR/PMENB/IOCD4/RD4
32	COM7/SEG31/AN8/RP8/PWRGT/IOCB8/RB8	82	SEG24/ RP20 /PMRD/PMWR/IOCD5/RD5
33	COM6/SEG30/AN9/TMPR/RP9/T1CK/IOCB9/RB9	83	SEG25/C3INB/U5RX/OC4/PMD14/IOCD6/RD6
34	COM5/SEG29/CVREF/AN10/SDO4/PMA13/IOCB10/RB10	84	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/IOCD7/RD7
35	AN11/REFI1/SS4/FSYNC4/PMA12/IOCB11/RB11	85	VCAP
36	Vss	86	VBAT
37	Vdd	87	SEG27/U5CTS/OC6/PMD11/IOCF0/RF0
38	TCK/IOCA1/RA1	88	COM4/SEG47/SCK4/PMD10/IOCF1/RF1
39	SEG53/ RP31 /IOCF13/RF13	89	SEG46/PMD9/IOCG1/RG1
40	SEG54/RPI32/CTED7/PMA18/IOCF12/RF12	90	SEG49/PMD8/IOCG0/RG0
41	SEG18/AN12/U6RX/CTED2/PMA11/IOCB12/RB12	91	SEG57/AN23/OCM1E/IOCA6/RA6
42	SEG19/AN13/SDI4/CTED1/PMA10/IOCB13/RB13	92	SEG58/AN22/OCM1F/PMA17/IOCA7/RA7
43	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/IOCB14/RB14	93	COM3/PMD0/IOCE0/RE0
44	SEG9/AN15/RP29/CTED6/PMA0/PMALL/IOCB15/RB15	94	COM2/PMD1/IOCE1/RE1
45	Vss	95	SEG59/CTED11/PMA16/IOCG14/RG14
46	VDD	96	SEG60/IOCG12/RG12
47	SEG38/ RPI43 /IOCD14/RD14	97	SEG61/CTED10/IOCG13/RG13
48	SEG39/ RP5 /IOCD15/RD15	98	COM1/PMD2/IOCE2/RE2
49	SEG10/ RP10 /PMA9/IOCF4/RF4	99	COM0/CTED9/PMD3/IOCE3/RE3

TABLE 3: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA410 DEVICES

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

1.1.4 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA412/GB412 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) nominal 8 MHz output with multiple frequency divider options and automatic frequency self-calibration during run time
- A separate Low-Power Internal RC Oscillator (LPRC) – 31 kHz nominal for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.5 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, while still selecting a Microchip device.

1.2 Cryptographic Engine

The Cryptographic Engine provides a new set of data security options. Using its own free-standing math engine, the module can independently perform NIST standard encryption and decryption of data, independently of the CPU. The Cryptographic Engine supports AES and DES/3DES encryption ciphers in up to 5 modes, and supports key lengths from 128 to 256 bits. Additional features include True Random Number Generation (TRNG) within the engine, multiple encryption/decryption key storage options and secure data handling that prevents data in the engine from being compromised by external reads.

1.3 USB On-The-Go (OTG)

USB On-The-Go provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform.

PIC24FJ256GA412/GB412 family devices also incorporate an integrated USB transceiver and precision oscillator, minimizing the required complexity of implementing a complete USB device, embedded host, dual role or On-The-Go application.

1.4 DMA Controller

PIC24FJ256GA412/GB412 family devices also add a Direct Memory Access (DMA) Controller to the existing PIC24F architecture. The DMA acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.5 LCD Controller

The versatile on-chip LCD Controller includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump and an integrated internal resistor ladder that allows contrast control in software, and display operation above device VDD.

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 121-PIN

Feeturer	PIC24FJXXXGA/GB412								
Features	64GA	128GA	256GA	64GB	128GB	256GB			
Operating Frequency	DC – 32 MHz								
Program Memory (bytes)	64K	128K	256K	64K	128K	256K			
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064			
Data Memory (bytes)	8K	10	6K	8K	10	6K			
Interrupt Sources (soft vectors/ NMI traps)			113 (1	107/6)					
I/O Ports			Ports A, B, C,	D, E, F, G, H,	J				
Total I/O Pins		102			101				
Remappable Pins			44 (32 I/O, 1	2 input only)					
Timers:									
Total Number (16-bit)			19	(1,2)					
32-Bit (from paired 16-bit timers)				9					
Input Capture w/Timer Channels			-	(2)					
Output Compare/PWM Channels			6	(2)					
Single Output CCP (SCCP)				6					
Multiple Output CCP (MCCP)				1					
Serial Communications:									
UART			-	(2)					
SPI (3-wire/4-wire)			4	(2)					
l ² C			:	3					
USB On-The-Go		No			Yes				
Cryptographic Engine			Y	es					
Parallel Communications (EPMP/PSP)			Y	es					
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			2	24					
Digital-to-Analog Converter (DAC)				1					
Analog Comparators			;	3					
CTMU Interface			Y	es					
LCD Controller (available pixels)			512 (64 SE	G x 8 COM)					
JTAG Boundary Scan			Y	es					
Resets (and delays)	Core <u>POR</u> , VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)								
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing I	Mode Variatio	ns			
Packages			121-Pin	TFBGA					

Note 1: Includes the Timer modes of SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

Pin/Pad Number Pin Function I/O Input Buffer Description 64-Pin 100-Pin 121-Pin TQFP TQFP TFBGA SEG0 4 10 E3 0 ANA LCD Driver Segment Outputs SEG1 ANA 8 14 F3 0 SEG2 11 20 H1 0 ANA 0 SEG3 12 21 H2 ANA SEG4 13 22 J1 0 ANA 0 SEG5 14 23 J2 ANA SEG6 15 24 K1 0 ANA SEG7 16 25 K2 0 ANA SEG8 29 43 K7 ANA 0 SEG9 30 44 L8 0 ANA SEG10 31 49 L10 ANA 0 SEG11 32 50 L11 0 ANA SEG12 33 51 K10 0 ANA SEG13 42 68 E9 0 ANA SEG14 E10 43 69 0 ANA SEG15 44 70 D11 0 ANA 71 C11 0 SEG16 45 ANA SEG17 46 72 D9 0 ANA SEG18 27 41 J7 0 ANA L7 SEG19 28 42 0 ANA SEG20 49 76 A11 0 ANA SEG21 50 77 A10 0 ANA SEG22 51 78 B9 0 ANA SEG23 52 81 C8 0 ANA SEG24 53 82 B8 0 ANA SEG25 54 83 D7 0 ANA SEG26 55 84 C7 0 ANA SEG27 B6 0 58 87 ANA SEG28 ____ 61 G9 0 ANA 23 SEG29 H5 0 ANA 34 SEG30 22 33 L4 0 ANA 0 SEG31 21 32 K4 ANA SEG32 D1 0 ANA ____ 6 SEG33 8 E2 0 ANA ____ SEG34 18 G1 0 ANA ____ SEG35 19 G2 0 ANA SEG36 28 L2 0 ANA SEG37 29 K3 0 ANA ____ SEG38 47 L9 0 ANA SEG39 ____ 48 K9 0 ANA SEG40 52 K11 0 ANA

TABLE 1-5: PIC24FJ256GB412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTIBIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multibit arithmetic and logic shifts. Multibit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multibit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTIBIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source register by one or more bits.
SL	Shift Left Source register by one or more bits.
LSR	Logical Shift Right Source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space (DS) during code execution.


4.1 **Program Memory Space**

The program address memory space of the PIC24FJ256GA412/GB412 family devices is 4M instructions. The space is addressable by a 24-bit value

derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for PIC24FJ256GA412/GB412 family devices are shown in Figure 4-1.

4.4.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-16 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV, and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAG (Data Space Read Register)	Source Address While Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	Lower words of 4M program
•		•	instructions; (8 Mbytes) for
•		•	read operations only
•		•	
2FFh		7F8000h to 7FFFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program
•		•	instructions (4 Mbytes remaining,
•		•	4 Mbytes are phantom bytes); for
•		•	read operations only
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap ⁽¹⁾

TABLE 4-16: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the	EDS page from where the dat	a to be read
	#0x0202, w0	
mov	w0, DSRPAG	;page 0x202, consisting lower words, is selected for read
mov	#0x000A, w1	;select the location (0x0A) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a by	te from the selected locati	on
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a wo	rd from the selected locati	on
mov	[w1], w2	;
;Read Doub	le - word from the selected	location
mov.d	[w1], w2	;two word read, stored in w2 and w3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	CCT5IP2	CCT5IP1	CCT5IP0		DMA4IP2	DMA4IP1	DMA4IP0			
bit 15			•			•	bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	PMIP2	PMIP1	PMIP0		CCT4IP2	CCT4IP1	CCT4IP0			
bit 7							bit (
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	Unimplemen	ted: Read as '	כי							
bit 14-12	CCT5IP<2:0>	SCCP5 Time	r Interrupt Pric	ority bits						
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)						
	•									
	•									
	001 = Interrupt is Priority 1									
	000 = Interru	pt source is dis	abled							
bit 10-8	DMA4IP<2:0>: DMA Channel 4 Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
bit 7		ted: Read as '								
bit 6-4	-			Priority bits						
	PMIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interru	pt is Priority 1								
		pt source is dis	abled							
bit 3	Unimplemen	ted: Read as '	כי							
bit 2-0	CCT4IP<2:0>	SCCP4 Time	r Interrupt Pric	ority bits						
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)						
	•									
	•									
		untin Duinuitud								
	001 = Interru	pt is Priority 1								

REGISTER 8-33: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

PIC24FJ256GA412/GB412 FAMILY

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0				
bit 15						•	bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	SPI4RXIP2	SPI4RXIP1	SPI4RXIP0		KEYSTRIP2	KEYSTRIP1	KEYSTRIPO				
bit 7							bit				
Legend:											
R = Readat	ole bit	W = Writable I	oit	U = Unimple	emented bit, read	l as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	nown				
							-				
bit 15	Unimplement	ted: Read as 'd)'								
bit 14-12	SPI2RXIP<2:0	0>: SPI2 Recei	ve Interrupt Pri	ority bits							
		pt is Priority 7 (
	•										
	•										
	• 001 = Interrupt is Priority 1										
	000 = Interru	pt source is dis	abled								
bit 11	Unimplement	ted: Read as 'd)'								
bit 10-8	SPI1RXIP<2:	SPI1RXIP<2:0>: SPI1 Receive Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interru		ablad								
h:+ 7		pt source is dis									
bit 7	-	ted: Read as '(arity bita							
		SPI4RXIP<2:0>: SPI4 Receive Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
bit 6-4	111 - Interru	nt is Driority 7 (highest priority	(interrunt)							
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	111 = Interru •	pt is Priority 7(highest priority	r interrupt)							
5it 0-4	•		highest priority	r interrupt)							
UIL U-4	• • 001 = Interru	pt is Priority 1		r interrupt)							
	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled	r interrupt)							
bit 3	• • 001 = Interru 000 = Interru Unimplement	pt is Priority 1 pt source is dis ted: Read as '(abled		e Interrupt Priori	tv bits					
	• 001 = Interru 000 = Interru Unimplemen KEYSTRIP<2	pt is Priority 1 pt source is dis ted: Read as '(abled)' ohic Key Store	Program Don	e Interrupt Priori	ty bits					
bit 3	• 001 = Interru 000 = Interru Unimplemen KEYSTRIP<2	pt is Priority 1 pt source is dis ted: Read as 'û :0>: Cryptograj	abled)' ohic Key Store	Program Don	e Interrupt Priori	ty bits					
bit 3	• 001 = Interru 000 = Interru Unimplemen KEYSTRIP<2	pt is Priority 1 pt source is dis ted: Read as 'û :0>: Cryptograj	abled)' ohic Key Store	Program Don	e Interrupt Priori	ty bits					
bit 3	• 001 = Interru 000 = Interru Unimplemen KEYSTRIP<2	pt is Priority 1 pt source is dis ted: Read as '0 : 0>: Cryptograp pt is Priority 7 (abled)' ohic Key Store	Program Don	e Interrupt Priori	ty bits					

PIC24FJ256GA412/GB412 FAMILY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—	—	—	_	_	_			
bit 15	·						bit 8			
					D #44.0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	CRYMD			
bit 7							bit C			
Legend:										
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	ented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15-8	Unimplemen	ted: Read as 'o)'							
bit 7	U6MD: UART	6 Module Disal	ole bit							
	1 = Module is									
		ower and clock		enabled						
bit 6		U5MD: UART5 Module Disable bit								
	1 = Module is 0 = Module p	s disabled ower and clock	sources are e	enabled						
bit 5		C4 Module Dis								
	1 = Module is disabled									
	0 = Module p	ower and clock	sources are e	enabled						
bit 4	CLC3MD: CL	C3 Module Dis	able bit							
	1 = Module is disabled									
	0 = Module power and clock sources are enabled									
bit 3		CLC2MD: CLC2 Module Disable bit								
	 1 = Module is disabled 0 = Module power and clock sources are enabled 									
L:1 0	-			enabled						
bit 2	CLC1MD: CLC1 Module Disable bit 1 = Module is disabled									
		ower and clock	sources are e	enabled						
bit 1		ted: Read as '0								
bit 0	-	otographic Engi								
	1 = Module is									

REGISTER 10-11: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

REGISTER 11-1: PADCON: PORT CONFIGURATION REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
IOCON	—	—	—	—	—	—	—
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	_	PMTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15 **IOCON:** Interrupt-on-Change Enable bit

- 1 = Interrupt-on-change functionality is enabled
- 0 = Interrupt-on-change functionality is disabled

bit 14-1 Unimplemented: Read as '0'

bit 0 **PMTTL:** EPMP Module TTL Input Buffer Select bit (unused by the GPIO module) Not used by IOC; see Register 21-9 for definition.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave)
	0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	1 = Frame Sync pulse/slave select is active-high
	0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)
	0 = Slave select SPIx support is disabled (SSx pin will be controlled by port IO)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse.
	111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
	000 = Generates a Frame Sync pulse on each serial word

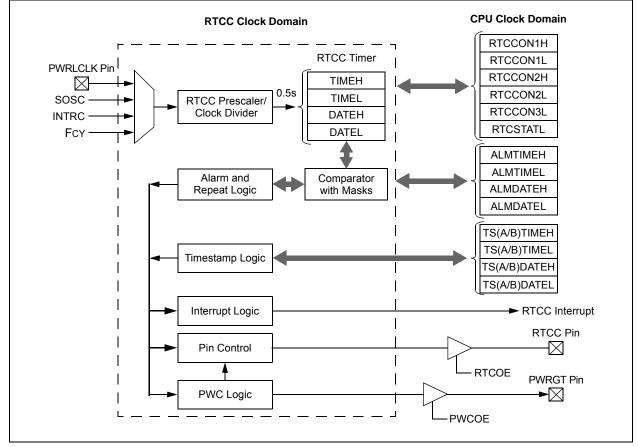
- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - 2: AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

PIC24FJ256GA412/GB412 FAMILY

NOTES:

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193). The information in this data sheet supersedes the information in the FRM.


The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Time (Hours, Minutes and Seconds) in 24-Hour (Military Time) Format
- Calendar (Weekday, Date, Month and Year)
- Year range from 2000 to 2099 with automatic Leap Year correction

- Alarm with Configurable Mask and Repeat
 Options
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- Multiple Clock Input Options, Including:
- 32.768 kHz crystal
- External Real-Time Clock (RTC)
- 50/60 Hz power line clock
- 31.25 kHz LPRC clock
- System clock, up to 32 MHz
- User Calibration with a Range of 2 ppm when using 32 kHz Source
- · Interrupt on Alarm and Timestamp Events
- Optional Timestamp Capture for Tamper Pin or Other Events
- User-Configurable Power Control with Dedicated Output Pin to Periodically Wake External Devices

FIGURE 24-1: RTCC HIGH-LEVEL BLOCK DIAGRAM

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

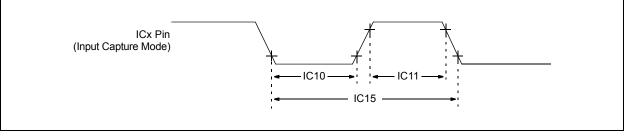
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15	-	-					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **DWIDTH<4:0>:** Data Word Width Configuration bits
- Configures the width of the data word (Data Word Width 1).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

REGISTER 27-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

bit 7-4	SSRC<3:0>: Sample Clock Source Select bits
	1xxx = Unimplemented, do not use
	0111 = Internal counter ends sampling and starts conversion (auto-convert); do not use in Auto-Scan mode
	0110 = Timer1 (also triggers in Sleep mode)
	0101 = Timer1 (does not trigger in Sleep mode)
	0100 = CTMU
	0011 = Timer5
	0010 = Timer3
	0001 = INTO
	0000 = The SAMP bit must be cleared by software to start conversion
bit 3	Unimplemented: Read as '0'
bit 2	ASAM: A/D Sample Auto-Start bit
	1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is manually set
bit 1	SAMP: A/D Sample Enable bit
	1 = A/D Sample-and-Hold amplifiers are sampling
	0 = A/D Sample-and-Hold amplifiers are holding
bit 0	DONE: A/D Conversion Status bit
	1 = A/D conversion cycle has completed
	0 = A/D conversion cycle has not started or is in progress


Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, 2
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE,Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW BTG	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 35-2: INSTRUCTION SET OVERVIEW

PIC24FJ256GA412/GB412 FAMILY

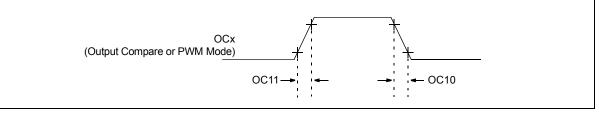

FIGURE 36-6: INPUT CAPTURE x TIMINGS

TABLE 36-27: INPUT CAPTURE x TIMINGS REQUIREMENTS

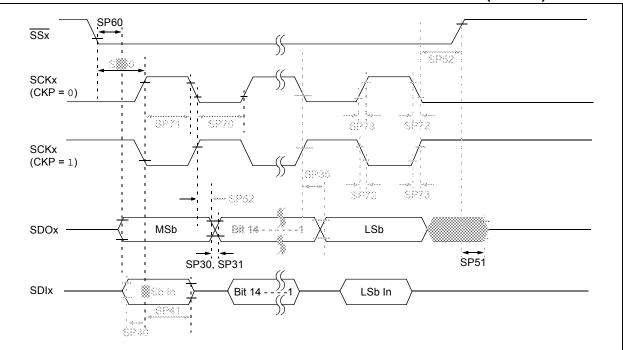

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet	
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11		ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet	
		Synchronous Timer	With Prescaler	20	20 — ns		Parameter IC15	
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = Prescale Value (1, 4, 16)	

FIGURE 36-7: OUTPUT COMPARE x TIMINGS

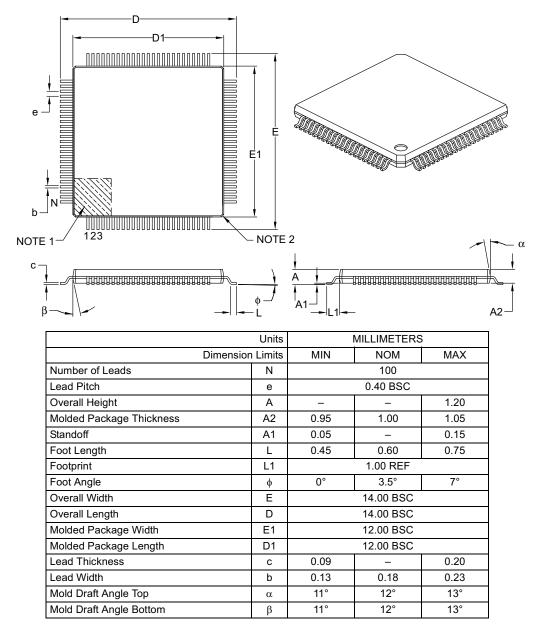
TABLE 36-28: OUTPUT COMPARE 1 TIMINGS

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TccR	OC1 Output Rise Time		10	ns	
			—	_	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
			_		ns	

FIGURE 36-16: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 36-37: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_		ns		
SP71	TscH	SCKx Input High Time	30	_	_	ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾		10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	_	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns		
SP52	TscH2ssH TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40	_		ns		
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	_	_	50	ns		


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B