

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
16-Bit
32MHz
I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
53
64KB (22K x 24)
FLASH
-
8K × 8
2V ~ 3.6V
A/D 16x10b/12b; D/A 1x10b
Internal
-40°C ~ 85°C (TA)
Surface Mount
64-TQFP
64-TQFP (10x10)
https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga406t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0
Legend:		C = Clearable	bit	r = Reserved	bit		

Legend:	C = Clearable bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TRAPR	(1) IOPUWR ⁽¹⁾	_	RETEN ⁽²⁾	_	DPSLP ⁽¹⁾	CM ⁽¹⁾	PMSLP ⁽³⁾
bit 15							bit 8
– – – –		D 4 1 1 0	D 414 0	D 4 4 4 6	D 444.0	D 4 4 4	D 4 4 4
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXIR'	SWR("	SWDIEN	WDTOW	SLEEP("	IDLE"	BOR	POR''
DIT 7							DITU
l egend:							
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit. read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
<u> </u>							
bit 15	TRAPR: Trap	Reset Flag bit	1)				
	1 = A Trap Co	onflict Reset has	s occurred				
	0 = A Trap Co	onflict Reset has	s not occurred		 (1)		
DIT 14		gal Opcode or l	Uninitialized W	Access Reset	Flag Ditty	ad W register	ie used as an
	Address I	Pointer and cau	used a Reset			eu w register	
	0 = An illegal	opcode or Uni	nitialized W Re	egister Reset ha	as not occurred		
bit 13	Unimplement	ted: Read as 'o)'				
bit 12	RETEN: Rete	ntion Mode Ena	able bit ⁽²⁾				
	1 = Retention	mode is enable	ed while device	e is in Sleep mo tage levels are	odes (1.2V regu present	llator supplies	to the core)
bit 11	Unimplement	ted: Read as '0)'		procont		
bit 10	DPSLP: Deep	Sleep Flag bit	(1)				
	1 = Device ha	s been in Deep	Sleep mode				
	0 = Device ha	s not been in D	eep Sleep mo	de			
bit 9	CM: Configura	ation Word Mis	match Reset F	lag bit ⁽¹⁾			
	1 = A Configu 0 = A Configu	ration Word Mi ration Word Mi	smatch Reset	has occurred	he		
bit 8	PMSI P: Prog	ram Memory P	ower During S	leen hit ⁽³⁾	50		
bito	1 = Program r	nemory bias vo	oltage remains	powered durin	g Sleep		
	0 = Program r	nemory bias vo	oltage is power	ed down during	g Sleep		
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit ⁽¹⁾				
	1 = A Master (Clear (pin) Res	et has occurre	d			
hit 6	SWR: Softwar	re Reset (Instri	et has not occ (ction) Flag hit	(1)			
bit o	1 = A RESET i	nstruction has	been executed	1			
	0 = A RESET i	nstruction has	not been exec	uted			
Note 1:	All of the Reset sta	atus bits may b	e set or cleare	d in software. S	Setting one of th	ese bits in sof	tware does not
	cause a device Re	eset.					
2:	If the LPCFG Con	figuration bit is	'1' (unprogran	nmed), the rete	ention regulator	is disabled an	d the RETEN
3:	Re-enabling the re	equlator after it	enters Standb	v mode will add	d a delav. Tvrf	G. when wakin	a up from
	Sleep. Application	is that do not u	se the voltage	regulator shou	ld set this bit to	prevent this d	elay from
	occurring.	.					11
4:	If the FWDTEN C	ontiguration bit	is '1' (unprogr	ammed), the W	/DT is always e	nabled, regard	diess of the

REGISTER 7-1: RCON: RESET CONTROL REGISTER

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	100 #	IVT	Inte	errupt Bit Loca	ations
	Number	IKQ #	Address	Flag	Enable	Priority
UART3 Error	89	81	0000B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	90	82	0000B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	91	83	0000BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	95	87	0000C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	96	88	0000C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	97	89	0000C6h	IFS5<9>	IEC5<9>	IPC22<6:4>
UART5 Error	121	113	0000F6h	IFS7<1>	IEC7<1>	IPC28<6:4>
UART5 Receive	119	111	0000F2h	IFS6<15>	IEC6<15>	IPC27<14:12>
UART5 Transmit	120	112	0000F4h	IFS7<0>	IEC7<0>	IPC28<2:0>
UART6 Error	124	116	0000FCh	IFS7<4>	IEC7<4>	IPC29<2:0>
UART6 Receive	122	114	0000F8h	IFS7<2>	IEC7<2>	IPC28<10:8>
UART6 Transmit	123	113	0000FAh	IFS7<3>	IEC7<3>	IPC28<14:12>
USB	94	86	0000C0h	IFS5<6>	IEC5<6>	IPC21<10:8>

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC2IP2	IC2IP1	IC2IP0	—	DMA0IP2	DMA0IP1	DMA0IP0
bit 7	•	•			•		bit 0
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
							,
bit 15	Unimplement	ted: Read as 'd)'				
bit 14-12	T2IP<2:0>: Ti	mer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplement	ted: Read as 'd)'				
bit 10-8	OC2IP<2:0>:	Output Compa	re Channel 2 I	nterrupt Priority	/ bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplement	ted: Read as 'd)'				
bit 6-4	IC2IP<2:0>:	nput Capture C	hannel 2 Inter	rupt Priority bits	6		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplement	ted: Read as 'o)'				
bit 2-0	DMA0IP<2:0>	-: DMA Channe	el 0 Interrupt P	riority bits			
	111 = Interru	pt is Priority 7(highest priority	v interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 8-23: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0
bit 15	·					•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U3ERIP2	U3ERIP1	U3ERIP0	—	_	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	U3TXIP<2:0>	: UART3 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	U3RXIP<2:0>	-: UART3 Rece	eiver Interrupt I	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U3ERIP<2:0>	-: UART3 Error	Interrupt Prio	rity bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemented: Read as '0'						

REGISTER 8-42: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0		SPI3IP2	SPI3IP1	SPI3IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	SPI3TXIP<2:	0>: SPI3 Trans	mit Interrupt P	riority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1	ablad				
bit 11		tod: Pead as "	ableu				
bit 10-8		SPI3 General	unterrunt Priori	ty hite			
	111 = Interru	ot is Priority 7 (highest priority	interrupt)			
	•		ingricer priority	interrept)			
	•						
	• 001 – Interru	ot is Priority 1					
	000 = Interru	pt is i nonty i pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U4TXIP<2:0>	UART4 Trans	smitter Interrup	t Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U4RXIP<2:0>	: UART4 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 8-44: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

REGISTER 9-2: CL	VOIV: CLOCK DIVIDER REGIS	ΓER
------------------	----------------------------------	-----

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	PLLEN	—		—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
 bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE<2:0>: CPU Peripheral Clock Ratio Select bits 							
	111 = 1:128 $110 = 1:64$ $101 = 1:32$ $100 = 1:16$ $011 = 1:8 (default)$ $010 = 1:4$ $001 = 1:2$ $000 = 1:1$						
bit 11	DOZEN: Doz	e Enable bit ⁽¹⁾					
	1 = DOZE<2 0 = CPU peri	:0> bits specify ipheral clock ra	the CPU perip tio is set to 1:1	heral clock rati	0		
bit 10-8	RCDIV<2:0>:	FRC Postscale	er Select bits				
	Dit 10-8 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-16) 011 = 2 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default) 000 = 8 MHz (divide-by-1)						
bit 7-6	CPDIV<1:0>: System Clock Select bits (postscaler select from fast PLL branch) 11 = 4 MHz (divide-by-8) ⁽²⁾ 10 = 8 MHz (divide-by-4) ⁽²⁾ 01 = 16 MHz (divide-by-2) 10 = 0 MHz (divide-by-2)						
bit 5	PLLEN: USB 1 = PLL is alw 0 = PLL is onl	PLL Enable bit vays active ly active when a	t a PLL Oscillato	or mode is seled	cted (OSCCON	I<14:12> = 011	. or 001)
bit 4-0	Unimplemen	ted: Read as '0)'				
Note 1: T	his bit is automa	tically cleared	when the ROI I	bit is set and ar	n interrupt occu	Irs.	

2: This setting is not allowed while the USB module is enabled.

For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

16.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 16-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

Note: Make sure the I/O ports are in Digital mode and the TRISx bits are configured for Output mode for the peripheral pin selected.

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	_	—	—
bit 15		•			•	•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_		W	I ENGTH<4.0>	(1,2)	
bit 7							bit 0
Dit 7							bit 0
l egend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit. read	1 as '0'	
-n = Value a	t POR	'1' = Rit is set		·0' = Bit is cle	ared	x = Bit is unkn	own
					alca		lowin
bit 15-5	Unimplement	tad: Read as '	n'				
bit 10-0			∪ Nord Longth h	ito(1.2)			
DIL 4-0	11111 - 22 h	it data	volu Lengin b	115 7			
	11111 - 32-0 11110 = 31-b	it data					
	1110 = 30-b	it data					
	11100 = 29-b	it data					
	11011 = 28-b	it data					
	11010 = 27-b	it data					
	11001 = 26-b	it data					
	11000 = 25-b	it data					
	10111 = 24-b	it data					
	10110 = 23-b	it data					
	10101 = 22-b	it data					
	10100 = 21-b	it data					
	10011 = 20-b	it data					
	10010 = 19-b	it data					
	10001 = 18-b	it data					
	10000 = 17-b	it data					
	01111 = 16-b	it data					
	01110 = 15-b	it data					
	01101 = 14-b	it data					
	01100 = 13-b	it data					
	01011 = 12-b	it data					
	01010 = 11-b	it data					
	01001 = 10-b	it data					
	01000 = 9-bit	data					
	00111 = 8-bit	data					
	00110 = 7-bit	data					
	00101 = 6-bit	data					
	00100 = 5-bit	data					
	00011 = 4-bit	data					
	00010 = 3-bit	data					
	00001 = 2-bit	data					
	00000 = See	MODE<32,16	> bits in SPIxC	ON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCKREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	1 = Enables Receive mode for I^2C ; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select (CS), and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP.

Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 23 Programmable Address Lines
- Up to 2 Chip Select Lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit, 8-Bit or 16-Bit Wide Data Bus

- Programmable Strobe Options (per Chip Select):
 - Individual Read and Write Strobes or;
 Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

21.1 Specific Package Variations

While all PIC24FJ256GA412/GB412 family devices implement the EPMP, I/O pin constraints place some limits on 16-Bit Master mode operations in some package types. This is reflected in the number of dedicated Chip Select pins implemented and the number of dedicated address lines that are available. The differences are summarized in Table 21-1. All available EPMP pin functions are summarized in Table 21-2.

For 64-pin devices, the dedicated Chip Select pins (PMCS1 and PMS2) are not implemented. In addition, only 16 address lines (PMA<15:0>) are available. If required, PMA14 and PMA15 can be remapped to function as APMCS1 and APMCS2 (Alternate Chip Select 1/2), respectively.

The memory space addressable by the device depends on the number of address lines available, as well as the number of Chip Select signals required for the application. Devices with lower pin counts are more affected by Chip Select requirements, as these take away address lines. Table 21-1 shows the maximum addressable range for each pin count.

Device	Dedicated Chip Select		Address	Address Range (bytes)		
Device	CS1	CS2	Lines	No CS	1 CS	2 CS
PIC24FJXXXGX406 (64-pin) ⁽¹⁾	—	—	16	64K	32K	16K
PIC24FJXXXGX410 (100-pin)	Х	Х	23		16M	
PIC24FJXXXGX412 (121-pin)	Х	Х	23		16M	

TABLE 21-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

Note 1: The 64-pin devices can use the Alternate Chip Select pins, APMCS1 and APMCS2.

REGISTER 22-4: LCDSEx: LCD SEGMENT x ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SE(n+15) ^(1,2)	SE(n+14)	SE(n+13)	SE(n+12)	SE(n+11)	SE(n+10)	SE(n+9)	SE(n+8)
bit 15							bit 8

R/W-0	R/W-0						
SE(n+7)	SE(n+6)	SE(n+5)	SE(n+4)	SE(n+3)	SE(n+2)	SE(n+1)	SE(n)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-0
 SE(n+15):SE(n): Segment Enable bits

 For LCDSE0: n = 0
 For LCDSE1: n = 16

For LCDSE2: n = 32 For LCDSE3: n = 48^(1,2)

1 = Segment function of the pin is enabled, digital I/O is disabled

0 = Segment function of the pin is disabled, digital I/O is enabled

Note 1: SE63 (LCDSE3<15>) is not implemented.

2: For the SEG49 to work correctly, the JTAG needs to be disabled.

REGISTER 22-5: LCDDATAX: LCD DATA x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
S(n+15)Cy	S(n+14)Cy	S(n+13)Cy	S(n+12)Cy	S(n+11)Cy	S(n+10)Cy	S(n+9)Cy	S(n+8)Cy
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
S(n+7)Cy	S(n+6)Cy	S(n+5)Cy	S(n+4)Cy	S(n+3)Cy	S(n+2)Cy	S(n+1)Cy	S(n)Cy

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0	S(n+15)Cy:S(n)Cy: Pixel On bits
	<u>For Registers, LCDDATA0 through LCDDATA3: n = (16x), y = 0</u>
	<u>For Registers, LCDDATA4 through LCDDATA7: n = (16(x – 4)), y = 1</u>
	<u>For Registers, LCDDATA8 through LCDDATA11: n = (16(x – 8)), y = 2</u>
	For Registers, LCDDATA12 through LCDDATA15: $n = (16(x - 12)), y = 3$
	For Registers, LCDDATA16 through LCDDATA19: $n = (16(x - 16)), y = 4$
	For Registers, LCDDATA20 through LCDDATA23: $n = (16(x - 20)), y = 5$
	For Registers, LCDDATA24 through LCDDATA27: $n = (16(x - 24)), y = 6$
	For Registers, LCDDATA28 through LCDDATA31: $n = (16(x - 28)), y = 7$
	1 = Pixel is on
	0 = Pixel is off

bit 7

REGISTER 25-3: CRYSTAT: CRYPTOGRAPHIC STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-x, HSC ⁽¹⁾	R-0, HSC ⁽¹⁾	R/C-0, HS (2)	R/C-0, HS ⁽²⁾	U-0	R-0, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾
CRYBSY ⁽⁴⁾	TXTABSY	CRYABRT ⁽⁵⁾	ROLLOVR	_	MODFAIL ⁽³⁾	KEYFAIL ^(3,4)	PGMFAIL ^(3,4)
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable/C	earable bit
R = Readable bit	HS = Hardware Settable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	CRYBSY: Cryptographic Engine Busy Status bit ^(1, 4)
	1 = A cryptographic operation is in progress
	0 = No cryptographic operation is in progress
bit 6	TXTABSY: CRYTXTA Busy Status bit ⁽¹⁾
	1 = The CRYTXTA register is busy and may not be written to
	0 = The CRYTXTA is free and may be written to
bit 5	CRYABRT: Cryptographic Operation Aborted Status bit ^(2,5)
	1 = Last operation was aborted by clearing the CRYGO bit in software
	0 = Last operation completed normally (CRYGO cleared in hardware)
bit 4	ROLLOVR: Counter Rollover Status bit ⁽²⁾
	1 = The CRYTXTB counter rolled over on the last CTR mode operation; once set, this bit must be
	cleared by software before the CRYGO bit can be set again
1.11.0	
bit 3	Unimplemented: Read as '0'
bit 2	MODFAIL: Mode Configuration Fail Flag bit ^(1,3)
	1 = Currently selected operating and Cipher mode configuration is invalid; the CRYWR bit cannot be
	set until a valid mode is selected (automatically cleared by nardware with any valid configuration)
hit 1	KEVEALL Kov Configuration Eail Status hit(1.3.4)
DILI	See Table 25.1 and Table 25.2 for invalid key configurations
	1 = Currently selected key and mode configurations are invalid: the CRYWR bit cannot be set until a
	valid mode is selected (automatically cleared by hardware with any valid configuration)
	0 = Currently selected configurations are valid
bit 0	PGMFAIL: Key Storage/Configuration Program Fail Flag bit ^(1,3,4)
	1 = The page indicated by KEYPG<3:0> is reserved or locked; the CRYWR bit cannot be set and no
	programming operation can be started
	0 = The page indicated by KEYPG<3:0> is available for programming
Note 1:	These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.
2:	These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
3:	These bits are functional even when the module is disabled (CRYON = 0): this allows mode configurations
	to be validated for compatibility before enabling the module.
4:	These bits are automatically set during all OTP read operations, including the initial read at POR. Once the read is completed, the bit assumes the proper state that reflects the current configuration.

5: If this bit is set, a cryptographic operation cannot be performed.

REGISTER 25-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

bit 21-20	KEY1TYPE<1:0>: Key Type for OTP Pages 1 and 2 bits
	11 = Keys in these pages are for 192-bit/256-bit AES operations only
	10 = Keys in these pages are for 128-bit AES operations only
	01 = Keys in these pages are for 3DES operations only
	00 = Keys in these pages are for DES/2DES operations only
bit 19	SKEYEN: Session Key Enable bit
	1 = Stored Key #1 may be used only as a Key Encryption Key
	0 = Stored Key #1 may be used for any operation
bit 18-11	LKYSRC<7:0>: Locked Key Source Configuration bits
	If SRCLCK = 1:
	1xxxxxxx = Key source is as if KEYSRC<3:0> = 1111
	01xxxxxx = Key source is as if KEYSRC<3:0> = 0111
	001xxxxx = Key source is as if KEYSRC<3:0> = 0110
	0001xxxx = Key source is as if KEYSRC<3:0> = 0101
	00001xxx = Key source is as if KEYSRC<3:0> = 0100
	000001xx = Key source is as if KEYSRC<3:0> = 0011
	0000001x = Key source is as if KEYSRC<3:0> = 0010
	00000001 = Key source is as if KEYSRC<3:0> = 0001
	00000000 = Key source is as if KEYSRC<3:0> = 0000
	If SRCLCK = 0:
	These bits are ignored.
bit 10	SRCLCK: Key Source Lock bit
	1 = The key source is determined by the LKYSRC<7:0> bits (software key selection is disabled)
	0 = The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (locked key selection
	is disabled)
bit 9-1	WRLOCK<8:0>: Write Lock Page Enable bits
	For OTP Pages 0 (CFGPAGE) through 8:
	1 = OTP Page is permanently locked and may not be programmed
	0 = OTP Page is unlocked and may be programmed
bit 0	SWKYDIS: Software Key Disable bit
	1 = Software key (CRYKEY register) is disabled; when KEYSRC<3:0> = 0000, the KEYFAIL status bit
	will be set and no encryption/decryption/session key operations can be started until KEYSRC<3:0>
	bits are changed to a value other than '0000'
	0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
ASEN	LPEN	CTMREQ	BGREQ	—	—	ASINT1	ASINT0				
bit 15 k											
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	—	—	WM1	WM0	CM1	CM0				
bit 7							bit 0				
Lanand											
Legena:	- 1-:4		L ! 4			-l (O'					
R = Readable			DIT		nented bit, rea	d as '0'					
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkr	IOWN				
bit 15	ASEN: Auto	Scan Enable bi	ŀ								
bit 15	1 = Auto-sca	AJEN: AULO-SCAN ENADLE DIL									
	0 = Auto-sca	1 - Auto-scan is enabled0 = Auto-scan is disabled									
bit 14	LPEN: Low-	Power Enable bi	it								
	1 = Low pow	er is enabled af	ter scan								
	0 = Full powe	er is enabled aft	er scan								
bit 13	CTMREQ: C	TMU Request b	it								
	1 = CTMU is enabled when the A/D is enabled and active										
h:1 40		not enabled by									
DIT 12	BGREQ: Bai	nd Gap Request	I DII DII IDII	nabled and act	ivo						
	\perp - Dang gap is enabled when the A/D is enabled and active 0 = Band gap is not enabled by the A/D										
bit 11-10	Unimplemer	nted: Read as ')'								
bit 9-8	ASINT<1:0>	: Auto-Scan (Th	reshold Detec	t) Interrupt Moc	le bits						
	11 = Interrup	t after Threshol	d Detect sequ	ence has comp	leted and valid	l compare has o	occurred				
10 = Interrupt after valid compare has occurred											
	01 = Interrup	01 = Interrupt after Threshold Detect sequence has completed 00 = No interrupt									
bit 7-4		nted: Read as '()'								
bit 3-2	WM<1:0>: Write Mode bits										
	11 = Reserv										
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid										
	match occurs, as defined by the CMx and ASINTx bits)										
	when a match occurs, as defined by the CMx bits)										
	00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)										
bit 1-0	CM<1:0>: Compare Mode bits										
	11 = Outside Window mode (valid match occurs if the conversion result is outside of the window										
		by the correspo	onding buffer p	pair)	oraion roquit io	incide the wind	low defined by				
	10 = Inside v	responding buffe	alid match oc er pair)	curs if the conv	ersion result is	inside the wind	low defined by				
	01 = Greater	Than mode (va	lid match occu	urs if the result is	s greater than t	the value in the	corresponding				
	buffer r	egister)		· · · · · · · · · · · · · · · · · · ·							
	UU = Less If	ian mode (valid	match occurs	II The Legal t is le	ss than the val	ue in the corres	ponding butter				

REGISTER 27-5: AD1CON5: A/D CONTROL REGISTER 5

28.0 10-BIT DIGITAL-TO-ANALOG CONVERTER (DAC)

```
Note: This data sheet summarizes the features of
this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
"dsPIC33/PIC24 Family Reference Man-
ual", "10-Bit Digital-to-Analog Converter
(DAC)" (DS39615). The information in this
data sheet supersedes the information in
the FRM.
```

PIC24FJ256GA412/GB412 family devices include 10-bit Digital-to-Analog Converters (DACs) for generating analog outputs from digital data. A simplified block diagram for a the DAC is shown in Figure 28-1. The DAC generates an analog output voltage based on the digital input code, according to the formula:

 $VDAC = \frac{VDACREF \times DACxDAT}{1024}$

where VDAC is the analog output voltage and VDACREF is the reference voltage selected by DACREF<1:0>.

The DAC includes these features:

- Precision 10-Bit Resistor Ladder for High Accuracy
- Fast Settling Time, Supporting 1 Msps Effective Sampling Rates
- Buffered Output Voltage
- Three User-Selectable Voltage Reference Options
- Multiple Conversion Trigger Options, Plus a Manual Convert-on-Write Option
- Left and Right Justified Input Data Options
- · User-Selectable Sleep and Idle mode Operation

When using the DAC, it is required to set the ANSx and TRISx bits for the DACx output pin to configure it as an analog output. See Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information.

FIGURE 28-1: DAC SIMPLIFIED BLOCK DIAGRAM

© 2015-2016 Microchip Technology Inc.

REGISTER 33-5: FOSC: OSCILLATOR CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—	—	—	—	—	—	—	—		
bit 23							bit 16		
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—	—	—	—	—	—	—	—		
bit 15									
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	OSCIOFCN	POSCMOD1	POSCMOD0		
bit 7	·		•	·	•	•	bit 0		
Legend:		PO = Prograr	n Once bit						
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at POR '1' = Bi				'0' = Bit is cle	ared	x = Bit is unknown			
bit 23-8	Unimplemen	ted: Read as '	1'						
bit 7-6	FCKSM<1:0>	Clock Switch	ing and Fail-Sa	afe Clock Monif	or Configuratio	n bits			
	1x = Clock sv	witching and Fa	ail-Safe Clock N	Monitor are disa	abled				
	01 = Clock s	witching is enal	oled, Fail-Safe	Clock Monitor	is disabled				
bit 5			oleu, i all-Sale	Dit	is enabled				
bit 5	$1 = \text{The } \Omega $	OCK bit (OSC		he set once	provided the	unlock seque	nce has been		
	complete	ed; once set, the	e Peripheral Pi	n Select registe	ers cannot be v	vritten to a seco	and time		
	0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been								
	complete	ed							
bit 4	PLLSS: PLL Block Secondary Selection Configuration bit ⁽¹⁾								
	1 = PLL is driven by the Primary Oscillator								
hit 2									
DIL 3									
	1 = 5050 circuit is selected $0 = \text{Digital (SCI KI) mode}^{(2)}$								
bit 2	OSCIOFCN: OSCO Pin Configuration bit								
	If $POSCMOD<1:0> = 11 or 00:$								
	1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2)								
	0 = OSCO/CLKO/RC15 functions as port I/O (RC15)								
	IT POSCHOD<1:0> = 10 of 01: OSCIOECN has no effect on OSCO/CLKO/RC15								
bit 1-0	POSCMOD_1.0>. Primary Oscillator Configuration bits								
	11 = Primarv	Oscillator mod	e is disabled	94141011 010					
	10 = HS Oscillator mode is selected (HS mode is used if crystal > 10 MHz)								

- 01 = XT Oscillator mode is selected (XT mode is used if crystal < 10 MHz)
- 00 = EC Oscillator mode is selected
- **Note 1:** Used only when the PLL block is not being used as the system clock source.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).

36.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GA412/GB412 family AC characteristics and timing parameters.

TABLE 36-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial				
	Operating voltage VDD range as described in Section 36.1 "DC Characteristics".					

FIGURE 36-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 36-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin			15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER	S			
Dimension	MIN	NOM	MAX				
Number of Pins	N		64				
Pitch	е		0.50 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.20 REF				
Overall Width	E	9.00 BSC					
Exposed Pad Width	E2	5.30	5.40	5.50			
Overall Length	D	9.00 BSC					
Exposed Pad Length	D2	5.30	5.40	5.50			
Contact Width	b	0.20	0.25	0.30			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2