

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	101
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb412t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pir	n/Pad Numl	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
RE0	60	93	A4	I/O	DIG/ST	PORTE Digital I/Os
RE1	61	94	B4	I/O	DIG/ST	
RE2	62	98	B3	I/O	DIG/ST	
RE3	63	99	A2	I/O	DIG/ST	
RE4	64	100	A1	I/O	DIG/ST	
RE5	1	3	D3	I/O	DIG/ST	
RE6	2	4	C1	I/O	DIG/ST	
RE7	3	5	D2	I/O	DIG/ST	
RE8	_	18	G1	I/O	DIG/ST	
RE9	_	19	G2	I/O	DIG/ST	
REFI1	24	35	K5	I	ST	Reference Clock Input
RF0	58	87	B6	I/O	DIG/ST	PORTF Digital I/Os
RF1	59	88	A6	I/O	DIG/ST	
RF2	34	52	K11	I/O	DIG/ST	
RF3	33	51	K10	I/O	DIG/ST/TTL	
RF4	31	49	L10	I/O	DIG/ST	
RF5	32	50	L11	I/O	DIG/ST	
RF6	35	55	H9	I/O	DIG/ST	
RF7	_	54	H8	I/O	DIG/ST	
RF8	—	53	J10	I/O	DIG/ST	
RF12	—	40	K6	I/O	DIG/ST	
RF13	—	39	L6	I/O	DIG/ST	
RG0	—	90	A5	I/O	DIG/ST	PORTG Digital I/Os
RG1	—	89	E6	I/O	DIG/ST	
RG2	37	57	H10	I/O	DIG/ST	
RG3	36	56	J11	I/O	DIG/ST	
RG6	4	10	E3	I/O	DIG/ST/TTL	
RG7	5	11	F4	I/O	DIG/ST	
RG8	6	12	F2	I/O	DIG/ST	
RG9	8	14	F3	I/O	DIG/ST	
RG12	—	96	E17	I/O	DIG/ST	
RG13	—	97	E18	I/O	DIG/ST	
RG14	_	95	E16	I/O	DIG/ST	
RG15	_	1	B2	I/O	DIG/ST	

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer

ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer $I^2C = I^2C/SMB$ us input buffer

XCVR = Dedicated transceiver

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
DMA (Contin	ued)		CRYTXTB6	564	*****	U1EP8 ⁽¹⁾	5B2	00000000000000000
DMAINT5	500	000000000000000000000000000000000000000	CRYTXTB7	566	*****	U1EP9 ⁽¹⁾	5B4	00000000000000000
DMASRC5	502	000000000000000000000000000000000000000	CRYTXTC0	558	*****	U1EP10 ⁽¹⁾	5B6	00000000000000000
DMADST5	504	000000000000000000000000000000000000000	CRYTXTC1	56A	*****	U1EP11 ⁽¹⁾	5B8	00000000000000000
DMACNT5	506	000000000000000000000000000000000000000	CRYTXTC2	56C	*****	U1EP12 ⁽¹⁾	5BA	00000000000000000
Cryptographi	c Engine		CRYTXTC3	56E	*****	U1EP13 ⁽¹⁾	5BC	00000000000000000
CRYCONL	51C	x0xxxx0xxxxxxxx	CRYTXTC4	570	*****	U1EP14 ⁽¹⁾	5BE	00000000000000000
CRYCONH	51E	0xxxxxxxxx0xxxx	CRYTXTC5	572	*****	U1EP15 ⁽¹⁾	5C0	00000000000000000
CRYSTAT	520	00000000xxxx0xxx	CRYTXTC6	574	*****	LCD Control	er	
CRYOTP	524	00000000xxxxxxxx	CRYTXTC7	576	*****	LCDCON	5C2	000000000000000000000(²)
CRYKEY0	528	*****	USB			LCDREF	5C4	00000000000000000000(²⁾
CRYKEY1	52A	*****	U1OTGIR ⁽¹⁾	578	000000000000000000000000000000000000000	LCDPS	5C6	000000000000000000000(2)
CRYKEY2	52C	*****	U1OTGIE ⁽¹⁾	57A	000000000000000000000000000000000000000	LCDDATA0	5C8	000000000000000000000(2)
CRYKEY3	52E	*****	U1OTGSTAT ⁽¹⁾	57C	000000000000000000000000000000000000000	LCDDATA1	5CA	000000000000000000000(2)
CRYKEY4	530	*****	U1OTGCON ⁽¹⁾	57E	000000000000000000000000000000000000000	LCDDATA2	5CC	000000000000000000000(2)
CRYKEY5	532	*****	U1PWRC ⁽¹⁾	580	0000000x0000000	LCDDATA3	5CE	000000000000000000000(2)
CRYKEY6	534	*****	U1IR ⁽¹⁾	582	000000000000000000000000000000000000000	LCDDATA4	5D0	000000000000000000000(2)
CRYKEY7	536	*****	U1IE ⁽¹⁾	584	000000000000000000000000000000000000000	LCDDATA5	5D2	000000000000000000000(2)
CRYKEY8	538	*****	U1EIR ⁽¹⁾	586	000000000000000000000000000000000000000	LCDDATA6	5D4	000000000000000000000(2)
CRYKEY9	53A	*****	U1EIE ⁽¹⁾	588	000000000000000000000000000000000000000	LCDDATA7	5D6	000000000000000000000(2)
CRYKEY10	53C	*****	U1STAT ⁽¹⁾	58A	000000000000000000000000000000000000000	LCDDATA8	5D8	000000000000000000000(2)
CRYKEY11	53E	*****	U1CON ⁽¹⁾	58C	0000000xx000000	LCDDATA9	5DA	000000000000000000000(2)
CRYKEY12	540	*****	U1ADDR ⁽¹⁾	58E	000000000xxxxxxx	LCDDATA10	5DC	000000000000000000000(²)
CRYKEY13	542	*****	U1BDTP1 ⁽¹⁾	590	000000000000000000000000000000000000000	LCDDATA11	5DE	00000000000000000000(²⁾
CRYKEY14	544	*****	U1FRML ⁽¹⁾	592	000000000000000000000000000000000000000	LCDDATA12	5E0	00000000000000000000(²⁾
CRYKEY15	546	*****	U1FRMH ⁽¹⁾	594	000000000000000000000000000000000000000	LCDDATA13	5E2	00000000000000000000(²⁾
CRYTXTA0	548	*****	U1TOK ⁽¹⁾	596	000000000000000000000000000000000000000	LCDDATA14	5E4	00000000000000000000(²⁾
CRYTXTA1	54A	*****	U1SOF ⁽¹⁾	598	000000000000000000	LCDDATA15	5E6	00000000000000000000(2)
CRYTXTA2	54C	*****	U1BDTP2 ⁽¹⁾	59A	000000000000000000	LCDDATA16	5E8	00000000000000000000(2)
CRYTXTA3	54E	*****	U1BDTP3 ⁽¹⁾	59C	000000000000000000	LCDDATA17	5EA	00000000000000000000(2)
CRYTXTA4	550	*****	U1CNFG1 ⁽¹⁾	59E	000000000000000000	LCDDATA18	5EC	00000000000000000000(2)
CRYTXTA5	552	*****	U1CNFG2 ⁽¹⁾	5A0	000000000000000000	LCDDATA19	5EE	00000000000000000000(2)
CRYTXTA6	554	*****	U1EP0 ⁽¹⁾	5A2	000000000000000000	LCDDATA20	5F0	00000000000000000000(2)
CRYTXTA7	556	*****	U1EP1 ⁽¹⁾	5A4	000000000000000000	LCDDATA21	5F2	00000000000000000000(2)
CRYTXTB0	558	*****	U1EP2 ⁽¹⁾	5A6	000000000000000000	LCDDATA22	5F4	00000000000000000000(2)
CRYTXTB1	55A	*****	U1EP3 ⁽¹⁾	5A8	000000000000000000	LCDDATA23	5F6	00000000000000000000(2)
CRYTXTB2	55C	****	U1EP4 ⁽¹⁾	5AA	000000000000000000000000000000000000000	LCDDATA24	5F8	00000000000000000000(2)
CRYTXTB3	55E	****	U1EP5 ⁽¹⁾	5AC	000000000000000000000000000000000000000	LCDDATA25	5FA	00000000000000000000(2)
CRYTXTB4	560	*****	U1EP6 ⁽¹⁾	5AE	000000000000000000000000000000000000000	LCDDATA26	5FC	00000000000000000000(2)
CRYTXTB5	562	*****	U1EP7 ⁽¹⁾	5B0	000000000000000000000000000000000000000	LCDDATA27	5FE	00000000000000000000(2)

TABLE 4-10:SFR BLOCK 500h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: Implemented in PIC24FJXXXGB4XX devices only.

2: LCD registers are only reset on a device POR.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
LCD Controll	er (Continu	Jed)	IOCPDB	684	000000000000000000	PORTF	6C4	000000000000000000000000000000000000000
LCDDATA28	600	0000000000000000000(¹⁾	TRISC	686	100100000011110	LATF	6C6	000000000000000000000000000000000000000
LCDDATA29	602	0000000000000000000(¹⁾	PORTC	688	000000000000000000000000000000000000000	ODCF	6C8	000000000000000000000000000000000000000
LCDDATA30	604	0000000000000000000(¹⁾	LATC	68A	000000000000000000000000000000000000000	ANSF	6CA	0011000100111111
LCDDATA31	606	0000000000000000000(¹⁾	ODCC	68C	000000000000000000000000000000000000000	IOCPF	6CC	000000000000000000000000000000000000000
LCDSE0	608	0000000000000000000(¹⁾	ANSC	68E	000000000011110	IOCNF	6CE	000000000000000000000000000000000000000
LCDSE1	60A	0000000000000000000(¹⁾	IOCPC	690	000000000000000000000000000000000000000	IOCFF	6D0	000000000000000000000000000000000000000
LCDSE2	60C	0000000000000000000(¹⁾	IOCNC	692	000000000000000000000000000000000000000	IOCPUF	6D2	000000000000000000000000000000000000000
LCDSE3	60E	0000000000000000000(¹⁾	IOCFC	694	000000000000000000000000000000000000000	IOCPDF	6D4	000000000000000000000000000000000000000
LCDREG	610	0000000000000000000(¹⁾	IOCPUC	696	000000000000000000000000000000000000000	TRISG	6D6	1111001111001111
I/O ⁽³⁾		IOCPDC	698	000000000000000000000000000000000000000	PORTG	6D8	000000000000000000000000000000000000000	
PADCON	65A	000000000000000000000000000000000000000	TRISD	69A	11111111111111111	LATG	6DA	000000000000000000000000000000000000000
IOCSTAT	65C	000000000000000000000000000000000000000	PORTD	69C	000000000000000000000000000000000000000	ODCG	6DC	000000000000000000000000000000000000000
TRISA	65E	1100011011111111	LATD	69E	000000000000000000000000000000000000000	ANSG	6DE	1111001111000011
PORTA	660	000000000000000000000000000000000000000	ODCD	6A0	000000000000000000000000000000000000000	IOCPG	6E0	000000000000000000000000000000000000000
LATA	662	000000000000000000000000000000000000000	ANSD	6A2	11111111111111111	IOCNG	6E2	000000000000000000000000000000000000000
ODCA	664	000000000000000000000000000000000000000	IOCPD	6A4	000000000000000000000000000000000000000	IOCFG	6E4	000000000000000000000000000000000000000
ANSA	666	1100011011101101	IOCND	6A6	000000000000000000000000000000000000000	IOCPUG	6E6	000000000000000000000000000000000000000
IOCPA	668	000000000000000000000000000000000000000	IOCFD	6A8	000000000000000000000000000000000000000	IOCPDG	6E8	000000000000000000000000000000000000000
IOCNA	66A	000000000000000000000000000000000000000	IOCPUD	6AA	000000000000000000000000000000000000000	TRISH	6EA	11111111111111110
IOCFA	66C	000000000000000000000000000000000000000	IOCPDD	6AC	000000000000000000000000000000000000000	PORTH	6EC	000000000000000000000000000000000000000
IOCPUA	66E	000000000000000000000000000000000000000	TRISE	6AE	000000111111111	LATH	6EE	000000000000000000000000000000000000000
IOCPDA	670	000000000000000000000000000000000000000	PORTE	6B0	000000000000000000000000000000000000000	ODCH	6F0	000000000000000000000000000000000000000
TRISB	672	1111111111111111	LATE	6B2	000000000000000000000000000000000000000	ANSH	6F2	000000000011110
PORTB	674	000000000000000000000000000000000000000	ODCE	6B4	000000000000000000000000000000000000000	IOCPH	6F4	000000000000000000000000000000000000000
LATB	676	000000000000000000000000000000000000000	ANSE	6B6	000000111111111	IOCNH	6F6	000000000000000000000000000000000000000
ODCB	678	000000000000000000000000000000000000000	IOCPE	6B8	000000000000000000000000000000000000000	IOCFH	6F8	000000000000000000000000000000000000000
ANSB	67A	1111111111111111	IOCNE	6BA	000000000000000000000000000000000000000	IOCPUH	6FA	000000000000000000000000000000000000000
IOCPB	67C	000000000000000000000000000000000000000	IOCFE	6BC	000000000000000000000000000000000000000	IOCPDH	6FC	000000000000000000000000000000000000000
IOCNB	67E	000000000000000000000000000000000000000	IOCPUE	6BE	000000000000000000000000000000000000000	TRISJ	6FE	000000000000011
IOCFB	680	000000000000000000000000000000000000000	IOCPDE	6C0	000000000000000000000000000000000000000			
IOCPUB	682	000000000000000000000000000000000000000	TRISF ⁽²⁾	6C2	0011000111111111			

TABLE 4-11: SFR BLOCK 600h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: LCD registers are only reset on a device POR.

2: TRISF6 is only '1' in PIC24FJXXXGA4XX devices.

3: Reset values shown are for full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific devices.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CCP1IE	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	SPI4RXIE	KEYSTRIE				
bit 15							bit 8				
DAMO			11.0								
		R/W-U	0-0								
		INTSIE		CCITE	MIZCZIE	SIZUZIE					
							DILU				
Legend:											
R = Readable	bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	CCP1IE: MCC	CP1 Capture/Co	ompare Interrup	ot Enable bit							
	1 = Interrupt	request is enab	led								
hit 14	BTCIE: Real-	Time Clock and	t Calendar Inte	arrunt Enable bi	i+						
bit 14	1 = Interrupt	request is enab	bled								
	0 = Interrupt	request is not e	enabled								
bit 13	bit 13 DMA5IE: DMA Channel 5 Interrupt Enable bit										
	1 = Interrupt	request is enat	oled								
	0 = Interrupt request is not enabled										
bit 12	SPI3RXIE: SF	PI3 Receive Inte	errupt Enable b	oft							
	1 = Interrupt 0 = Interrupt	request is enac	enabled								
bit 11	SPI2RXIE: SF	PI2 Receive Inte	errupt Enable b	it							
	1 = Interrupt	request is enat	oled								
	0 = Interrupt	request is not e	enabled								
bit 10	SPI1RXIE: SF	PI1 Receive Inte	errupt Enable b	vit							
	1 = Interrupt	request is enab	led								
hit 9	SPIARXIE: SE	Pl4 Receive Inte	arrunt Enable h	it							
bit b	1 = Interrupt	request is enab	oled								
	0 = Interrupt	request is not e	enabled								
bit 8	KEYSTRIE: C	Cryptographic K	ey Store Progra	am Done Interru	upt Enable bit						
	1 = Interrupt	request is enat	oled								
	0 = Interrupt	request is not e	enabled		1.11						
DIT 7	1 = Interrupt	yptographic Op	eration Done II	nterrupt Enable	DI						
	0 = Interrupt	request is enal	enabled								
bit 6	INT4IE: Exter	nal Interrupt 4	Enable bit ⁽¹⁾								
	1 = Interrupt	request is enat	oled								
	0 = Interrupt	request is not e	enabled								
bit 5	INT3IE: Exter	nal Interrupt 3	Enable bit ⁽¹⁾								
	1 = Interrupt	request is enab	nabled								
bit 4	Unimplemen	ted: Read as ')'								
~it i											

REGISTER 8-17: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-19: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- bit 3 U3TXIE: UART3 Transmitter Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 2 U3RXIE: UART3 Receiver Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 U3ERIE: UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	NVMIP2	NVMIP1	NVMIP0	—	DMA1IP2	DMA1IP1	DMA1IP0					
bit 15		•			·		bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimplen	mented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	Unimplement	ted: Read as 'o)'									
bit 14-11	NVMIP<2:0>:	Flash Memory	Write/Program	n Interrupt Prio	ority bits							
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 7	Unimplemented: Read as '0'											
bit 10-8	DMA1IP<2:0>	>: DMA Channe	el 1 Interrupt P	riority bits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 7	Unimplement	ted: Read as '0)'									
bit 6-4	AD1IP<2:0>:	12-Bit Pipeline	A/D Interrupt	Priority bits								
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 3	Unimplement	ted: Read as '0)'									
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interrup	t Priority bits								
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									

REGISTER 8-25: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	U6TXIP2	U6TXIP1	U6TXIP0	—	U6RXIP2	U6RXIP1	U6RXIP0					
bit 15						•	bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—	U5ERIP2	U5ERIP1	U5ERIP0	—	U5TXIP2	U5TXIP1	U5TXIP0					
bit 7						•	bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	Unimplemen	ted: Read as '	כ'									
bit 14-12	U6TXIP<2:0>	UART6 Trans	smitter Interrup	t Priority bits								
	111 = Interru	pt is Priority 7(highest priority	interrupt)								
	•											
	•											
	001 = Interrupt is Priority 1											
	000 = Interrupt source is disabled											
bit 11	Unimplemen	ted: Read as '	o'									
bit 10-8	U6RXIP<2:0>	: UART6 Rece	eiver Interrupt F	Priority bits								
	111 = Interru	pt is Priority 7(highest priority	interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 7	Unimplemen	ted: Read as '	כ'									
bit 6-4	U5ERIP<2:0>	: UART5 Error	Interrupt Prior	ity bits								
	111 = Interru	pt is Priority 7(highest priority	interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 3	Unimplemen	ted: Read as '	כ'									
bit 2-0	U5TXIP<2:0>	: UART5 Trans	smitter Interrup	t Priority bits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									

REGISTER 8-50: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0			
bit 7		•	•		•	•	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as ')'							
bit 13-8	RP1R<5:0>:	RP1 Output Pir	n Mapping bits							
	Peripheral Output Number n is assigned to pin, RP1 (see Table 11-12 for peripheral function numbers)									

REGISTER 11-23: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP0 (see Table 11-12 for peripheral function numbers).

REGISTER 11-24: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-12 for peripheral function numbers).

bit 7-6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8
11_0	11_0						

REGISTER 11-25: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits ⁽¹⁾
	Peripheral Output Number n is assigned to pin, RP5 (see Table 11-12 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: RP4 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP4 (see Table 11-12 for peripheral function numbers).

Note 1: RP5 and its associated bits are not available on PIC24FJXXXGA/GB406 devices.

REGISTER 11-26: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7	·	•		•	•		bit 0

bit 7

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP7R<5:0>: RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-12 for peripheral function numbers).

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111
 - 1111x = Reserved
 - 11101 = Reserved 11100 = CTMU⁽¹⁾
 - $11001 = A/D^{(1)}$
 - 11010 = Comparator 3⁽¹⁾
 - $11001 = \text{Comparator } 2^{(1)}$
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10101 = SCCP3 capture/compare
 - 10100 = SCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 = Input Capture 3⁽²⁾
 - 10001 =Input Capture $2^{(2)}_{(2)}$
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger
 - 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = SCCP3 sync/trigger 00101 = SCCP2 sync/trigger
 - 10101 = SCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger 00011 = Output Compare 3
 - 00011 = Output Compare 3
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 19.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write 55h to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the URXEN bit (UxSTAL<12>).
- 4. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 5. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 6. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IBF	IBOV	—	—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾		
bit 15							bit 8		
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC		
OBE	OBUF			OB3E	OB2E	OB1E	OB0E		
bit 7 bit 0									
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	IBF: Input But	ffer Full Status b	bit						
	1 = All writab	le Input Buffer r	egisters are fu	 	t				
	0 = Some or	all of the writab	le Input Buπer	registers are er	npty				
DIT 14		Suffer Overflow S	Status bit			ft			
	\perp = A write at 0 = No overfl	ow occurred	nput register o	ccurrea (must b	e cleared in so	ntware)			
bit 13-12	Unimplemen	ted: Read as '0	,						
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	tus Full bits ⁽¹⁾						
	1 = Input buff	fer contains unr	ead data (read	ing the buffer w	vill clear this bit)			
	0 = Input buff	fer does not cor	ntain unread da	ita					
bit 7	OBE: Output	Buffer Empty St	tatus bit						
	1 = All reada	ble Output Buffe	er registers are	empty					
	0 = Some or	all of the readal	ble Output Buff	er registers are	full				
bit 6	OBUF: Outpu	It Buffer Underfl	ow Status bit						
	1 = A read or 0 = No under	ccurred from an flow occurred	empty Output	Buffer register	(must be cleare	ed in software)			
bit 5-4	Unimplemen	ted: Read as '0	,						
bit 3-0	OB3E:OB0E:	Output Buffer >	Status Empty	bits					
	1 = Output bu 0 = Output bu	uffer is empty (v uffer contains u	vriting data to t	he buffer will cle ata	ear this bit)				

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

COMLines	Segments									
COWLINES	0 to 15	16 to 31	32 to 47	48 to 64						
0	LCDDATA0	LCDDATA1	LCDDATA2	LCDDATA3						
	S00C0:S15C0	S16C0:S31C0	S32C0:S47C0	S48C0:S63C0						
1	LCDDATA4	LCDDATA5	LCDDATA6	LCDDATA7						
	S00C1:S15C1	S16C1:S31C1	S32C1:S47C1	S48C1:S63C1						
2	LCDDATA8	LCDDATA9	LCDDATA10	LCDDATA11						
	S00C2:S15C2	S16C2:S31C2	S32C2:S47C2	S48C2:S63C2						
3	LCDDATA12	LCDDATA13	LCDDATA14	LCDDATA15						
	S00C3:S15C3	S16C3:S31C3	S32C3:S47C3	S48C3:S63C3						
4	LCDDATA16	LCDDATA17	LCDDATA18	LCDDATA19						
	S00C4:S15C4	S16C4:S31C4	S32C4:S47C4	S48C4:S59C4						
5	LCDDATA20	LCDDATA21	LCDDATA22	LCDDATA23						
	S00C5:S15C5	S16C5:S31C5	S32C5:S47C5	S48C5:S69C5						
6	LCDDATA24	LCDDATA25	LCDDATA26	LCDDATA27						
	S00C6:S15C6	S16C6:S31C6	S32C6:S47C6	S48C6:S59C6						
7	LCDDATA28	LCDDATA29	LCDDATA30	LCDDATA31						
	S00C7:S15C7	S16C7:S31C7	S32C7:S47C7	S48C7:S59C7						

TABLE 22-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

25.4 Encrypting Data

- 1. If not already set, set the CRYON bit.
- 2. Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0000'.
- 4. If a software key is being used, write it to the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. Read the KEYFAIL bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the data to be encrypted to the appropriate CRYTXT register. For a single DES encrypt operation, it is only necessary to write the lowest 64 bits. However, for data less than the block size (64 bits for DES, 128 bits for AES), it is the responsibility of the software to properly pad the upper bits within the block.
- 7. Set the CRYGO bit.
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 10. Read the encrypted block from the appropriate CRYTXT register.
- 11. Repeat Steps 5 through 8 to encrypt further blocks in the message with the same key.

25.5 Decrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0001'.
- 4. If a software key is being used, write the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. If an AES-ECB or AES-CBC mode decryption is being performed, you must first perform an AES decryption key expansion operation.
- 6. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the data to be decrypted into the appropriate Text/Data register. For a DES decrypt operation, it is only necessary to write the lowest 64 bits of CRYTXTB.
- 8. Set the CRYGO bit.
- 9. If this is the first decrypt operation after a Reset, or if a key storage program operation was performed after the last decrypt operation, or if the KEYMODx or KEYSRCx fields are changed, the engine will perform a new key expansion operation. This will result in extra clock cycles for the decrypt operation, but will otherwise be transparent to the application (i.e., the CRYGO bit will be cleared only after the key expansion and the decrypt operation have completed).
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- 11. Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 12. Read the decrypted block out of the appropriate Text/Data register.
- 13. Repeat Steps 6 through 10 to encrypt further blocks in the message with the same key.

27.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739). The information in this data sheet supersedes the information in the FRM.

The 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 200 ksps
- Up to 20 Analog Input Channels (internal and external)
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 27-1.

27.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2<6:2>).
 - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0<13>).
 - b) Enable the AD1IE interrupt (IEC0<13>).
 - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ11	IBSEQ10	IBSEQ9	IBSEQ8	IBSEQ7	IBSEQ6	IBSEQ5	IBSEQ4
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ3	IBSEQ2	IBSEQ1	IBSEQ0	BSEQ11	BSEQ10	BSEQ9	BSEQ8
bit 15			•	-	•		bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
BSEQ7	BSEQ6	BSEQ5	BSEQ4	BSEQ3	BSEQ2	BSEQ1	BSEQ0
bit 7	- -						bit 0
Logondy		DO - Drogran	n Oneo hit				

REGISTER 33-11: FBTSEQ: BOOT SEQUENCE CONFIGURATION WORD⁽¹⁾

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-12 **IBSEQ<11:0>:** Inverse Boot Sequence Number bits The inverse of the boot sequence number (FBTSEQ<11:0>). The user is responsible for correctly calculating and programming this value.

bit 11-0 **BSEQ<11:0>:** Inverse Boot Sequence Number bits An arbitrary value assigned by the user at device programming. On device initialization, the code segment with the lower value of the boot sequence number becomes the Active (executable) Partition.

Note 1: Implemented only when a Dual Partition mode is selected (FBOOT<1:0> is any value except '11').

34.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

34.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

34.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

34.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

34.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS		Standard Operating Conditions: 2.0V Operating temperature -40°			V to 3.6V (unless otherwise stated) $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions			
Power-Dov	vn Current ((IPD)							
DC60	3.24		μA	-40°C					
	4.08	22	μΑ	+25°C	2.01/				
	7.81	_	μΑ	+60°C	2.00				
	23.25	40	μΑ	+85°C		O(a,c,r(2))			
	3.20		μA	-40°C		- Sleep			
	4.07	25	μΑ	+25°C	2.21/				
	7.94		μA	+60°C	3.3V				
	19.85	42	μA	+85°C					
DC61	0.07	_	μΑ	-40°C	2.0V				
	0.07	_	μA	+25°C					
	3.54	_	μA	+60°C					
	15.30	—	μA	+85°C		Low Voltage Sleep(3)			
	0.10	_	μA	-40°C		- Low-voltage Sleep			
	0.06	_	μA	+25°C	2 21/				
	3.68	_	μA	+60°C	5.5 V				
	15.65	—	μA	+85°C					
DC70	120	_	nA	-40°C					
	80	800	nA	+25°C	2 01/				
	620	—	nA	+60°C	2.0 V				
	1.13	5	μA	+85°C		Deep Sleep, capacitor on VCAP is			
	110	_	nA	-40°C	3.3V	fully discharged			
	110	1500	nA	+25°C					
	830		nA	+60°C					
	3.67	10	μA	+85°C					
DC74	0.6	3	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴⁾			

TABLE 36-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The low-voltage/retention regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The low-voltage/retention regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (FPOR<2>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

DC CHARAC	TERISTICS		Standard C Operating t	Dperating Condit emperature	ions: 2.0V -40°C	to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial	
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions	
Incremental C	Current Brov	vn-out Rese	t (∆BOR) ⁽²⁾				
DC25	4	8	μA	-40°C to +85°C	VBOR		
	4	8	μA	-40°C to +85°C	3.3V		
Incremental C	Current Wate	hdog Timer	(∆WDT) ⁽²⁾				
DC71	0.15	2	μA	-40°C to +85°C	2.0V	AMDT (with L DBC aslasted)(2)	
	0.24	2	μA	-40°C to +85°C	3.3V		
Incremental C	Current HLVI	D (AHLVD) ⁽²⁾)				
DC75	3.8	25	μA	-40°C to +85°C	2.0V		
	3.8	25	μA	-40°C to +85°C	3.3V		
Incremental Current Real-Time Clock and Calendar (ARTCC) ⁽²⁾							
DC77	0.17	2.5	μA	-40°C to +85°C	2.0V	APTCC (with SOSC)(2)	
	0.17	2.5	μA	-40°C to +85°C	3.3V		
DC77A	0.55	2.5	μA	-40°C to +85°C	2.0V	APTCC (with LPPC)(2)	
	0.55	2.5	μA	-40°C to +85°C	3.3V		
Incremental C	Current Deep	Sleep BOR	(ADSBOR)	(2)			
DC81	0.1	0.9	μA	-40°C to +85°C	2.0V	ADoon Sloon BOB(2)	
	0.1	0.9	μA	-40°C to +85°C	3.3V		
Incremental C	Current Deep	Sleep Wate	chdog Time	r (∆DSWDT) ⁽²⁾		_	
DC80	0.1	0.9	μA	-40°C to +85°C	2.0V	ADoon Sloon WDT(2)	
	0.1	0.9	μA	-40°C to +85°C	3.3V		
VBAT A/D Mor	nitor ⁽⁵⁾						
DC91	2		μA	-40°C to +85°C	3.3V	VBAT = 2V	
	5		μA	-40°C to +85°C	3.3V	Vbat = 3.3V	
Incremental C	Current LCD	(∆LCD)					
DC82	5		μA	+25°C	2.0V	(ΔLCD)/LCD internal, 1/8 MUX,	
	5		μA	+25°C	3.3V	1/3 bias ^(2,4)	
DC90	100	—	μA	+25°C	2.0V	(∆LCD)/LCD charge pump,	
	6	_	μΑ	+25°C	3.3V	1/8 MUX, 1/3 bias ^(2,3)	

TABLE 36-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, HLVD, RTCC, DSBOR, DSWDT, LCD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: LCD is enabled and running, no glass is connected; the resistor ladder current is not included.

4: LCD is enabled and running, no glass is connected; the low-power resistor ladder current is included.

5: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

FIGURE 36-14: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 36-35: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHA	RACTERIST	īCS	Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for Industrial				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	—	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	_	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.