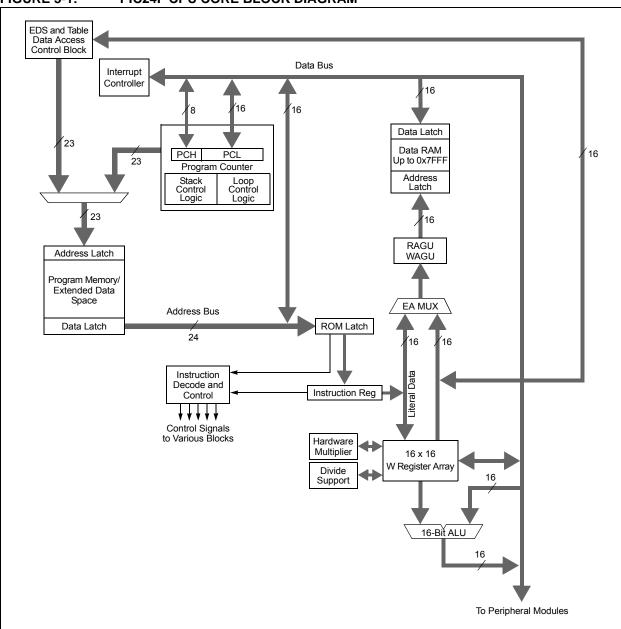


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	102
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga412-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1:	CPU CORE REGISTERS

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register
DISICNT	Disable Interrupt Count Register
DSRPAG	Data Space Read Page Register
DSWPAG	Data Space Write Page Register

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 6.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

	9203 (A)	gram Space			
23 25	9 0200005 0200005 _		23		8 0
	200000k	versen versen versen versen vine address ha wine the care	defined by 1995 alions are chose)) flori is distanti REUPAO conje	ined by the data EA

FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	100 #	IVT	Interrupt Bit Locations			
Interrupt Source	Number IRQ #		Address	Flag	Enable	Priority	
UART3 Error	89	81	0000B6h	IFS5<1>	IEC5<1>	IPC20<6:4>	
UART3 Receiver	90	82	0000B8h	IFS5<2>	IEC5<2>	IPC20<10:8>	
UART3 Transmitter	91	83	0000BAh	IFS5<3>	IEC5<3>	IPC20<14:12>	
UART4 Error	95	87	0000C2h	IFS5<7>	IEC5<7>	IPC21<14:12>	
UART4 Receiver	96	88	0000C4h	IFS5<8>	IEC5<8>	IPC22<2:0>	
UART4 Transmitter	97	89	0000C6h	IFS5<9>	IEC5<9>	IPC22<6:4>	
UART5 Error	121	113	0000F6h	IFS7<1>	IEC7<1>	IPC28<6:4>	
UART5 Receive	119	111	0000F2h	IFS6<15>	IEC6<15>	IPC27<14:12>	
UART5 Transmit	120	112	0000F4h	IFS7<0>	IEC7<0>	IPC28<2:0>	
UART6 Error	124	116	0000FCh	IFS7<4>	IEC7<4>	IPC29<2:0>	
UART6 Receive	122	114	0000F8h	IFS7<2>	IEC7<2>	IPC28<10:8>	
UART6 Transmit	123	113	0000FAh	IFS7<3>	IEC7<3>	IPC28<14:12>	
USB	94	86	0000C0h	IFS5<6>	IEC5<6>	IPC21<10:8>	

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 2 MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 CCT6IF: SCCP6 Timer Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER	8-26: IPC4:									
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0			
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
0-0	MI2C1IP2	MI2C1IP1	MI2C1IP0	0-0	SI2C1IP2	SI2C1IP1	SI2C1IP0			
	IVII2CTIP2	WIZCTFT	IVIIZG HFU		3120 TIF2	SIZCTIFT	1			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	Unimplemen	ted: Read as 'o)'							
bit 14-12	CNIP<2:0>:	nput Change N	otification Inte	rrupt Priority bi	ts					
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	• 001 = Interrupt is Priority 1									
		pt source is dis	abled							
bit 11	Unimplemen	ted: Read as 'o)'							
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority I	oits						
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	• 001 = Interrupt is Priority 1									
	000 = Interru	pt source is dis	abled							
bit 7	Unimplemen	ted: Read as 'o)'							
bit 6-4	MI2C1IP<2:0	>: Master I2C1	Event Interrup	ot Priority bits						
	111 = Interru	at in Dainait 7 (
		pt is Priority 7 (highest priority	/ interrupt)						
	•	pt is Priority 7 (highest priority	/ interrupt)						
	•	pt is Priority 7 (highest priority	/ interrupt)						
	• • 001 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
				/ interrupt)						
bit 3	000 = Interru	pt is Priority 1	abled	/ interrupt)						
	000 = Interru Unimplemen	pt is Priority 1 pt source is dis	abled							
bit 3 bit 2-0	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis ted: Read as '0	abled ,' vent Interrupt	Priority bits						
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis t ed: Read as '0 >: Slave I2C1 E	abled ,' vent Interrupt	Priority bits						
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis t ed: Read as '0 >: Slave I2C1 E	abled ,' vent Interrupt	Priority bits						
	000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 1 pt source is dis ted: Read as '0 >: Slave I2C1 E pt is Priority 7 (abled ,' vent Interrupt	Priority bits						

REGISTER 8-26: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	CCP4IP2	CCP4IP1	CCP4IP0	_	CCP3IP2	CCP3IP1	CCP3IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	SPI4TXIP2	SPI4TXIP1	SPI4TXIP0	—	SPI4IP2	SPI4IP1	SPI4IP0				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12		 SCCP4 Capt 	•	•	ty bits						
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•	•									
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	CCP3IP<2:0>	CCP3IP<2:0>: SCCP3 Capture/Compare Interrupt Priority bits									
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled										
bit 7		ted: Read as '									
bit 6-4	-	0>: SPI4 Trans		riority hits							
		pt is Priority 7 (-							
	•		5								
	•										
	• 001 = Interru	pt is Priority 1 pt source is dis	abled								
bit 3		ted: Read as '									
bit 2-0		SPI4 General		tv bits							
		pt is Priority 7 (-							
	•										
	•										
	001 = Interru	pt is Priority 1									
		pt source is dis	abled								

REGISTER 8-45: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	—	VHOLD	_	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit C
Lowende			h :4				
Legend:	- h:t	r = Reserved			a anta d hit was a		
R = Readabl		W = Writable	DIt	•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15			from Interrupt (hit		
DIL 15			•	Controller CPU has not yet bee		ed by the CPU	· this hannens
		• •		e interrupt prio	•		
		upt request is u	Ų		5		
bit 14	Reserved: Ma	aintain as '0'					
bit 13	VHOLD: Vect	or Number Cap	oture Configura	ation bit			
	0 = VECNUM	1<6:0> bits con	tain the value o	of the highest p of the last Ackno be CBU, even i	owledged interr	upt (i.e., the las	
bit 12	has occurred with higher priority than the CPU, even if other interrupts are pending) Unimplemented: Read as '0'						
bit 11-8	-	w CPU Interru		l bits			
		Interrupt Priorit	•				
	•	·	-				
	•						
	• 0001 = CPU	Interrupt Priorit	v Level is 1				
		Interrupt Priorit					
bit 7	Unimplement	ted: Read as ')'				
bit 6-0	VECNUM<6:0)>: Vector Num	ber of Pending	g Interrupt or La	ast Acknowledg	ged Interrupt bi	ts
	When VHOLD						
			(from 0 to 118)	of the last inte	rrupt to occur.		
	When VHOLD		(from 0 to 119)	of the interrup	t request curro	ntly being bong	llod
				or the interrup	i request curre		11EU.

REGISTER 8-52: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0		
DSEN	—	—	RTCCMD	KEYRAMEN	—	_	_		
bit 15							bit 8		
					D # 44 0				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/C-0, HS		
	—	—		—	WAKEDIS	DSBOR ⁽²⁾	RELEASE		
bit 7							bit (
Legend:		C = Clearable	bit	HS = Hardwar	e Settable bit				
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown		
bit 14-13	0 = Enters no	rmal Sleep on	execution of PI						
bit 14-13	-	ted: Read as '							
bit 12		CC Module Di	sable bit						
	1 = Module is		sources are e	nahled					
bit 11	•			AM Deep Sleep	Enable bit				
	1 = Power is r	maintained to k	Key RAM during	g Deep Sleep al Ind VBAT modes	nd VBAT modes	i			
bit 10-3		ted: Read as '							
bit 2	WAKEDIS: EX	kternal Wake-u	ip Source Disa	ble bit					
				nd ignored durin Id can be used t	v , ,		an		
bit 1		p Sleep BOR E					γ		
				ent was detecte	d during Deep S	Sleep			
		 1 = The DSBOR was active and a BOR event was detected during Deep Sleep 0 = The DSBOR was not active, or was active, but did not detect a BOR event during Deep Sleep 							
bit 0	RELEASE: 1/0	O Pin State Re	lease bit						
	0 = Releases		their state prev	is maintain their ious to Deep Sle					
	Il register bits ar			POR event outsig	•	•			

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

11.4 Interrupt-on-Change (IOC)

The interrupt-on-change function of the I/O ports allows the PIC24FJ256GA412/GB412 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on any of the input port pins. This feature is capable of detecting input Change-of-States, even in Sleep mode when the clocks are disabled.

Interrupt-on-change functionality is globally enabled by setting the IOCON bit in the PADCON register (Register 11-1). Functionality is then enabled for a particular pin by setting the IOCPx and/or IOCNx register bit for that pin. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts).

When an interrupt request is generated for a pin, the corresponding status flag bit in the IOCFx register will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register (Register 11-2) will also be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx
(1000) bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the interrupt-on-change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

11.4.1 PULL-UPS AND PULL-DOWNS

Each IOC pin has both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV 0xFFFF,	; Initial mask value 0xFFFF -> W0
XOR IOCFx, W	; WO has '1' for each bit set in IOCFx
AND IOCFx	; IOCFx & WO ->IOCFx

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

ĺ	MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
	MOV	W0, TRISB	; and PORTB<7:0> as outputs
	NOP		; Delay 1 cycle
	BTSS	PORTB, #13	; Next Instruction

EXAMPLE 11-3: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13){ };</pre>	// Next Instruction

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111
 - 1111x = Reserved
 - 11101 = Reserved 11100 = CTMU⁽¹⁾
 - $11001 = A/D^{(1)}$
 - 11010 = Comparator 3⁽¹⁾
 - $11001 = \text{Comparator } 2^{(1)}$
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10101 = SCCP3 capture/compare
 - 10100 = SCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 = Input Capture 3⁽²⁾
 - 10001 =Input Capture $2^{(2)}_{(2)}$
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger
 - 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = SCCP3 sync/trigger 00101 = SCCP2 sync/trigger
 - 10101 = SCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger 00011 = Output Compare 3
 - 00011 = Output Compare 3
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 9	SMP: SPIx Data Input Sample Phase bit
	<u>Master Mode:</u> 1 = Input data is sampled at the end of data output time
	0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	1 = REFO is used by the BRG 0 = Fosc/2 is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1: 2:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value. When $FRMEN = 1$ SSEN is not used

- EN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 27-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit ⁽¹⁾
	1 = Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF13 on next interrupt
	0 = Always starts filling buffer at ADC1BUF0
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
	0 = Always uses channel input selects for Sample A

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

REGISTER 27-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15	•	•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7	•			•			bit 0
							DILU

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock
	0 = Clock derived from system clock
bit 14	EXTSAM: Extended Sampling Time bit
	1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	PUMPEN: Charge Pump Enable bit
	 1 = Charge pump for switches is enabled 0 = Charge pump for switches is disabled
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits
	11111 = 31 T AD
	•••
	00001 = 1 TAD
	00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111 = 256 • TCY = TAD
	•••
	00000001 = 2. TCY = TAD
	00000000 = TCY = TAD

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0				
bit 15				·		•	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '		l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-13	1xx = Unimpl 011 = Unimpl 010 = AN1 001 = Unimpl 000 = VREF-//	emented emented emented AVss	-	ive Input Select							
bit 12-8	CH0SB<4:0>: Sample B Channel 0 Positive Input Select bits See Table 27-2 for available options.										
bit 7-5	CH0NA<2:0>: Sample A Channel 0 Negative Input Select bits Same definitions as for CHONB<2:0>.										
bit 4-0	CH0SA<4:0>	CH0SA<4:0>: Sample A Channel 0 Positive Input Select bits									

REGISTER 27-6: AD1CHS: A/D SAMPLE SELECT REGISTER

Same definitions as for CHOSB<4:0>.

TABI F 27-2.	POSITIVE CHANNEL SELECT OPTIONS (CHOSA<4:0> OR CHOSB<4:0>)

CH0SA<4:0> or CH0SB<4:0>	Analog Channel	CH0SA<4:0> or CH0SB<4:0>	Analog Channel	
11111	VBAT/2 ⁽¹⁾	01111	AN15	
11110	AVDD ⁽¹⁾	01110	AN14	
11101	AVss ⁽¹⁾	01101	AN13	
11100	VBG ⁽¹⁾	01100	AN12	
11011	Reserved	01011	AN11	
11010	Reserved	01010	AN10	
11001	CTMU	CTMU 01001		
11000	0 CTMU Temperature Sensor ⁽²⁾ 01000		AN8	
10111	AN23 ⁽³⁾	00111	AN7	
10110	AN22 ⁽³⁾	00110	AN6	
10101	AN21 ⁽³⁾	00101	AN5	
10100	AN20 ⁽³⁾	00100	AN4	
10011	AN19 ⁽³⁾	00011	AN3	
10010	AN18 ⁽³⁾	00010	AN2	
10001	AN17 ⁽³⁾	00001	AN1	
10000	AN16 ⁽³⁾	00000	AN0	

Note 1: These input channels do not have corresponding memory-mapped result buffers.

2: Temperature sensor does not require AD1CTMENL<13> to be set.

3: These channels are not implemented in 64-pin devices.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
		CTMEN<30:28	>			CTMEN	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTMEN	<23:16> ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unknown	
bit 15	Unimpleme	nted: Read as 'o	י'				
bit 14-12	CTMEN<30	: 28>: CTMU Ena	abled During (Conversion bits			
		s enabled and co s not connected t			al channel duri	ng conversion	
bit 11-10	Unimpleme	nted: Read as ')'				
bit 9-8	CTMEN<25	: 24>: CTMU Ena	abled During C	Conversion bits			
	1 = CTMU is enabled and connected to the selected internal channel during conversion 0 = CTMU is not connected to this channel						
bit 7-0	CTMEN<23	: 16>: CTMU Ena	abled During C	Conversion bits ⁽¹)		
	1 = CTMU is	s enabled and co s not connected t	onnected to the	e selected A/D c		conversion	

REGISTER 27-12: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 27-13: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	EN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	IEN<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplem	ented bit, rea	d as '0'		
-n = Value at POR		at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected A/D channel during conversion

0 = CTMU is not connected to this channel

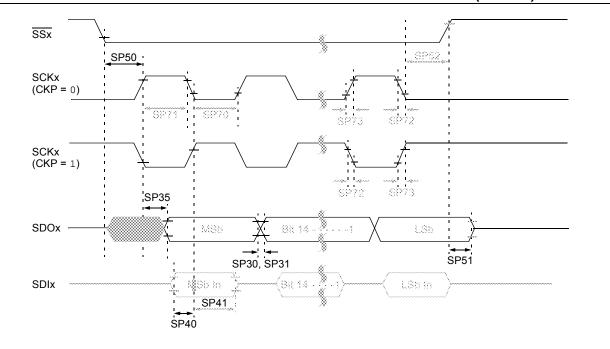
REGISTER 33-6: FWDT: WATCHDOG TIMER CONFIGURATION WORD (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16
 - 0011 = 1:8 0010 = 1:4
 - 0010 1.40001 = 1:2
 - 0000 = 1:1

REGISTER 33-13: DEVID: DEVICE ID REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—		—	—	_
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	7 FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15	·		•	•			bit 8
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0
Legend:	R = Readable bit			U = Unimplem	ented bit		
bit 23-16	Unimplement	ted: Read as ':	1'				
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits				
	0110 0001 =	PIC24FJ2560	GA412/GB412	Family			
bit 7-0	DEV<7:0>: In	dividual Device	e Identifier bits				
	0000 0000 =	PIC24FJ64G	4406	000	0100 = PIC	24FJ64GB406	
	0000 0001 =	PIC24FJ64G	4410	000	0101 = PIC	24FJ64GB410	
	0000 0010 =	PIC24FJ64G	4412	000	0 0110 = PIC	24FJ64GB412	
	0000 1000 =	PIC24FJ1280	GA406	000	0 1100 = PIC	24FJ128GB40	6
	0000 1001 =	PIC24FJ1280	GA410	000	0 1101 = PIC	24FJ128GB41	0
	0000 1010 =	PIC24FJ1280	GA412	000) 1110 = PIC	24FJ128GB41	2
		PIC24FJ2560				24FJ256GB40	-
		PIC24FJ2560				24FJ256GB41	-
	0001 0010 =	PIC24FJ2560	GA412	000	1 0110 = PIC	24FJ256GB41	2

REGISTER 33-14: DEVREV: DEVICE REVISION REGISTER


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—		—	—		
bit 23							bit 16		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—		—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R	R	R	R		
—	—	—	—		REV	<3:0>			
bit 7							bit 0		
Legend: R =	Legend: R = Readable bit U = Unimplemented bit								

bit 23-4 Unimplemented: Read as '0'

bit 3-0 REV<3:0>: Device Revision Identifier bits

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	vmbol Characteristic Min Typ		Max	Units	Conditions		
SY10	TMCL	MCLR Pulse Width (Low)	2		—	μS		
SY12	TPOR	Power-on Reset Delay	_	2	_	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700	—	(3 Tcy + 2)	μS		
SY25	TBOR	Brown-out Reset Pulse Width	1	_	—	μS	$VDD \leq VBOR$	
SY45	TRST	Internal State Reset Time	—	50	—	μS		
SY70	Toswu	Deep Sleep Wake-up Time	—	200	—	μS	VCAP fully discharged before wake-up	
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with PMSLP = 0	
			_	1	—	μS	Sleep wake-up with PMSLP = 1	
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with PMSLP = 0	
			_	70	—	μS	Sleep wake-up with PMSLP = 1	

TABLE 36-25: RESET AND BROWN-OUT RESET REQUIREMENTS

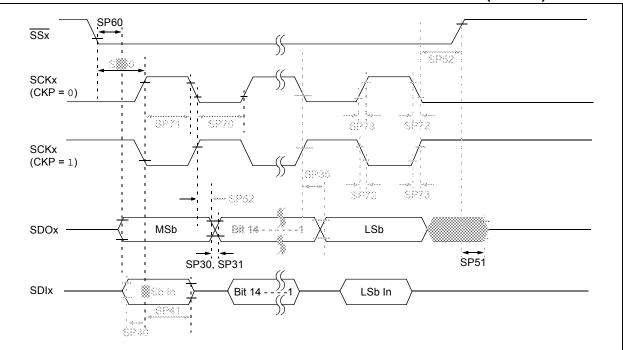

FIGURE 36-15: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 36-36: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHAI	RACTERIST	ICS	Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	—	_	ns		
SP71	TscH	SCKx Input High Time	30	—	_	ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	_	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP50	TssL2scH, TssL2scL	SSx to SCKx ↑ or SCKx Input	120		—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns		
SP52	TscH2ssH TscL2ssH	SSx After SCKx Edge	1.5 Tcy + 40	—	—	ns		

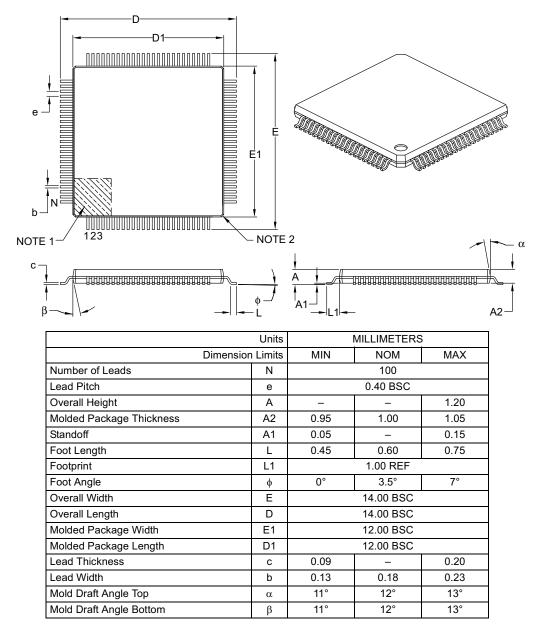
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Assumes 50 pF load on all SPIx pins.

FIGURE 36-16: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 36-37: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CH	ARACTERI	STICS	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_		ns		
SP71	TscH	SCKx Input High Time	30	—	_	ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾		10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	_	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns		
SP52	TscH2ssH TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40	_		ns		
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	_	_	50	ns		


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B