

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

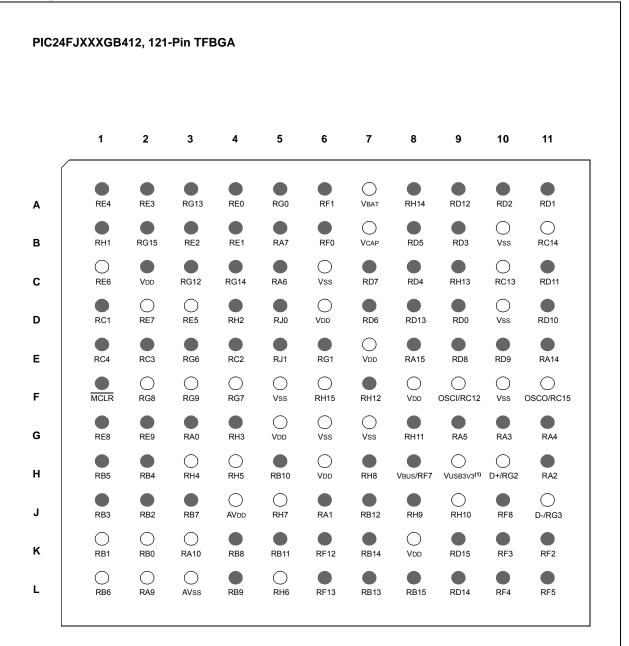
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga406t-i-mr

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
A1	SEG62/LVDIN/CTED8/PMD4/IOCE4/RE4	E1	SEG52/AN16/RPI41/PMCS2/IOCC4/RC4
A2	COM0/CTED9/PMD3/IOCE3/RE3	E2	SEG33/RPI40/IOCC3/RC3
A3	SEG61/CTED10/IOCG13/RG13	E3	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/IOCG6/RG6
A4	COM3/PMD0/IOCE0/RE0	E4	SEG51/RPI39/IOCC2/RC2
A5	SEG49/PMD8/IOCG0/RG0	E5	IOCJ1/RJ1
A6	SEG47/SCK4/PMD10/IOCF1/RF1	E6	SEG46/PMD9/IOCG1/RG1
A7	VBAT	E7	VDD
A8	IOCH14/RH14	E8	SEG43/RPI35/PMBE1/IOCA15/RA15
A9	SEG44/RPI42/PMD12/IOCD12/RD12	E9	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/IOCD8/RD8
A10	SEG21/RP23/PMACK1/IOCD2/RD2	E10	SEG14/RP4/PMACK2/IOCD9/RD9
A11	SEG20/RP24/U5TX/ICM4/IOCD1/RD1	E11	SEG42/ RPI36 /PMA22/IOCA14/RA14
B1	COM4/IOCH1/RH1	F1	MCLR
B2	SEG50/OCM1C/CTED3/IOCG15/RG15	F2	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2/PMA3/IOCG8/RG8
B3	COM1/PMD2/IOCE2/RE2	F3	SEG1/AN20/C1INC/C2INC/C3INC/RP27/DAC1/PMA2/PMALU/ IOCG9/RG9
B4	COM2/PMD1/IOCE1/RE1	F4	VLCAP1/AN18/C1INC/RP26/OCM1B/PMA4/IOCG7/RG7
B5	SEG58/AN22/OCM1F/PMA17/IOCA7/RA7	F5	Vss
B6	SEG27/U5CTS/OC6/PMD11/IOCF0/RF0	F6	IOCH15/RH15
B7	VCAP	F7	IOCH12/RH12
B8	SEG24/RP20/PMRD/PMWR/IOCD5/RD5	F8	VDD
B9	SEG22/RP22/ICM7/PMBE0/IOCD3/RD3	F9	OSCI/CLKI/IOCC12/RC12
B10	Vss	F10	Vss
B11	SOSCO/SCLKI/RPI37/PWRLCLK/IOCC14/RC14	F11	OSCO/CLKO/IOCC15/RC15
C1	LCDBIAS1/SCL3/IC5/PMD6/IOCE6/RE6	G1	SEG34/RPI33/PMCS1/IOCE8/RE8
C2	Vdd	G2	SEG35/AN21/RPI34/PMA19/IOCE9/RE9
C3	SEG60/IOCG12/RG12	G3	TMS/SEG48/CTED14/IOCA0/RA0
C4	SEG59/CTED11/PMA16/IOCG14/RG14	G4	COM6/IOCH3/RH3
C5	SEG57/AN23/OCM1E/IOCA6/RA6	G5	VDD
C6	Vss	G6	Vss
C7	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/IOCD7/RD7	G7	Vss
C8	SEG23/RP25/PMWR/PMENB/IOCD4/RD4	G8	IOCH11/RH11
C9	IOCH13/RH13	G9	TDO/SEG28/IOCA5/RA5
C10	SOSCI/IOCC13/RC13	G10	SEG56/SDA2/PMA20/IOCA3/RA3
C11	SEG16/C3INC/RP12/PMA14/PMCS/APMCS1/IOCD11/RD11	G11	TDI/PMA21/IOCA4/RA4
D1	SEG32/RPI38/OCM1D/IOCC1/RC1	H1	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3/IOCB5/RB5
D2	LCDBIAS0/SDA3/IC6/PMD7/IOCE7/RE7	H2	PGED3/SEG3/AN4/C1INB/RP28/IOCB4/RB4
D3	LCDBIAS2/IC4/CTED4/PMD5/IOCE5/RE5	H3	COM7/IOCH4/RH4
D4	COM5/IOCH2/RH2	H4	IOCH5/RH5
D5	IOCJ0/RJ0	H5	SEG29/CVREF/AN10/SDO4/PMA13/IOCB10/RB10
D6	Vdd	H6	VDD
D7	SEG25/C3INB/U5RX/OC4/PMD14/IOCD6/RD6	H7	IOCH8/RH8
D8	SEG45/PMD13/IOCD13/RD13	H8	IOCF7/RF7
D9	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/IOCD0/RD0	H9	IOCF6/RF6
D10	Vss	H10	SCL1/IOCG2/RG2
D11	SEG15/C3IND/RP3/PMA15/APMCS2/IOCD10/RD10	H11	SEG55/SCL2/IOCA2/RA2

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA412

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

Pin Diagrams (Continued)

Legend: Shaded balls indicate pins tolerant to up to +5.5 VDC. See Table 6 for a complete description of pin functions. Note 1: PIC24FJ256GB412 devices use VUSB3V3 instead of RF6.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA406
 - 06 PIC24FJ64GB406
- PIC24FJ128GA406
 PIC24FJ256GA406
- PIC24FJ128GB406
 PIC24FJ256GB406
- PIC24FJ64GA410
 PIC24FJ64GB410
- PIC24FJ128GA410
 PIC24FJ128GB410
- PIC24FJ256GA410
 - PIC24FJ256GB410
- PIC24FJ64GA412
 - PIC24FJ64GB412
- PIC24FJ128GA412PIC24FJ256GA412
- PIC24FJ128GB412
 PIC24FJ256GB412
- The PIC24FJ256GA412/GB412 family expands the capabilities of the PIC24F family by adding a complete selection of advanced analog peripherals to its existing digital features. This combination, along with its ultra low-power features, Direct Memory Access (DMA) for peripherals, USB On-The-Go (OTG) and a built-in LCD Controller and driver, makes this family the new standard for mixed-signal PIC[®] microcontrollers in one economical and power-saving package.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ256GA412/GB412 family of devices incorporates a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep, with essential circuits being powered from a separate low-voltage regulator
- Deep Sleep without RTCC, for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC), to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, the PIC24FJ256GA412/ GB412 devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes

1.1.3 DUAL PARTITION FLASH PROGRAM MEMORY

A brand new feature to the PIC24F family is the use of Dual Partition Flash program memory technology. This allows PIC24FJ256GA412/GB412 family devices a range of new operating options not available before:

- Dual Partition Operation, which can store two different applications in their own code partition, and allows for the support of robust bootloader applications and enhanced security
- Live Update Operation, which allows the main application to continue operation while the second Flash partition is being reprogrammed – all without adding Wait states to code execution
- Direct Run-Time Programming from Data RAM, with the option of data compression in the RAM image

PIC24FJ256GA412/GB412 family devices can also operate with their two Flash partitions as one large program memory, providing space for large and complex applications.

	Pi	n/Pad Num	ber	l/O Ir		
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA		Input Buffer	Description
SEG0	4	10	E3	0	ANA	LCD Driver Segment Outputs
SEG1	8	14	F3	0	ANA	
SEG2	11	20	H1	0	ANA	
SEG3	12	21	H2	0	ANA	
SEG4	13	22	J1	0	ANA	
SEG5	14	23	J2	0	ANA	1
SEG6	15	24	K1	0	ANA	1
SEG7	16	25	K2	0	ANA	1
SEG8	29	43	K7	0	ANA	
SEG9	30	44	L8	0	ANA]
SEG10	31	49	L10	0	ANA]
SEG11	32	50	L11	0	ANA]
SEG12	33	51	K10	0	ANA	
SEG13	42	68	E9	0	ANA]
SEG14	43	69	E10	0	ANA]
SEG15	44	70	D11	0	ANA	
SEG16	45	71	C11	0	ANA	
SEG17	46	72	D9	0	ANA	
SEG18	27	41	J7	0	ANA	
SEG19	28	42	L7	0	ANA]
SEG20	49	76	A11	0	ANA	
SEG21	50	77	A10	0	ANA	
SEG22	51	78	B9	0	ANA	
SEG23	52	81	C8	0	ANA	
SEG24	53	82	B8	0	ANA	
SEG25	54	83	D7	0	ANA	
SEG26	55	84	C7	0	ANA	
SEG27	58	87	B6	0	ANA	
SEG28	—	61	G9	0	ANA	
SEG29	23	34	H5	0	ANA	
SEG30	22	33	L4	0	ANA	
SEG31	21	32	K4	0	ANA	
SEG32	—	6	D1	0	ANA	
SEG33	—	8	E2	0	ANA	
SEG34	-	18	G1	0	ANA	
SEG35	—	19	G2	0	ANA	
SEG36		28	L2	0	ANA	
SEG37	—	29	K3	0	ANA	
SEG38		47	L9	0	ANA	
SEG39		48	K9	0	ANA	
SEG40	34	52	K11	0	ANA	

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: T

TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CCT3IP2	CCT3IP1	CCT3IP0		OC6IP2	OC6IP1	OC6IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	OC5IP2	OC5IP1	OC5IP0		IC6IP2	IC6IP1	IC6IP0
bit 7	000112	00011			10011 2		bit
							Dit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	-	ted: Read as '					
bit 14-12		SCCP3 Time	-	-			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis	abled				
		4 · · · · · · · · · · · · · · · · · · ·	. 1				
	-	ted: Read as '					
	OC6IP<2:0>:	Output Compa	ire Channel 6	=	ty bits		
	OC6IP<2:0>:		ire Channel 6	=	ty bits		
	OC6IP<2:0>:	Output Compa	ire Channel 6	=	ty bits		
bit 11 bit 10-8	OC6IP<2:0>: 111 = Interru	Output Compa pt is Priority 7 (ire Channel 6	=	ty bits		
	OC6IP<2:0>: 111 = Interru	Output Compa pt is Priority 7 (pt is Priority 1	ire Channel 6 highest priorit	=	ty bits		
bit 10-8	OC6IP<2:0>: 111 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	ire Channel 6 highest priority abled	=	ty bits		
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(ire Channel 6 highest priorit abled	y interrupt)			
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0 Output Compa	abled "highest priority" abled " The Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(abled "highest priority" abled " The Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0 Output Compa	abled "highest priority" abled " The Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0 Output Compa pt is Priority 7 (abled "highest priority" abled " The Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	ire Channel 6 highest priority abled o' ire Channel 5 highest priority	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	abled highest priority abled b highest priority	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4 bit 3	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru 000 = Interru Unimplemen	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	abled bighest priority abled b' re Channel 5 highest priority abled	y interrupt) Interrupt Priori y interrupt)	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen IC6IP<2:0>: I	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(nput Capture C	abled highest priority abled of highest priority abled of Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen IC6IP<2:0>: I	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	abled highest priority abled of highest priority abled of Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen IC6IP<2:0>: I	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(nput Capture C	abled highest priority abled of highest priority abled of Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen IC6IP<2:0>: I 111 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' nput Capture C pt is Priority 7 (abled highest priority abled of highest priority abled of Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>: I 111 = Interru 001 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' nput Capture C pt is Priority 7 (abled highest priority abled b' tre Channel 5 highest priority abled b' Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		

REGISTER 8-32: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

TABLE 11-4: PORTC REGISTER MAP⁽¹⁾

ster ne	ange									Bits							
Register Name	Bit Ra	15	14	13	12	11	10	9	8	7	6	5	4	4 3 2 1			0
ANSC	15:0	—		—	—	—			—	_		—	ANSC<4:1>			—	
TRISC	15:0	TRISC15		—	TRISC12	—		-	—			—	TRISC<4:1>			—	
PORTC	15:0		PORTC	<15:12>		—			—	_		—	PORTC<4:1>				
LATC	15:0	LATC15			LATC12	—			—	_		—	LATC<4:1>				
ODCC	15:0	ODCC15			ODCC12	—			—	_		—		ODCC	<4:1>		
IOCPC	15:0		IOCPC<	<15:12>		—			—	_		—		IOCPC	<4:1>		
IOCNC	15:0		IOCNC<	<15:12>		—			—	_		—	IOCNC<4:1>				
IOCFC	15:0		IOCFC<	:15:12>		—			—	_		—	IOCFC<4:1>				
IOCPUC	15:0		IOCPUC	<15:12>		—			—	_		—	IOCPUC<4:1>			—	
IOCPDC	15:0		IOCPDC	<15:12>		_			_	_		-		IOCPD	C<4:1>		—

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

TABLE 11-5: PORTD REGISTER MAP⁽¹⁾

ster ne	ange									Bits					
Register Name	Bit Range	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1										0			
ANSD	15:0								A	NSD<15:0>					
TRISD	15:0								TF	RISD<15:0>					
PORTD	15:0		PORTD<15:0>												
LATD	15:0								L	ATD<15:0>					
ODCD	15:0								O	DCD<15:0>					
IOCPD	15:0								10	CPD<15:0>					
IOCND	15:0								10	CND<15:0>					
IOCFD	15:0		IOCFD<15:0>												
IOCPUD	15:0		IOCPUD<15:0>												
IOCPDD	15:0								100	CPDD<15:0>	>				

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

14.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA412/GB412 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 14-4: AUXILIARY OUTPUT

16.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA412/GB412 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- Two Separate Period Registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event, or Continuous PWM Waveform Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

16.1 General Operating Modes

16.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

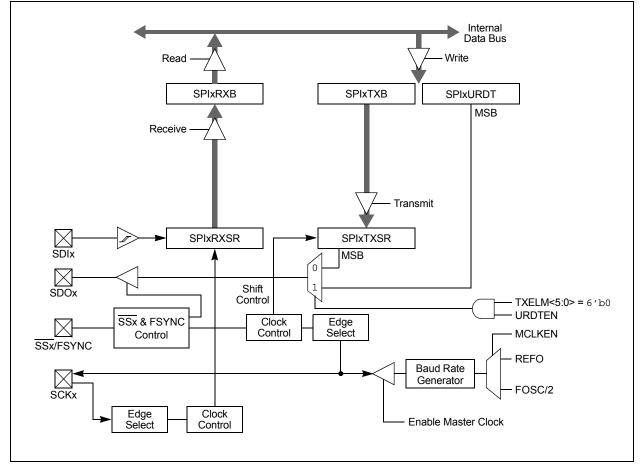
In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

16.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual",* **"Output Compare with Dedicated Timer"** (DS70005159).


To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

FIGURE 17-1: SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

Legend:							
bit 7							bit 0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
SPIEN		SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 DISSDO: Disable SDOx Output Port bit

1 = SDOx pin is not used by the module; pin is controlled by port function

0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication					
1	x		32-Bit					
0	1	0	16-Bit					
0	0		8-Bit					
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame					
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame					
0	1	T	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame					
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame					

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition, via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in Section 20.2 "USB Buffer Descriptors and the BDT".

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contain the 11-bit byte counter for the current data frame.

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS	_	HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-7	Unimplemented: Read as '0'
bit 6	SE0: Live Single-Ended Zero Flag bit
	 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected
bit 5	PKTDIS: Packet Transfer Disable bit
	 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset
bit 0	USBEN: USB Module Enable bit
	 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached)

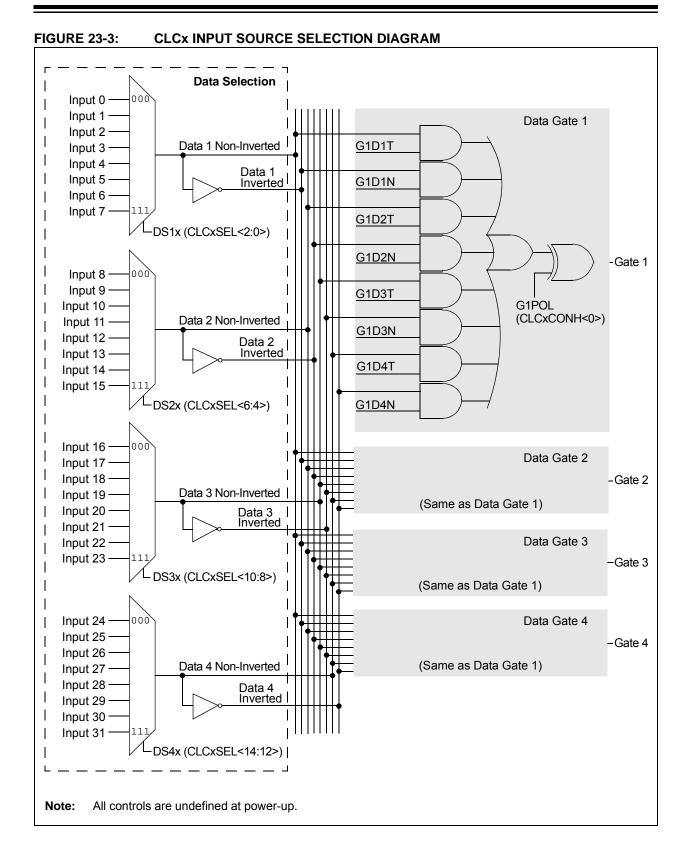
REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	—	—	—	_				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
UTEYE	UOEMON ⁽¹⁾	—	USBSIDL	—	—	PPB1	PPB0				
bit 7							bit				
Legend: R = Readabl	le hit	W = Writable	hit	U = Unimplerr	onted hit rea	ad as 'O'					
-n = Value at		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unknown					
	IFUR				areu		IOWIT				
bit 15-8	Unimplemen	ted: Read as	0'								
bit 7	•										
SIC 1	UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled										
	0 = Eye pattern test is disabled										
bit 6	UOEMON: USB \overline{OE} Monitor Enable bit ⁽¹⁾										
	$1 = \overline{OE} \text{ signa}$ $0 = \overline{OE} \text{ signa}$		dicates interval	s during which	the D+/D- line	es are driving					
bit 5	Unimplemen	ted: Read as '	0'								
bit 4	USBSIDL: US	SB OTG Stop i	n Idle Mode bit								
			peration when t ation in Idle mo	he device enter de	rs Idle mode						
bit 3-2	Unimplemen	ted: Read as '	0'								
bit 1-0	PPB<1:0>: Ping-Pong Buffers Configuration bits										
				abled for Endpo							
				abled for all end							
	 01 = Even/Odd Ping-Pong Buffers are enabled for OUT Endpoint 0 00 = Even/Odd Ping-Pong Buffers are disabled 										
		a ing i ong									

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	_	_	_		—	_					
bit 15							bit 8					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE					
						EOFEE						
bit 7							bit C					
Logondi												
Legend: R = Readat	alo hit	W = Writable	hit	II – Unimplon	nented bit, read							
-n = Value a		'1' = Bit is set	UIL	'0' = Bit is clea		x = Bit is unkn	0.000					
		1 - Dit 13 3et			areu		OWIT					
bit 15-8	Unimplemen	ted: Read as ')'									
bit 7	-	Stuff Error Interr										
	1 = Interrupt											
	0 = Interrupt											
bit 6	•	ted: Read as '										
bit 5	DMAEE: DMA Error Interrupt Enable bit											
	 1 = Interrupt is enabled 0 = Interrupt is disabled 											
bit 4	•	 Interrupt is disabled BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit 										
	1 = Interrupt is enabled											
	0 = Interrupt	is disabled										
bit 3		ta Field Size Er	ror Interrupt E	nable bit								
	•	 1 = Interrupt is enabled 0 = Interrupt is disabled 										
bit 2	•	RC16 Failure II	atorrupt Epoble	- hit								
DIL Z												
		 1 = Interrupt is enabled 0 = Interrupt is disabled 										
bit 1	For Device M	ode:										
		CRC5EE: CRC5 Host Error Interrupt Enable bit										
		1 = Interrupt is enabled										
	•	0 = Interrupt is disabled For Host Mode:										
		-of-Frame (EOF	-) Error interru	pt Enable bit								
	1 = Interrupt	is enabled										
	0 = Interrupt											
bit 0		Check Failure Ir	nterrupt Enable	e bit								
	1 = Interrupt 0 = Interrupt											

REGISTER 20-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER


R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0		
BUSY	—	ERROR	TIMEOUT	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
RADDR23 ⁽¹⁾	RADDR22 ⁽¹⁾	RADDR21 ⁽¹⁾	RADDR20 ⁽¹⁾	RADDR19 ⁽¹⁾	RADDR18 ⁽¹⁾	RADDR17 ⁽¹⁾	RADDR16 ⁽¹⁾		
bit 7	•	•	•		•		bit 0		
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/Cl	learable bit			
R = Readable	bit	W = Writable I	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared H		HS = Hardware Settable bit			
bit 15	BUSY: Busy b	oit (Master mod	e only)						
	1 = Port is bu								
	0 = Port is no	,							
bit 14	Unimplement	ted: Read as '0)'						
bit 13	ERROR: Erro	r bit							
		on error (illegal		as requested)					
	0 = Transacti	on completed s	successfully						
bit 12	TIMEOUT: Tir	ne-out bit							
	1 = Transaction timed out								
	0 = Transaction completed successfully								
bit 11-8	Unimplemented: Read as '0'								
bit 7-0 RADDR<23:16>: Parallel Master Port Reserved Address Space bits ⁽¹⁾									

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFFh.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14			PTEN	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTEN<7:3>				PTEN<2:0>	
bit 7							bit C
Legend:							
R = Readab			W = Writable bit		U = Unimplemented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkn	iown
			. 1.11				
bit 15		A15 Port Enabl	0.0.1				
		functions as eith functions as por		ine 15 or Chip S	elect 2		
bit 14		/A14 Port Enabl					
	1 = PMA14	functions as eith	er Address L	ine 14 or Chip S	elect 1		
	0 = PMA14	functions as por	t I/O				
bit 13-3	PTEN<13:3	EPM Address	Port Enable I	bits			
		3:3> function as		s lines			
		3:3> function as					
bit 2-0		: PMALU/PMALH					
		0> function as e		lines or address	s latch strobes		
	0 = PMA<2	:0> function as p	ort I/US				

REGISTER 21-4: PMCON4: EPMP CONTROL REGISTER 4

24.1 RTCC Source Clock

The RTCC clock divider block converts the incoming oscillator source into an accurate 1/2 second clock for the RTCC timer. The clock divider is optimized to work with four different oscillator sources:

- System clock, up to 32 MHz
- 32.768 kHz crystal oscillator
- 31 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz power line frequency

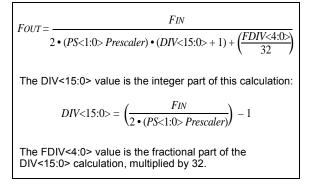
An asynchronous prescaler, PS<1:0> (RTCCON2L<5:4>), is provided that allows the RTCC to work with higher speed clock sources, such as the system clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources up to 32 MHz to clock the RTCC.

24.1.1 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external power line (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

24.1.2 COARSE FREQUENCY DIVISION

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV<15:0> register bits (RTCCON2H<15:0>). The DIV<15:0> bits should be programmed with a value to produce a nominal 1/2 second clock divider count period.


24.1.3 FINE FREQUENCY DIVISION

The fine frequency division is set using the FDIV<4:0> (RTCCON2L<15:11>) bits. Increasing the FDIVx value will lengthen the overall clock divider period.

If FDIV<4:0> = 00000, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every 1/2 second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.

The value for DIV<15:0> is calculated as shown in Equation 24-1. The fractional remainder of the DIV<15:0> calculation result can be used to calculate the value for FDIV<4:0>.

EQUATION 24-1: RTCC CLOCK DIVIDER OUTPUT FREQUENCY

24.1.4 CLOCK SOURCE CALIBRATION

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate 1-second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV<15:0> bits. Secondly, a 5-bit value can be written to the FDIV<4:0> control bits to perform a fine clock division.

The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV<4:0> value can be increased to make a small decrease in the RTC frequency. The value of DIV<15:0> should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV<4:0> may be decreased for small calibration changes and DIV<15:0> may need to be decreased to make larger calibration changes.

Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

24.5.3 TIME/ALARM/TIMESTAMP VALUE REGISTERS

REGISTER 24-7: TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL: TIME REGISTER (LOW)

				•=••••			
U-0	R/W-0						
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-12	SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9.

bit 7-0 Unimplemented: Read as '0'

REGISTER 24-8: TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH: TIME REGISTER (HIGH)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

0-0	R/W-U						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits
	Contains a value from 0 to 2.
bit 11-8	HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits
	Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

© 2015-2016 Microchip Technology Inc.

REGISTER 25-4: CRYOTP: CRYPTOGRAPHIC OTP PAGE PROGRAM CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	KEYPSEL
bit 15							bit 8
R-x, HSC ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-1, HC	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0, HC ⁽²⁾
		(2.4)					(2.4)

Legend:		S = Settable Or	nly bit	HSC = Hardwa	are Settable/Clea	arable bit	
bit 7							bit 0
PGMTST	OTPIE	CRYREAD ^(3,4)	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR ^(3,4)

Legend:	S = Settable Only bit	HSC = Hardware Settable/Cle	arable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HC = Hardware Clearable bit			

bit 15-9	Unimplemented: Read as '0'
bit 8	KEYPSEL: Key Storage Programming Select bit
	1 = Programming operations write to Key RAM
	0 = Programming operations write to the Secure OTP Array
bit 7	PGMTST: Key Storage/Configuration Program Test bit ⁽¹⁾
	This bit mirrors the state of the TSTPGM bit and is used to test the programming of the Secure OTP Array after programming. 1 = TSTPGM (CFGPAGE<30>) is programmed ('1') 0 = TSTPGM is not programmed ('0')
h:+ C	
bit 6	OTPIE: Key Storage/Configuration Program Interrupt Enable bit ⁽¹⁾
	 1 = Generates an interrupt when the current programming or read operation completes 0 = Does not generate an interrupt when the current programming or read operation completes; software must poll the CRYWR, CRYREAD or CRYBSY bit to determine when the current programming operation is complete
bit 5	CRYREAD: Cryptographic Key Storage/Configuration Read bit ^(3,4)
	 1 = This bit is set to start a read operation; read operation is in progress while this bit is set and CRYGO = 1 0 = Read operation has completed
bit 4-1	KEYPG<3:0>: Key Storage/Configuration Program Page Select bits ⁽¹⁾
	1111
	••• = Reserved
	1001
	1000 = OTP Page 8
	0111 = OTP Page 7
	6
	0111 = OTP Page 7 0110 = OTP Page 6
	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3
	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2
	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1
bit 0	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0)
bit 0	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0) CRYWR: Cryptographic Key Storage/Configuration Program bit ^(2,3,4)
bit 0	0111 = OTP Page 7 0110 = OTP Page 6 0101 = OTP Page 5 0100 = OTP Page 4 0011 = OTP Page 3 0010 = OTP Page 2 0001 = OTP Page 1 0000 = Configuration Page (CFGPAGE, OTP Page 0)

- 2: These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
- 3: Set this bit only when CRYON = 1 and CRYGO = 0. Do not set CRYREAD or CRYWR both, at any given time.
- 4: Do not clear CRYON or these bits while they are set; always allow the hardware operation to complete and clear the bits automatically.