

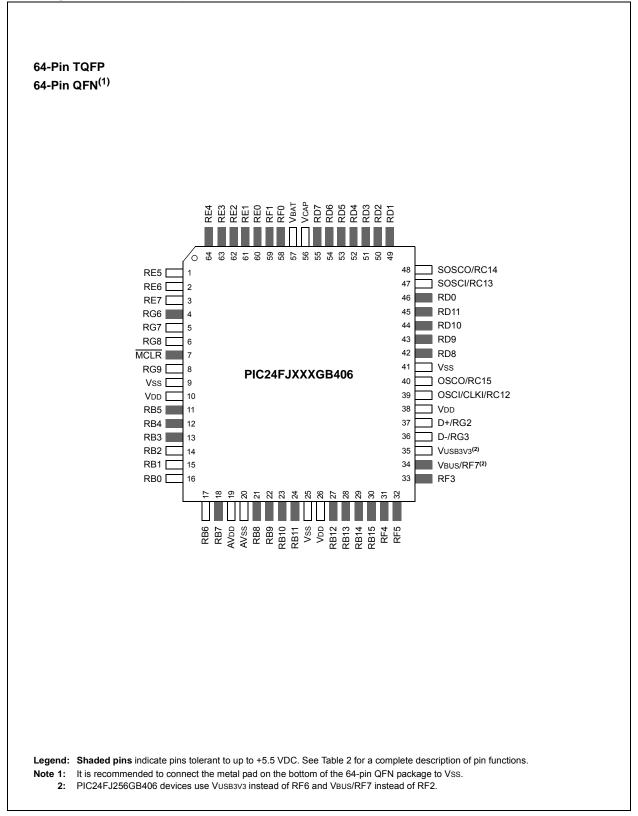
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

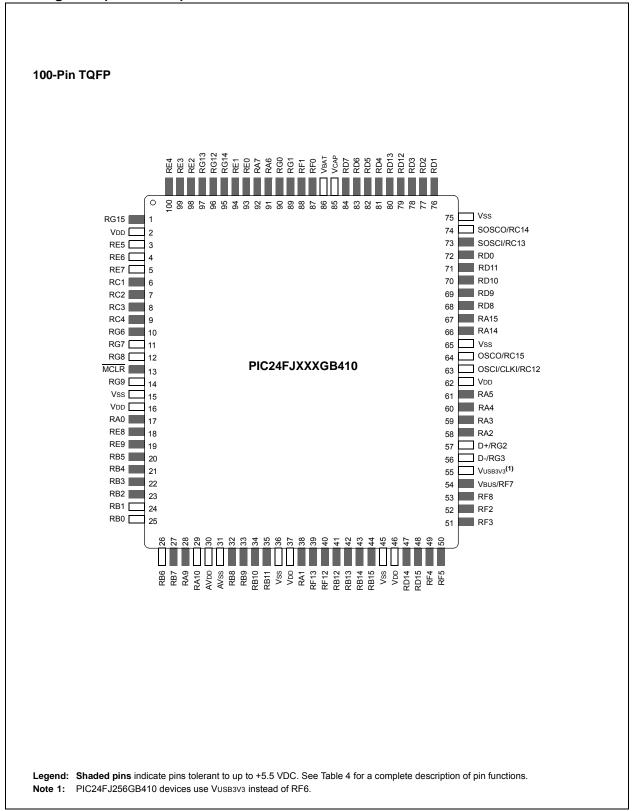
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga406-i-mr


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 64-PIN

64GA	128GA	1	PIC24FJXXXGA/GB406							
	12004	256GA	64GB	128GB	256GB					
	•	DC – 3	32 MHz	·						
64K	128K	256K	64K	128K	256K					
22,016	44,032	88,064	22,016	44,032	88,064					
8K	16	6K	8K	16	δK					
113 (107/6)										
	Ports B, C, D, E, F, G									
	53			52						
30 (29 I/Os, 1 input only) 29 (28 I/Os, 1 input					only)					
		19	1,2)							
			-							
		6	(2)							
		6	(2)							
		6	(2)							
		1	(2)							
		-								
		4	(2)							
		:	3							
	No			Yes						
		Ye	es							
		Ye	es							
		1	6							
			1							
		;	3							
		Ye	es							
248	(35 SEG x 8 C	COM)	240	(34 SEG x 8 C	COM)					
		Ye	es							
C	MCLR, WE	DT, Illegal Opc Traps, Config	ode, REPEAT juration Word	Instruction,	n,					
7	7 Base Instruc	ctions, Multiple	e Addressing I	Mode Variatior	าร					
		64-Pin TQF	P and QFN							
	30 (2	53 30 (29 I/Os, 1 input	113 (* Ports B, C 53 30 (29 I/Os, 1 input only) 190 61 61 61 61 61 61 61 61 61 61	8K 16K 8K 113 (107/6) Ports B, C, D, E, F, G 53 - 30 (29 I/Os, 1 input only) 29 (2 19 ^(1,2) 9 6(2) 6(2) 6(2) 12) - 6(2) - 6(2) - 6(2) - 6(2) - 6(2) - 12) - - 6(2) - 12) - 3 - - - - - - - - - - - - - - - - - -	8K 16K 8K 16 Interview of the second seco					

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

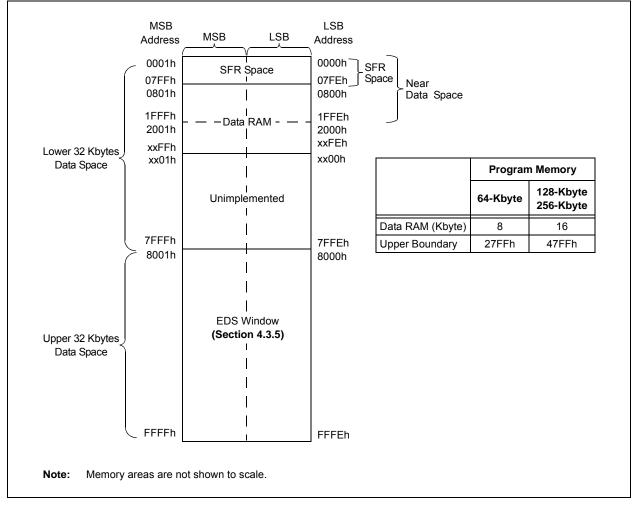
2: Some instantiations of these modules are only available through remappable pins.

4.3 Data Memory Space

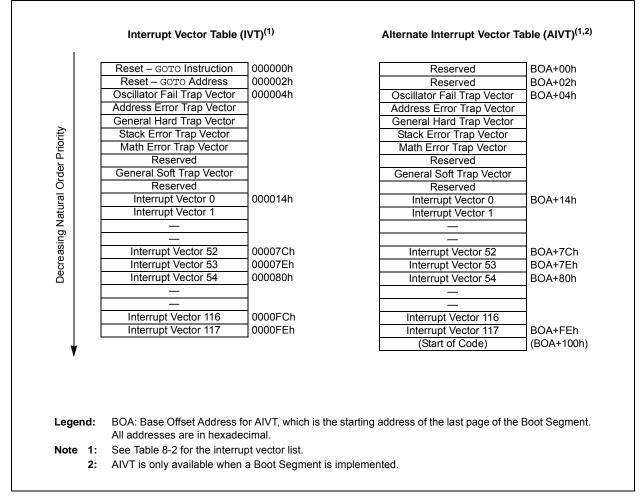
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space (DS) is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-5.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space. This gives a DS address range of 64 Kbytes or 32K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.


The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.3.5 "Extended Data Space (EDS)**".

Devices with 64 Kbytes of program memory implement 8 Kbytes of data RAM in the lower half of the DS, from 0800h to 27FFh. All other devices in this family implement 16 Kbytes of data RAM, from 0800h to 47FFh. The lower half of the DS is compatible with previous PIC24F microcontrollers without EDS.


4.3.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space Effective Addresses (EAs) resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLES

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	BOA+04h	Oscillator Failure
1	000006h	BOA+06h	Address Error
2	000008h	BOA+08h	General Hardware Error
3	00000Ah	BOA+0Ah	Stack Error
4	00000Ch	BOA+0Ch	Math Error
5	00000Eh	BOA+0Eh	Reserved
6	000010h	BOA+10h	General Software Error
7	000012h	BOA+12h	Reserved

Legend: BOA = Base Offset Address for AIVT segment, which is the starting address of the last page of the Boot Segment.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
0-0	T4IP2	T4IP1	T4IP0	0-0	OC4IP2	OC4IP1	OC4IP0				
 bit 15	1411 2	1711 1	1411 0		004112		bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	OC3IP2	OC3IP1	OC3IP0		DMA2IP2	DMA2IP1	DMA2IP0				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown				
hit 15	Unimplomon	ted: Dood on '	۰ [٬]								
bit 15 bit 14-12	-	ted: Read as 'd imer4 Interrupt									
DIL 14-12		pt is Priority 7 (•	v interrunt)							
	•	prist nonty / (ingricat priorit	y mterrupt)							
	•										
	• 001 = Interrupt is Priority 1										
			ahlad								
hit 11	000 = Interru	pt source is dis									
	000 = Interru Unimplemen	pt source is dis ted: Read as '()'	Interrupt Drier	ty bito						
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 4	•	ty bits						
bit 11 bit 10-8	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '()' Ire Channel 4	•	ty bits						
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 4	•	ty bits						
	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru •	pt source is dis ted: Read as '(Output Compa pt is Priority 7 ()' Ire Channel 4	•	ty bits						
	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	₎ , ire Channel 4 highest priorit <u>i</u>	•	ty bits						
bit 10-8	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	_o , ire Channel 4 highest priority abled	•	ty bits						
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} ire Channel 4 highest priority abled	y interrupt)							
bit 10-8	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori							
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori							
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori							
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori							
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	^{D'} Ire Channel 4 highest priorit abled D' Ire Channel 3 highest priorit	y interrupt) Interrupt Priori							
bit 10-8 bit 7 bit 6-4	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	^{D'} ire Channel 4 highest priorit abled D' ire Channel 3 highest priorit	y interrupt) Interrupt Priori							
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} Ire Channel 4 highest priority abled highest priority abled D'	y interrupt) Interrupt Priori y interrupt)							
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits							
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits							
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits							
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits							
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe pt is Priority 7 (^{b)} Ire Channel 4 highest priority abled b) Ire Channel 3 highest priority abled b) el 2 Interrupt F highest priority	y interrupt) Interrupt Priori y interrupt) Priority bits							

REGISTER 8-28: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4** "**Clock Switching Operation**" for more information.

The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features, described in **Section 9.5** "**FRC Active Clock Tuning**".

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend:	CO = Clearable Only bit	SO = Settable Only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Reserved
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
 - 000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - 4: The default divisor of the postscaler is 2, which will generate a 4 MHz clock to the PLL module.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMODx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSMx Configuration bits in the FOSC Configuration Word must be programmed. (Refer to **Section 33.1** "**Configuration Bits**" for further details.) If the bits are unmodified, the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC<2:0> bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾		TSIDL ⁽²⁾			—	TECS1 ^(2,3)	TECS0 ^(2,3)
bit 15							bit
		DAALO	DAMO			DAVO	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾		_	TCS ^(2,3)	— hit.
bit 7							bit
Legend:							
R = Reada	ıble bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
hit 1 <i>5</i>	TON: Timery	On hit(2)					
bit 15	1 = Starts 16-						
	1 = Starts 16-0 = Stops 16-0						
bit 14	•	ited: Read as '0)'				
bit 13	TSIDL: Time	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module ope			le mode		
		s module opera		de			
bit 12-10	-	ted: Read as '				TOO (23)	
bit 9-8		Timery Extende			selected wher	$1CS = 1)^{(2,3)}$	
	10 = LPRC C	Timer (TMRCK	.) external inpu	it i			
		xternal clock inp	out				
	00 = SOSC						
bit 7	-	ted: Read as '0		(0)			
bit 6		ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS = This bit is ign						
	When TCS =						
		ne accumulation	n is enabled				
	0 = Gated tir	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input (Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3-2	Unimplemen	ted: Read as 'd)'				
bit 1	TCS: Timery	Clock Source S	elect bit ^(2,3)				
		clock from pin, ⁻ lock (Fosc/2)	TyCK (on the ri	sing edge)			
bit 0		ited: Read as '()'				
	Changing the value reset and is not re	-	ile the timer is	running (TON :	= 1) causes th	ne timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
	If TCS = 1 and T		-			nust be configure	ed to an

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

14.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA412/GB412 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 14-4: AUXILIARY OUTPUT

REGISTER 14-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		DT<5:0>				
bit 7	1						bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpleme	ented bit, rea	ad as '0'	
	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			

ιP

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits 111111 = Inserts 63 dead-time delay periods between complementary output signals 111110 = Inserts 62 dead-time delay periods between complementary output signals . . . 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

16.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA412/GB412 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- Two Separate Period Registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event, or Continuous PWM Waveform Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

16.1 General Operating Modes

16.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

16.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual",* **"Output Compare with Dedicated Timer"** (DS70005159).

REGISTER 19-8: UxWTCL: UARTx WAITING TIME COUNTER REGISTER (LOWER BITS)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			WTO	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			WT	C<7:0>				
bit 7							bit 0	
1								
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u			x = Bit is unkr	nown				

bit 15-0 WTC<15:0>: Waiting Time Counter bits This counter is operated on the bit clock whose period is always equal to one ETU.

Note 1: This register is only available for UART1 and UART2.

REGISTER 19-9: UxWTCH: WAITING TIME COUNTER REGISTER (UPPER BITS)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			WTC [.]	<23:16>			
bit 7							bit 0
							
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at I	-n = Value at POR (1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 WTC<23:16>: Waiting Time Counter bits This counter is operated on the bit clock whose period is always equal to one ETU.

Note 1: This register is only available for UART1 and UART2.

REGISTER 20-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x, HSC					
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15	UOWN: USB Own bit
	 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
bit 14	DTS: Data Toggle Packet bit
	1 = Data 1 packet 0 = Data 0 packet
bit 13-10	PID<3:0>: Packet Identifier bits (written by the USB module)
	In Device Mode:
	Represents the PID of the received token during the last transfer.
	In Host Mode:
	Represents the last returned PID or the transfer status indicator.
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

20.7.3 USB ENDPOINT MANAGEMENT REGISTERS

REGISTER 20-21: U1EPn: USB ENDPOINT n CONTROL REGISTERS (n = 0 to 15)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only) ⁽¹⁾
	 1 = Direct connection to a low-speed device is enabled 0 = Direct connection to a low-speed device is disabled
bit 6	RETRYDIS : Retry Disable bit (U1EP0 only) ⁽¹⁾
	 1 = Retry NAK transactions are disabled 0 = Retry NAK transactions are enabled; retry is done in hardware
bit 5	Unimplemented: Read as '0'
bit 4	EPCONDIS: Bidirectional Endpoint Control bit
	If EPTXEN and EPRXEN = 1: 1 = Disables Endpoint n from control transfers; only TX and RX transfers are allowed 0 = Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed
	For All Other Combinations of EPTXEN and EPRXEN:
	This bit is ignored.
bit 3	EPRXEN: Endpoint Receive Enable bit
	1 = Endpoint n receive is enabled
	0 = Endpoint n receive is disabled
bit 2	EPTXEN: Endpoint Transmit Enable bit
	 1 = Endpoint n transmit is enabled 0 = Endpoint n transmit is disabled
bit 1	EPSTALL: Endpoint STALL Status bit
	1 = Endpoint n was stalled
	0 = Endpoint n was not stalled
bit 0	EPHSHK: Endpoint Handshake Enable bit
	1 = Endpoint handshake is enabled
	0 = Endpoint handshake is disabled (typically used for isochronous endpoints)
Note 1:	These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as '0'.

REGISTER 25-1: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
—	CTRSIZE6(2,3)	CTRSIZE5(2,3)	CTRSIZE4(2,3)	CTRSIZE3(2,3)	CTRSIZE2(2,3)	CTRSIZE1(2,3)	CTRSIZE0(2,3				
bit 15							bit 8				
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
SKEYSEL	KEYMOD1(2)	KEYMOD0(2)	KEYWIPE	KEYSRC3(2)	KEYSRC2(2)	KEYSRC1(2)	KEYSRC0(2)				
bit 7	-	·		·	- -	- -	bit C				
Legend:		S = Settable O	nly bit								
R = Reada	ble bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	-	ted: Read as '0'									
bit 14-8		>: Counter Size									
	Counter is de	efined as CRY	ГХТВ <n:0>, w</n:0>	here n = CTR	SIZEX. The c	ounter increme	nts after each				
		generates a rol 28 bits (CRYTX)		ien the counter	rolls over from	$(2^{11} - 1)$ to 0.					
		27 bits (CRYTX)	,								
	•	(-									
	•										
	•	bits (CRYTXTB	<2.0~)								
		bits (CRYTXTB									
		bit (CRYTXTB<	,	vent occurs whe	en CRYTXTB<	0> toggles from	'1' to '0'				
bit 7	SKEYSEL: Se	ession Key Sele	ct bit ⁽¹⁾								
	1 = Key gener	ration/encryptior	n/loading perfo	rmed with CRY	KEY<255:128>						
		ration/encryption				(1.0)					
bit 6-5		D>: AES/DES Er			Length Select	bits ^(1,2)					
		ypt/Decrypt Ope	erations (CPHI	RSEL = 0):							
	11 = 64-bit, 3-key 3DES 10 = Reserved										
	01 = 64-bit, standard 2-key 3DES										
	00 = 64-bit DES										
		ypt/Decrypt Ope	erations (CPH	RSEL = 1):							
	11 = Reserved										
	10 = 256-bit A 01 = 192-bit A										
	00 = 128-bit A										
bit 4	KEYWIPE: Ke	ey RAM Erase E	Enable bit ⁽¹⁾								
		ey RAM (set only erase has not b				ne next clock cy	vcle)				
bit 3-0	-	>: Cipher Key S		·							
		25-1 and Table		SRC<3:0> value	es.						
Note 1:	These hits are n	eset on system	Resets or whe	never the CPV	MD hit (PMD&	(N>) is sat					
		bit fields are loc					s set)				

3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

27.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739). The information in this data sheet supersedes the information in the FRM.

The 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 200 ksps
- Up to 20 Analog Input Channels (internal and external)
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 27-1.

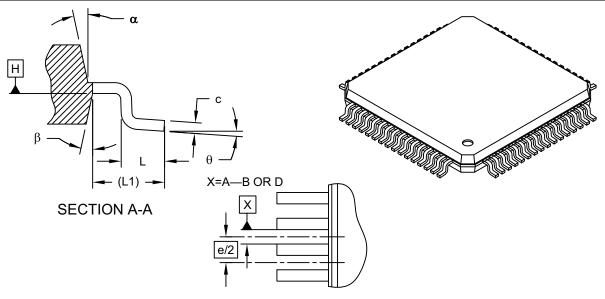
27.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2<6:2>).
 - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0<13>).
 - b) Enable the AD1IE interrupt (IEC0<13>).
 - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

REGISTER 31-2. CTWOCONTH. CTWO CONTROL THIGH REGISTER	REGISTER 31-2:	CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER
---	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15							bit 8


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		—
bit 7							bit 0

Legend:							
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit, read as '0'				
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive						
bit 14	EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 is programmed for a positive edge response 0 = Edge 1 is programmed for a negative edge response						
bit 13-10	1111 = 0 1110 = 0 1101 = 0 1001 = 1 1011 = 1 1010 = 1 1001 = 0 1000 = 0 0111 = 0 0101 = 0 0101 = 0 0011 = 0 0011 = 0 0001 = 0 0001 = 0 0000 = 1	C2 C1 CTED8 CTED7 CTED6 CTED5 CTED5 CTED4 CTED3 CTED1 CTED2 DC1 Fimer1 match	ect bits				
bit 9	Indicates 1 = Edge	AT: Edge 2 Status bit the status of Edge 2 and car 2 has occurred 2 has not occurred	n be written to control current	source.			
bit 8	Indicates 1 = Edge	AT: Edge 1 Status bit the status of Edge 1 and car 1 has occurred 1 has not occurred	n be written to control current	source.			
bit 7	1 = Input	DD: Edge 2 Edge-Sensitive S i is edge-sensitive i is level-sensitive	Select bit				
bit 6	1 = Edge	DL: Edge 2 Polarity Select bit 2 2 is programmed for a posit 2 2 is programmed for a nega	ive edge response				

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected	
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, SLEEP	
RCALL	RCALL	Expr	Relative Call	1	2	None	
	RCALL	Wn	Computed Call	1	2	None	
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None	
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None	
RESET	RESET		Software Device Reset	1	1	None	
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None	
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None	
RETURN	RETURN		Return from Subroutine	1	3 (2)	(2) None	
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z	
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z	
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z	
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z	
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z	
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z	
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z	
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z	
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z	
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z	
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z	
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z	
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z	
SETM	SETM	f	f = FFFFh	1	1	None	
	SETM	WREG	WREG = FFFFh	1	1	None	
	SETM	Ws	Ws = FFFFh	1	1	None	
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z	
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z	
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z	
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z	
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z	
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z	
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z	
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z	
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z	
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z	
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z	
	SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C, DC, N, OV, Z	
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z	
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z	
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z	
CIIDD	SUBR	f	f = WREG - f	1	1	C, DC, N, OV, Z	
SUBR	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z	
	SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C, DC, N, OV, Z	
	SUBR	WD,WS,Wd Wb,#lit5,Wd	Wd = WS - WB $Wd = lit5 - Wb$	1	1	C, DC, N, OV, Z	
CUDDD			$f = WREG - f - (\overline{C})$	1	1		
SUBBR	SUBBR	f				C, DC, N, OV, Z	
	SUBBR	f,WREG	WREG = WREG - $f - (\overline{C})$	1	1	C, DC, N, OV, Z	
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z	
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z	
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None	
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None	

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν	64				
Lead Pitch	е	0.50 BSC				
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2