

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb406t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 121-PIN

Feeturer	PIC24FJXXXGA/GB412								
Features	64GA	128GA	256GA	64GB	128GB	256GB			
Operating Frequency		•	DC – 3	32 MHz		-			
Program Memory (bytes)	64K	128K	256K	64K	128K	256K			
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064			
Data Memory (bytes)	8K	10	6K	8K	10	6K			
Interrupt Sources (soft vectors/ NMI traps)			113 (1	107/6)					
I/O Ports			Ports A, B, C,	D, E, F, G, H,	J				
Total I/O Pins		102			101				
Remappable Pins			44 (32 I/O, 1	2 input only)					
Timers:									
Total Number (16-bit)			19	(1,2)					
32-Bit (from paired 16-bit timers)				9					
Input Capture w/Timer Channels			-	(2)					
Output Compare/PWM Channels			6	(2)					
Single Output CCP (SCCP)				6					
Multiple Output CCP (MCCP)				1					
Serial Communications:									
UART			-	(2)					
SPI (3-wire/4-wire)			4	(2)					
l ² C			:	3					
USB On-The-Go		No			Yes				
Cryptographic Engine			Y	es					
Parallel Communications (EPMP/PSP)			Y	es					
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			2	24					
Digital-to-Analog Converter (DAC)				1					
Analog Comparators			;	3					
CTMU Interface			Y	es					
LCD Controller (available pixels)			512 (64 SE	G x 8 COM)					
JTAG Boundary Scan			Y	es					
Resets (and delays)	C	MCLR, WI	DT, Illegal Opc Traps, Config	POR, BOR, RE code, REPEAT guration Word LL Lock)	Instruction,	on,			
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing I	Mode Variatio	ns			
Packages			121-Pin	TFBGA					

Note 1: Includes the Timer modes of SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

	Pir	/Pad Numl	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
SEG41	_	53	J10	0	ANA	LCD Driver Segment Outputs
SEG42	_	66	E11	0	ANA	
SEG43	_	67	E8	0	ANA	
SEG44	—	79	A9	0	ANA	
SEG45	—	80	D8	0	ANA	
SEG46	—	89	E6	0	ANA	
SEG47	59	88	A6	0	ANA	
SEG48	—	17	G3	0	ANA	
SEG49	—	90	A5	0	ANA	
SEG50	—	1	B2	0	ANA	
SEG51	—	7	E4	0	ANA	
SEG52	—	9	E1	0	ANA	
SEG53	—	39	L6	0	ANA	
SEG54	_	40	K6	0	ANA	
SEG55	_	58	H11	0	ANA	
SEG56	_	59	G10	0	ANA	
SEG57	_	91	C5	0	ANA	
SEG58	_	92	B5	0	ANA	
SEG59	_	95	C4	0	ANA	
SEG60	_	96	C3	0	ANA	
SEG61	—	97	A3	0	ANA	
SEG62	64	100	A1	0	ANA	
SEG63	18	27	J3	0	ANA	
SOSCI	47	73	C10	—	—	Secondary Oscillator/Timer1 Clock Input
SOSCO	48	74	B11	—	—	Secondary Oscillator/Timer1 Clock Output
SS4/FSYNC4	24	35	K5	I/O	DIG/ST	SPI4 Slave Select/Frame Sync
T1CK	22	33	L4	I	ST	Timer1 Clock
ТСК	27	38	J6	I	ST	JTAG Test Clock/Programming Clock Input
TDI	28	60	G11	I	ST	JTAG Test Data/Programming Data Input
TDO	24	61	G9	0	DIG	JTAG Test Data Output
TMPR	22	33	L4	—	—	Tamper Detect Input
TMS	23	17	G3	I	ST	JTAG Test Mode Select Input
U5CTS	58	87	B6	I	ST	UART5 Clear-to-Send Output
U5RTS/U5BCLK	55	84	C7	0	DIG	UART5 Request-to-Send Input
U5RX	54	83	D7	I	ST	UART5 Receive Input
U5TX	49	76	A11	0	DIG	UART5 Transmit Output
U6CTS	46	72	D9	I	ST	UART6 Clear-to-Send Output
U6RTS/U6BCLK	42	68	E9	0	DIG	UART6 Request-to-Send Input
U6RX	27	41	J7	I	ST	UART6 Receive Input
U6TX	18	27	J3	0	DIG	UART6 Transmit Output
USBID	_	—	—	I	ST	USB OTG ID Input
USBOEN	_	_	_	0	DIG	USB Output Enable (active-low)
USBOEN	TTL input buff	<u> </u>	—	0		USB Output Enable (active-low)

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

	Pir	n/Pad Num	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
VBAT	57	86	A7	Р	—	Backup Battery
VBUS	—	_	_	Р	—	VBUS Supply
VCAP	56	85	B7	I/O	—	External Filter Capacitor Connection (regulator enabled)
Vdd	10,26,38	2,16,37, 46,62	C2,G5,H6, K8,F8,E7	Р	—	Positive Supply for Peripheral Digital Logic and I/O Pins
Vdd	_		D6	Р	_	
VLCAP1	5	11	F4	0	ANA	LCD Drive Charge Pump Capacitor Inputs
VLCAP2	6	12	F2	0	ANA	
VREF+	16	25,29	K2,K3	I	ANA	Comparator and A/D Reference Voltage (high) Input
VREF-	15	24,28	K1,L2	Ι	ANA	Comparator and A/D Reference Voltage (low) Input
Vss	9,25,41	15,36,45, 65,75	F5,G6,G7, F10,D10, B10	Р	—	Ground Reference for Peripheral Digital Logic and I/O Pins
Vss	—		C6	Р	—	1
VUSB3V3	—	—	—	Р	_	3.3V VUSB

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

Pin/Pad Number Pin Function I/O Input Buffer Description 64-Pin 100-Pin 121-Pin TQFP TQFP TFBGA SEG0 4 10 E3 0 ANA LCD Driver Segment Outputs SEG1 ANA 8 14 F3 0 SEG2 11 20 H1 0 ANA 0 SEG3 12 21 H2 ANA SEG4 13 22 J1 0 ANA 0 SEG5 14 23 J2 ANA SEG6 15 24 K1 0 ANA SEG7 16 25 K2 0 ANA SEG8 29 43 K7 ANA 0 SEG9 30 44 L8 0 ANA SEG10 31 49 L10 ANA 0 SEG11 32 50 L11 0 ANA SEG12 33 51 K10 0 ANA SEG13 42 68 E9 0 ANA SEG14 E10 43 69 0 ANA SEG15 44 70 D11 0 ANA 71 C11 0 SEG16 45 ANA SEG17 46 72 D9 0 ANA SEG18 27 41 J7 0 ANA L7 SEG19 28 42 0 ANA SEG20 49 76 A11 0 ANA SEG21 50 77 A10 0 ANA SEG22 51 78 B9 0 ANA SEG23 52 81 C8 0 ANA SEG24 53 82 B8 0 ANA SEG25 54 83 D7 0 ANA SEG26 55 84 C7 0 ANA SEG27 B6 0 58 87 ANA SEG28 ____ 61 G9 0 ANA 23 SEG29 H5 0 ANA 34 SEG30 22 33 L4 0 ANA 0 SEG31 21 32 K4 ANA SEG32 D1 0 ANA ____ 6 SEG33 8 E2 0 ANA ____ SEG34 18 G1 0 ANA ____ SEG35 19 G2 0 ANA SEG36 28 L2 0 ANA SEG37 29 K3 0 ANA ____ SEG38 47 L9 0 ANA SEG39 ____ 48 K9 0 ANA SEG40 52 K11 0 ANA

TABLE 1-5: PIC24FJ256GB412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0
Legend:		C = Clearable	bit	r = Reserved I	bit		

Legena:	C = Clearable bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh) or the data RAM space (0800h to FFFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

The DMA Controller can use 63 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order than their natural interrupt priority and are shown in Table 5-1. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction; Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- · Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ256GA412/GB412 family devices, the 12-bit A/D Converter module is the only PIA-capable peripheral. Details for its use in PIA mode are provided in **Section 27.0 "12-Bit A/D Converter with Threshold Detect"**.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
0-0	T4IP2	T4IP1	T4IP0	0-0	OC4IP2	OC4IP1	OC4IP0
 bit 15	1411 2	1711 1	1411 0		004112	004111	bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	OC3IP2	OC3IP1	OC3IP0		DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown
hit 15	Unimplomon	ted: Dood on '	`				
bit 15 bit 14-12	-	ted: Read as 'd imer4 Interrupt					
DIL 14-12		pt is Priority 7 (•	v interrunt)			
	•	prist nonty / (ingricat priorit	y mterrupt)			
	•						
	•						
		pt is Priority 1	ahlad				
hit 11	000 = Interru	pt source is dis					
	000 = Interru Unimplemen	pt source is dis ted: Read as '()'	Interrupt Drier	ty bita		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 4	•	ty bits		
bit 11 bit 10-8	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '()' Ire Channel 4	•	ty bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 4	•	ty bits		
	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru •	pt source is dis ted: Read as '(Output Compa pt is Priority 7 ()' Ire Channel 4	•	ty bits		
	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	₎ , ire Channel 4 highest priorit <u>i</u>	•	ty bits		
bit 10-8	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	_o , ire Channel 4 highest priority abled	•	ty bits		
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} ire Channel 4 highest priority abled	y interrupt)			
bit 10-8	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (⁾ ire Channel 4 highest priority abled) ire Channel 3	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	^{D'} Ire Channel 4 highest priorit abled D' Ire Channel 3 highest priorit	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} Ire Channel 4 highest priority abled highest priority abled D'	y interrupt) Interrupt Priori y interrupt)			
bit 10-8 bit 7	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen DMA2IP<2:0:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	^{D'} Ire Channel 4 highest priority abled D' Ire Channel 3 highest priority abled D' el 2 Interrupt F	y interrupt) Interrupt Priori y interrupt) Priority bits			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC4IP<2:0>: 111 = Interru 001 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe pt is Priority 7 (^{b)} Ire Channel 4 highest priority abled b) Ire Channel 3 highest priority abled b) el 2 Interrupt F highest priority	y interrupt) Interrupt Priori y interrupt) Priority bits			

REGISTER 8-28: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

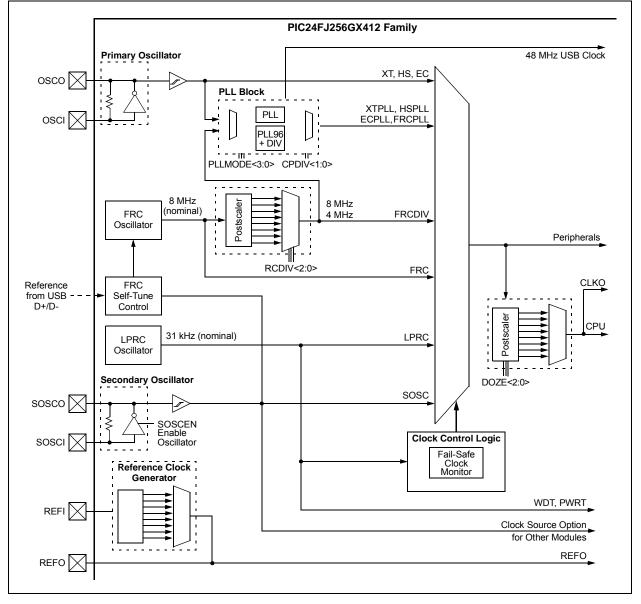
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
_	CCP1IP2	CCP1IP1	CCP1IP0	—	RTCIP2	RTCIP1	RTCIP0							
oit 15							bit							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
	DMA5IP2	DMA5IP1	DMA5IP0		SPI3RXIP2	SPI3RXIP1	SPI3RXIP							
bit 7	Divition 2		Division o				bit							
~														
Legend:														
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown							
bit 15	Unimplemen	ted: Read as '	י'											
bit 14-12		MCCP1 Capt	-	-	ity bits									
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)										
	•													
	•													
	001 = Interrupt is Priority 1													
	000 = Interru	pt source is dis	abled											
bit 11	Unimplemen	ted: Read as '	כי											
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck and Calend	ar Interrupt Pi	riority bits									
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)										
	•													
	•													
	001 = Interru	pt is Priority 1												
		pt source is dis	abled											
bit 7		ted: Read as '												
bit 6-4	-	>: DMA Chann		riority bits										
		pt is Priority 7 (=	-										
	•	. , , ,		• • •										
	•													
	• 001 = Interrupt is Priority 1													
		pt is Phoney 1	abled											
	000 - 1000													
hit 3		-			Unimplemented: Read as '0'									
	Unimplemen	ted: Read as '	כי	iority hits										
	Unimplemen SPI3RXIP<2:	ted: Read as '(0>: SPI3 Recei	o' ve Interrupt Pr	-										
	Unimplemen SPI3RXIP<2:	ted: Read as '	o' ve Interrupt Pr	-										
bit 3 bit 2-0	Unimplemen SPI3RXIP<2:	ted: Read as '(0>: SPI3 Recei	o' ve Interrupt Pr	-										
	Unimplemen SPI3RXIP<2: 111 = Interru • •	ted: Read as 'o 0>: SPI3 Recei pt is Priority 7 (o' ve Interrupt Pr	-										
	Unimplemen SPI3RXIP<2: 111 = Interru • • 001 = Interru	ted: Read as 'o 0>: SPI3 Recei pt is Priority 7 (^{)'} ve Interrupt Pr highest priority	-										

REGISTER 8-37: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—	FSTIP2	FSTIP1	FSTIP0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-11	Unimplement	ted: Read as '	0'				
bit 10-8	FSTIP<2:0>:	FRC Self-Tune	e Interrupt Prior	rity bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	001 = Interru		ablad				
		pt source is dis					
bit 7-0	Unimplement	i ac heag 'hat	∩'				
	omplomon		0				

REGISTER 8-48: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700). The information in this data sheet supersedes the information in the FRM.

The oscillator system for PIC24FJ256GA412/GB412 family devices has the following features:

 A Total of Four External and Internal Oscillator Options as Clock Sources, providing 11 Different Clock Modes

- An On-Chip PLL Block to provide a Wide Range of Precise Frequency Options for the System Clock, plus a Stable 48 MHz Clock for USB Devices
- Software-Controllable Switching between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable Reference Clock for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ256GA412/GB412 FAMILY GENERAL CLOCK DIAGRAM

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Information on voltage tolerance is provided in the pinout diagrams in the beginning of this data sheet. For more information, refer to **Section 36.0 "Electrical Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with all 16-Bit Operating Modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

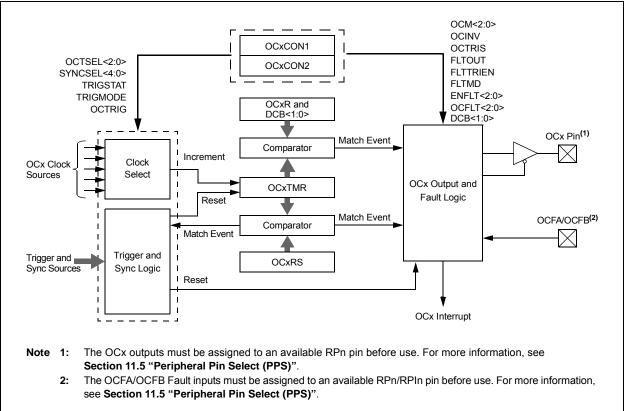
They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep Modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:


- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

NOTES:

FIGURE 16-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

16.2 Compare Operations

In Compare mode (Figure 16-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bits for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

25.11 Programming CFGPAGE (Page 0) Configuration Bits

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 3. Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 6. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status by performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

25.12 Programming Keys

- 1. If not already set, set the CRYON bit.
- 2. Configure KEYPG<3:0> to the page you want to program.
- 3. Select the key storage destination using the KEYPSEL bit (CRYOTP<8>).
- 4. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 5. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 6. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 7. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 8. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 9. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status by performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

REGISTER 25-1: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	CTRSIZE6(2,3)	CTRSIZE5(2,3)	CTRSIZE4(2,3)	CTRSIZE3(2,3)	CTRSIZE2(2,3)	CTRSIZE1(2,3)	CTRSIZE0(2,3
bit 15							bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
SKEYSEL	KEYMOD1(2)	KEYMOD0(2)	KEYWIPE	KEYSRC3(2)	KEYSRC2(2)	KEYSRC1(2)	KEYSRC0(2)
bit 7	-	·		·	- -	-	bit C
Legend:		S = Settable O	nly bit				
R = Reada	ble bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	-	ted: Read as '0'					
bit 14-8		>: Counter Size					
	Counter is de	efined as CRY	ГХТВ <n:0>, w</n:0>	here n = CTR	SIZEX. The c	ounter increme	nts after each
		generates a rol 28 bits (CRYTX)		ien the counter	rolls over from	$(2^{11} - 1)$ to 0.	
		27 bits (CRYTX)	,				
	•	(-					
	•						
	•	bits (CRYTXTB	<2.0~)				
		bits (CRYTXTB					
		bit (CRYTXTB<	,	vent occurs whe	en CRYTXTB<)> toggles from	'1' to '0'
bit 7	SKEYSEL: Se	ession Key Sele	ct bit ⁽¹⁾				
	1 = Key gener	ration/encryptior	n/loading perfo	rmed with CRY	KEY<255:128>		
		ration/encryption				(1.0)	
bit 6-5		D>: AES/DES Er			Length Select	bits ^(1,2)	
	For DES Encr 11 = 64-bit, 3-	ypt/Decrypt Ope	erations (CPHI	RSEL = 0):			
	11 = 64-bit, 3 - 10 = Reserved						
		andard 2-key 3[DES				
	00 = 64-bit DE						
		ypt/Decrypt Ope	erations (CPH	RSEL = 1):			
	11 = Reserved						
	10 = 256-bit A 01 = 192-bit A						
	00 = 128-bit A						
bit 4	KEYWIPE: Ke	ey RAM Erase E	Enable bit ⁽¹⁾				
		ey RAM (set only erase has not b				ne next clock cy	vcle)
bit 3-0	-	>: Cipher Key S		·			
		25-1 and Table		SRC<3:0> value	es.		
Note 1:	These hits are n	eset on system	Resets or whe	never the CPV	MD hit (PMD&	(N>) is sat	
		bit fields are loc					s set)

3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
HLVDEN	_	LSIDL		_			
bit 15					·	·	bit 8
DAMO	DAMA	DAVA		DAMA	DAMO	DAALO	DAMA
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	-	gh/Low-Voltage	Detect Power	Enable bit			
	1 = HLVD is e 0 = HLVD is c						
bit 14		ited: Read as '	n'				
bit 13	-	Stop in Idle M					
		•		device enters Id	le mode		
		s module opera					
bit 12-8	Unimplemen	ted: Read as '	0'				
bit 7	VDIR: Voltage	e Change Direc	ction Select bit	İ.			
				exceeds trip poir alls below trip p			
bit 6	BGVST: Band	d Gap Voltage	Stable Flag bit				
		that the band g that the band g					
bit 5	IRVST: Intern	al Reference V	oltage Stable	Flag bit			
			e is stable; the	e High-Voltage D	Detect logic gen	erates the inter	rupt flag at the
		voltage range	ae is unstable:	the High-Voltag	e Detect loaic	will not generat	te the interrupt
				the HLVD inter			
bit 4	Unimplemen	ted: Read as '	0'				
bit 3-0	HLVDL<3:0>	: High/Low-Vol	tage Detection	I Limit bits			
	1111 = Exter 1110 = Trip F 1101 = Trip F 1100 = Trip F	Point 1 ⁽¹⁾ Point 2 ⁽¹⁾	it is used (inpu	ut comes from th	ne LVDIN pin)		
	•						
	•						
	0100 = Trip F 00xx = Unus						

REGISTER 32-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 35-2: INSTRUCTION SET OVERVIEW (CONTINUED)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count — Tape and Reel F		a) b) c)	nples: PIC24FJ64GA406-I/MR: PIC24F General Purpose Device with Dual Partition Flash Program Memory and XLP Technology, 64-Kbyte Program Memory, 64-Pin, Industrial Temp., QFN Package. PIC24FJ128GB410-I/PT: PIC24F USB OTG Device with Dual Partition Flash Program Memory and XLP Technology, 128-Kbyte Program Memory, 100-Pin, Industrial Temp., TQFP Package. PIC24F USB OTG Device with Dual Partition Flash Program Memory and XLP Technology, 256-Kbyte Program Memory, 121-Pin, Industrial Temp., TFBGA Package.
Architecture	24 = 16-Bit Modified Harvard without DSP FJ = Flash Program Memory		
Product Group	GA4 = General Purpose Microcontrollers with Dual Partition Flash Program Memory and XLP Technology GB4 = USB OTG Microcontrollers with Dual Partition Flash Program Memory and XLP Technology		
Pin Count	06 = 64-pin (TQFP, QFN) 10 = 100-pin (TQFP) 12 = 121-pin (TFBGA)		
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package	BG = 121-ball (10x10x1.1 mm) TFBGA (Ball Grid Array) PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)		
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820