

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb406-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 64-PIN

	PIC24FJXXXGA/GB406							
Features	64GA	128GA	256GA	64GB	128GB	256GB		
Operating Frequency		DC – 32 M			•	·		
Program Memory (bytes)	64K	128K	256K	64K	128K	256K		
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064		
Data Memory (bytes)	8K	10	6K	8K	10	δK		
Interrupt Sources (soft vectors/ NMI traps)	113 (107/6)							
I/O Ports			Ports B, C	, D, E, F, G				
Total I/O Pins		53			52			
Remappable Pins	30 (2	9 I/Os, 1 inpu	t only)	29 (2	8 I/Os, 1 input	t only)		
Timers:	`	i		-	i			
Total Number (16-bit)			19	(1,2)				
32-Bit (from paired 16-bit timers)				9				
Input Capture w/Timer Channels								
Output Compare/PWM Channels								
Capture/Compare/PWM/Timer:								
Single Output (SCCP)			6	(2)				
Multiple Output (MCCP)	1 ⁽²⁾							
Serial Communications:								
UART	6 ⁽²⁾							
SPI (3-wire/4-wire)			4	(2)				
l ² C				3				
USB On-The-Go		No			Yes			
Cryptographic Engine			Y	es				
Parallel Communications (EPMP/PSP)			Y	es				
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			·	16				
Digital-to-Analog Converter (DAC)				1				
Analog Comparators				3				
CTMU Interface			Y	es				
LCD Controller (available pixels)	248	(35 SEG x 8 0	COM)	240	(34 SEG x 8 0	COM)		
JTAG Boundary Scan			Y	es				
Resets (and delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)							
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing N	Mode Variatio	าร		
Packages			64-Pin TQF	P and QFN				

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

4.3.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.3.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.3.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-4. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-5 through 4-12.

						S	FR Spa	ace Ad	dress							
	xx	00	xx	20	xx	40	xx	60	xx	80	хх	A0	xx	C0	xx	E0
000h			Core					Interrupts					_			
100h	Sys	tem		EPMP		CR	C ⁽¹⁾	PN	/ID	Tim	ners		CTM		RTCC	
200h	(Capture Compare				MCCP C				CMP	/DAC					
300h	SCCP								UART			UAR	T/SPI			
400h			S	PI				CLC			I ² C			DI	МA	
500h	DMA Crypto Engine						USB ⁽²⁾				LC	CD				
600h	LCD	LCD —							I/O							
700h	I/O	O A/D				NVM	_	_			PI	PS			_	

 TABLE 4-4:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = Block is largely or entirely unimplemented.

Note 1: This region includes system control registers (Reference Oscillator).

2: Implemented in PIC24FJXXXGBXXX devices only.

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/S_0 HC(1)) _{R/M/-0} (1)	R-0 HSC(1)	R/M_0	R/C-0 HSC(2)	R-0	11-0	11-0	
WR	WREN	WRERR	NVMPIDI	SETSWP	P2ACTIV	_		
bit 15	VIILII	VIILEIUU		0110111	12,10111		bit 8	
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
_	_		—	NVMOP3 ⁽³⁾	NVMOP2 ⁽³⁾	NVMOP1 ⁽³⁾	NVMOP0 ⁽³⁾	
bit 7							bit 0	
Legend:		S = Settable bi	t	U = Unimpleme	ented, read as '	0'		
R = Readab	le bit	W = Writable b	it	HSC = Hardwar	e Settable/Clea	rable bit		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkno	own	
C = Clearab	le bit	HC = Hardware	Clearable bit					
bit 15	WR: Write C	Control bit ⁽¹⁾						
	1 = Initiates	a Flash memo	ry program or	erase operation	n; the operatio	n is self-timed	and the bit is	
	0 = Progran	n or erase opera	tion is comple	te and inactive				
bit 14	WREN: Writ	e Enable bit ⁽¹⁾						
	1 = Enables	Flash program/	erase operatio	ns				
	0 = Inhibits F	-lash program/e	rase operation	S				
bit 13	WRERR: WI	rite Sequence E	rror Flag bit ⁽¹⁾					
	1 = An imp	roper program	or erase se	quence attempt	, or terminatio	on has occurre	ed (bit is set	
	automat	tically on any se	t attempt of the	e WR bit) leted pormally				
hit 12			vn in Idle Enab	le bit				
	1 = Remove	es power from p	rooram memor	when device e	enters Idle mod	e		
	0 = Keeps p	program memory	/ powered in S	tandby mode wh	ien device ente	ers Idle mode		
bit 11	SFTSWP: S	oft Swap Status	bit ⁽²⁾					
	In Dual Parti	tion Flash Mode	es (BTMOD<1:	0> = 10 or 0x):				
	1 = Partition	is have been su	ccessfully swa	pped using the I	BOOTSWP instru	iction		
	In Single Pa	rtition Flash Mor	lillon swap usi 10 (RTMOD<1	19 11 0 BOOTSWP	Instruction			
	Unimplemen	ited, read as '0'.		<u>.0² – 11).</u>				
bit 10	P2ACTIV: D	ual Active Partit	ion Status bit					
	In Dual Parti	tion Flash Mode	s (BTMOD<1:	0> = 10 or 0x):				
	1 = Partition	1 2 Flash is the A	Active Partition					
	0 = Partition	1 1 Flash is the A		(0) = 11				
	Unimplemen	ited, read as '0'.		$0^{2} = 11$).				
bit 9-4	Unimpleme	nted: Read as '	0'					
N								
Note 1: T	nese bits can	only be reset or	n a Power-on F	keset.				
Z: (3· ∆	 Clearable in software, as well as on device Resets. All other combinations of NVMOP<3:0> are unimplemented in this device family. 							

4: Available only in Dual Partition modes (BTMOD<1:0> = 10 or 0x).

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
TRAPR	(1) IOPUWR ⁽¹⁾	_	RETEN ⁽²⁾	_	DPSLP ⁽¹⁾	CM ⁽¹⁾	PMSLP ⁽³⁾	
bit 15							bit 8	
– – – –		D 4 1 1 0	D 414 0		D 444.0	D 4 4 4	D 4 4 4	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXIR'	SWR("	SWDIEN	WDTOW	SLEEP("	IDLE"	BOR	POR''	
DIT 7							DITU	
l egend:								
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit. read	as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
<u> </u>								
bit 15	TRAPR: Trap	Reset Flag bit	1)					
	1 = A Trap Co	onflict Reset has	s occurred					
	0 = A Trap Co	onflict Reset has	s not occurred		 (1)			
DIT 14		gal Opcode or l	Uninitialized W	Access Reset	Flag Ditty	ad W register	ie used as an	
	Address I	Pointer and cau	used a Reset			eu w register		
	0 = An illegal	opcode or Uni	nitialized W Re	egister Reset ha	as not occurred			
bit 13	Unimplement	ted: Read as 'o)'					
bit 12	RETEN: Rete	ntion Mode Ena	able bit ⁽²⁾					
	1 = Retention	mode is enable	ed while device	e is in Sleep mo tage levels are	odes (1.2V regu present	llator supplies	to the core)	
bit 11	Unimplement	ted: Read as '0)'		procont			
bit 10	DPSLP: Deep	Sleep Flag bit	(1)					
	1 = Device ha	s been in Deep	Sleep mode					
	0 = Device ha	s not been in D	eep Sleep mo	de				
bit 9	CM: Configura	ation Word Mis	match Reset F	lag bit ⁽¹⁾				
	1 = A Configu 0 = A Configu	ration Word Mi ration Word Mi	smatch Reset	has occurred	he			
bit 8	PMSI P: Prog	ram Memory P	ower During S	leen hit ⁽³⁾	50			
bito	1 = Program r	nemory bias vo	oltage remains	powered durin	g Sleep			
	0 = Program r	nemory bias vo	oltage is power	ed down during	g Sleep			
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit ⁽¹⁾					
	1 = A Master (Clear (pin) Res	et has occurre	d				
hit 6	SWR: Softwar	re Reset (Instri	ction) Flag hit	(1)				
bit o	1 = A RESET i	nstruction has	been executed	1				
	0 = A RESET i	nstruction has	not been exec	uted				
Note 1:	All of the Reset sta	atus bits may b	e set or cleare	d in software. S	Setting one of th	ese bits in sof	tware does not	
	cause a device Re	eset.						
2:	If the LPCFG Con	figuration bit is	'1' (unprogran	nmed), the rete	ention regulator	is disabled an	d the RETEN	
3:	Re-enabling the re	equlator after it	enters Standb	v mode will add	d a delav. Tvrf	G. when wakin	a up from	
	Sleep. Application	is that do not u	se the voltage	regulator shou	ld set this bit to	prevent this d	elay from	
	occurring.	.					11	
4:	If the FWDTEN C	FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the DTEN bit setting.						

REGISTER 7-1: RCON: RESET CONTROL REGISTER

R/W-0	R-0, HSC	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	—	—	—	—	ALTIVT
bit 15						·	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
r						_	
Legend:		HSC = Hardwa	are Settable/C	learable bit			
R = Readable	e bit	W = Writable t	bit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15 GIE: Global Interrupt Enable bit 1 = Interrupt and associated interrupt enable bits are enabled 0 = Interrupts are disabled; traps remain enabled							
bit 14	bit 14 DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active						
bit 13	SWTRAP: So 1 = Generate 0 = Software	oftware Trap Sta es a software tra trap is not requ	tus bit ip ested				
bit 12-9	Unimplemen	ted: Read as '0	3				
bit 8	ALTIVT: Enal	ble Alternate Int	errupt Vector 7	able bit			
	1 = Uses Alte 0 = Uses sta	ernate Interrupt ndard (default)	Vector Table	r Table			
bit 7-5	Unimplemen	ted: Read as '0	,				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt 0 = Interrupt	on negative edg	je e				
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt 0 = Interrupt	on negative edg on positive edg	je e				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select b	pit		
	1 = Interrupt 0 = Interrupt	on negative edg	ge e				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt 0 = Interrupt	on negative edg	je e				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit		
	1 = Interrupt 0 = Interrupt	on negative edg	je e	,			

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-15: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	 Interrupt request is enabled
	0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI1IP2	SPI1IP1	SPI1IP0		T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	D'				
bit 14-12	U1RXIP<2:0>	UART1 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	D'				
bit 10-8	SPI1TXIP<2:	0>: SPI1 Trans	mit Interrupt P	riority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	o'				
bit 6-4	SPI1IP<2:0>:	SPI1 General	Interrupt Priori	ty bits			
	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	o'				
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 8-24: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Information on voltage tolerance is provided in the pinout diagrams in the beginning of this data sheet. For more information, refer to **Section 36.0** "**Electrical Characteristics**" for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

REGISTER 11-2: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
_	—	—	_	—	—	—	IOCPJF ⁽¹⁾
bit 15							bit 8
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IOCPHF ⁽¹⁾	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF ⁽²⁾
bit 7							bit 0
Legend:		HSC = Hardwa	are Settable/C	learable bit			
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-9	Unimplement	ed: Read as '0	,				
bit 8	IOCPJF: Inter	rupt-on-Change	e PORTJ Flag	bit ⁽¹⁾			
	1 = A change	was detected o	n an IOC-ena	bled pin on PO	RTJ		
bit 7		e was delected		s cleared all de	elected change	:5	
DIL 7	$1 = \Delta$ change	was detected o	e FORTH Flag	bled nin on PO	RTH		
	0 = No change	e was detected	or the user ha	is cleared all de	etected change	s	
bit 6	IOCPGF: Inter	rupt-on-Chang	e PORTG Fla	g bit	-		
	1 = A change	was detected o	n an IOC-ena	bled pin on PO	RTG		
	0 = No change	e was detected	or the user ha	is cleared all de	etected change	s	
bit 5	IOCPFF: Inter	rupt-on-Chang	e PORTF Flag	bit			
	1 = A change	was detected c	n an IOC-ena	bled pin on PO	RTF	_	
b :4		e was detected		IS Cleared all de	etected change	S	
DIT 4		rupt-on-Chang	e PORTE Flag) DIT blad nin an DO	DTE		
	0 = No change	e was detected t	or the user ha	is cleared all de	etected change	S	
bit 3	IOCPDF: Inter	rupt-on-Chang	e PORTD Flag	a bit		-	
	1 = A change	was detected c	n an IOC-ena	bled pin on PO	RTD		
	0 = No change	e was detected	or the user ha	is cleared all de	etected change	s	
bit 2	IOCPCF: Inter	rupt-on-Chang	e PORTC Fla	g bit			
	1 = A change	was detected c	n an IOC-ena	bled pin on PO	RTC		
	0 = No change	e was detected	or the user ha	is cleared all de	etected change	es	
bit 1	IOCPBF: Inter	rupt-on-Chang	e PORTB Flag	g bit	DTD		
	\perp = A change 0 = No change	was detected o was detected	or the user ha	bled pin on PO is cleared all de	etected change	S	
bit 0		runt-on-Chang		_{i hit} (2)		.0	
Situ	1 = A change	was detected of	n an IOC-enal	bled pin on PO	RTA		
	0 = No change	e was detected	, or the user h	as cleared all d	letected change	e	
	-		04		-		

- **Note 1:** These ports are not available on 64-pin or 100-pin devices.
 - **2:** This port is not available on 64-pin devices.

TABLE 11-11: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name	Function Name	Register	Function Mapping Bits
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>
Generic Timer External input	TMRCK	RPINR23<13:8>	TXCKR<5:0>
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>
Output Compare Trigger 1	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>
SPI1 Slave Select	SS1IN	RPINR21<5:0>	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>
SPI2 Slave Select	SS2IN	RPINR23<5:0>	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>
SPI3 Slave Select	SS3IN	RPINR29<5:0>	SS3R<5:0>
Timer2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4<5:0>	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4<13:8>	T5CKR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21<13:8>	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17<13:8>	U3RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27<13:8>	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27<5:0>	U4RXR<5:0>

11.5.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-23 through Register 11-38). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-12).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TARI E 11-12.	SELECTARI E OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)
IADLE II-IZ.	SELECTABLE OUTFUT SOURCES	

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OCM4	SCCP Output Compare 4
17	OCM5	SCCP Output Compare 5
18	OCM6	SCCP Output Compare 6
19	U3TX	UART3 Transmit
20	U3RTS	UART3 Request-to-Send
21	U4TX	UART4 Transmit
22	U4RTS ⁽³⁾	UART4 Request-to-Send
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	OCM7	SCCP Output Compare 7
28	REFO ⁽⁴⁾	Reference Clock Output
29	CLC10UT	CLC1 Output
30	CLC2OUT	CLC2 Output

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

4: Map to RP29 (RB15) to maintain the high output driver found in previous PIC24F devices.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

REGISTER 11-13: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-14: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_			_	_	_	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

32: Cascade Two IC Modules Enable bit (32-bit operation)
 ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) ICx functions independently as a 16-bit module
TRIG: ICx Sync/Trigger Select bit
Triggers ICx from the source designated by the SYNCSELx bits
Synchronizes ICx with the source designated by the SYNCSELx bits
RIGSTAT: Timer Trigger Status bit
 Timer source has been triggered and is running (set in hardware, can be set in software) Timer source has not been triggered and is being held clear
implemented: Read as '0'

- **Note 1:** Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ256GA412/GB412 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ256GA412/GB412 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32-bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 17-1 and Figure 17-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_		—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a Type B cable has been plugged into the USB receptacle 0 = A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 OTG Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 OTG Specification") on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 OTG Specification") on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

U-0 U-0
- -
bit 15 bi R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 WET BIASMD LCDA WA LP3 LP2 LP1 LP0
R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 WET BIASMD LCDA WA LP3 LP2 LP1 LP0
WET BIASMD LCDA WA LP3 LP2 LP1 LP0
bit 7 bit
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown
bit 15-8 Unimplemented: Read as '0'
bit 7 WFT: Waveform Type Select bit
 1 = Type-B waveform (phase changes on each frame boundary) 0 = Type-A waveform (phase changes within each Common type)
bit 6 BIASMD: Bias Mode Select bit
When LMUX<2:0> = 000 or 011 through 111:
0 = Static Bias mode (do not set this bit to '1')
When LMUX<2:0> = 001 or 010:
1 = 1/2 Bias mode
0 = 1/3 Bias mode
bit 5 LCDA: LCD Active Status bit
1 = LCD driver module is active 0 = LCD driver module is inactive
bit 4 WA: LCD Write Allow Status bit
1 = Write into the LCDDATAx registers is allowed
0 = Write into the LCDDATAx registers is not allowed
bit 3-0 LP<3:0>: LCD Prescaler Select bits
1111 = 1:16
1110 = 1:15
1101 = 1.14
1001 = 1.13
1010 = 1:11
1001 = 1:10
1000 = 1.9
0111 = 1.8 0110 = 1.7
0100 = 1.7 0101 = 1.6
0100 = 1:5
0011 = 1:4
0010 = 1:3
0001 - 1.2 0000 = 1:1

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
		CTMEN<30:28	>		_	CTMEN	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTMEN	l<23:16> (1)			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	CTMEN<30:	28>: CTMU Ena	abled During (Conversion bits			
	1 = CTMU is	enabled and co	onnected to th	e selected inter	nal channel dur	ing conversion	
	0 = CTMU is	not connected	to this channe	9			
bit 11-10	Unimpleme	nted: Read as '	0'				
bit 9-8	CTMEN<25:	24>: CTMU Ena	abled During (Conversion bits			
	1 = CTMU is	enabled and co	onnected to th	e selected inter	nal channel dur	ing conversion	
	0 = CTMU is	not connected	to this channe		(4)		
bit 7-0	CTMEN<23:	16>: CTMU Ena	abled During (Conversion bits	(1)		
	1 = CTMU is	enabled and co	onnected to th	e selected A/D	channel during	conversion	
	0 = C I I V I U I S	not connected	to this channe	<u></u>			

REGISTER 27-12: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 27-13: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	EN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTN	1EN<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected A/D channel during conversion

0 = CTMU is not connected to this channel

NOTES:

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Dimension Limits			MAX
Contact Pitch	E1		0.80 BSC	
Contact Pitch	E2		0.80 BSC	
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	X			0.32

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D