

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb406t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Mem	nory		Ana	log P	eriphe	erals			Digita	al Per	ipher	als					els)	L L
Device	Program (bytes)	Data (bytes)	Pins	10/12-Bit A/D (ch)	10-Bit DAC	Comparators	CTMU	MCCP/SCCP	16/32-Bit Timers	NWM-DO/DI	I ² C	IdS		dSdJ/dWd3	CLC	DIO ASU	Crypto Engine	LCD Controller (pixels)	Deep Sleep + VBAT
PIC24FJ256GA412	256K	16K	121	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	512	Y
PIC24FJ256GA410	256K	16K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	480	Υ
PIC24FJ256GA406	256K	16K	64	16	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Υ	248	Y
PIC24FJ128GA412	128K	16K	121	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	512	Υ
PIC24FJ128GA410	128K	16K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	480	Υ
PIC24FJ128GA406	128K	16K	64	16	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	248	Υ
PIC24FJ64GA412	64K	8K	121	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	512	Υ
PIC24FJ64GA410	64K	8K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Ν	Y	480	Y
PIC24FJ64GA406	64K	8K	64	16	1	3	Υ	1/6	31/15	6/6	3	4	6	Υ	4	Ν	Υ	248	Υ
PIC24FJ256GB412	256K	16K	121	24	1	3	Υ	1/6	31/15	6/6	3	4	6	Υ	4	Υ	Υ	512	Υ
PIC24FJ256GB410	256K	16K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Y	Y	480	Y
PIC24FJ256GB406	256K	16K	64	16	1	3	Υ	1/6	31/15	6/6	3	4	6	Υ	4	Υ	Υ	240	Υ
PIC24FJ128GB412	128K	16K	121	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Y	Y	512	Υ
PIC24FJ128GB410	128K	16K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Υ	Υ	480	Y
PIC24FJ128GB406	128K	16K	64	16	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Υ	Υ	240	Y
PIC24FJ64GB412	64K	8K	121	24	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Y	Y	512	Y
PIC24FJ64GB410	64K	8K	100	24	1	3	Y	1/6	31/15	6/6	3	4	6	Υ	4	Y	Y	480	Y
PIC24FJ64GB406	64K	8K	64	16	1	3	Y	1/6	31/15	6/6	3	4	6	Y	4	Y	Y	240	Y

Peripheral Features

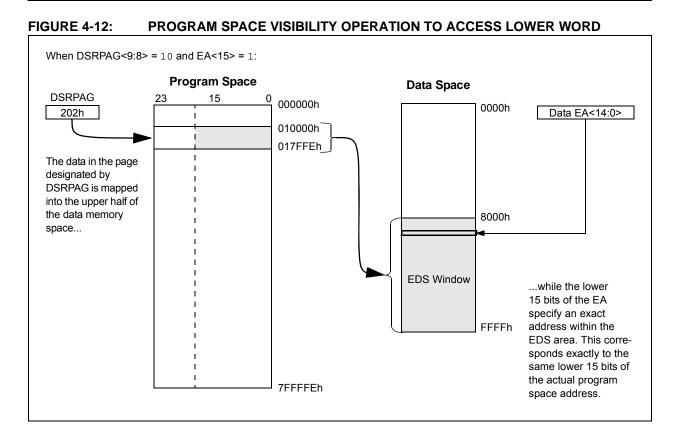
- LCD Display Controller:
 - Up to 64 Segments by 8 Commons
 - Internal charge pump and low-power, internal resistor biasing
 Operation in Sleep mode
- Up to Five External Interrupt Sources
- Peripheral Pin Select (PPS); allows Independent I/O Mapping of Many Peripherals
- Six-Channel DMA Supports All Peripheral modules:
 Minimizes CPU overhead and increases data throughput
- Five 16-Bit Timers/Counters with Prescalers:
- Can be paired as 32-bit timers/counters
- Using a combination of Timer, CCP, IC and OC Timers, the Device can be Configured to use up to 31 16-Bit Timers, and up to 15 32-Bit Timers
- Six Input Capture modules, each with a Dedicated
 16-Bit Timer
- Six Output Compare/PWM modules, each with a Dedicated 16-Bit Timer
- Six Single Output CCPs (SCCP) and One Multiple Output CCP (MCCP) modules:
- Independent 16/32-bit time base for each module
- Internal time base and Period registers
- Legacy PIC24F Capture and Compare modes (16 and 32-bit)
- Special variable frequency pulse and Brushless DC Motor (BDCM) Output modes

- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC) with Timestamping:
- Tamper detection with timestamping feature and tamper pin
- Runs in Deep Sleep and VBAT modes
- Four 3-Wire/4-Wire SPI modules (support 4 Frame modes) with 8-Level FIFO Buffer
- Three I²C modules support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- Six UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA[®]
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Four Configurable Logic Cells (CLCs):
 - Two inputs and one output, all mappable to peripherals or I/O pins
- AND/OR/XOR logic and D/JK flip-flop functions
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Multiple I/O Pins

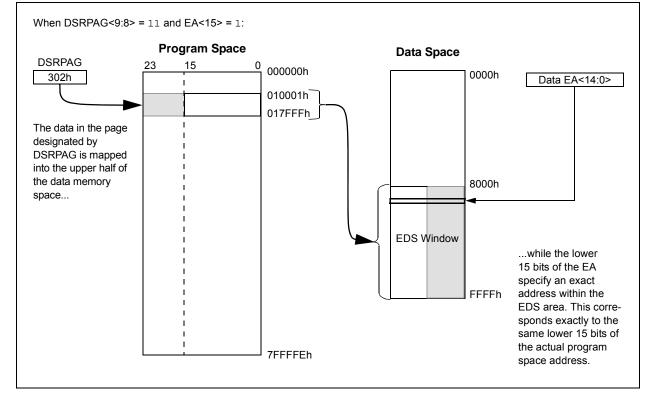
4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space (DS) during code execution.


4.1 **Program Memory Space**


The program address memory space of the PIC24FJ256GA412/GB412 family devices is 4M instructions. The space is addressable by a 24-bit value

derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in **Section 4.4** "Interfacing Program and Data Memory Spaces".


User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for PIC24FJ256GA412/GB412 family devices are shown in Figure 4-1.

FIGURE 4-13: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit	_	—		—	—	—	—	—
	bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—	—	—	—		_	SGHT
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = A software generated hard trap has occurred

0 = No software generated hard trap has occurred

REGISTER 8-21: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	_		—	—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		JTAGIE	U6ERIE	U6TXIE	U6RXIE	U5ERIE	U5TXIE				
bit 7							bit 0				
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown						
bit 15-6	Unimplemen	ted: Read as '	כי								
bit 5	JTAGIE: JAT	G Interrupt Ena	ble bit								
	1 = Interrupt request is enabled										
	0 = Interrupt	request is not e	enabled								
bit 4	U6ERIE: UAF	U6ERIE: UART6 Error Interrupt Enable bit									
		request has oc									
	0 = Interrupt	request has no	t occurred								
bit 3		T6 Transmitter	•	ole bit							
		request has oc									
		request has no									
bit 2		RT6 Receiver Ir	•	bit							
	1 = Interrupt	request has oc	curred								

- 0 = Interrupt request has not occurred
- bit 1 U5ERIE: UART5 Error Interrupt Enable bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 U5TXIE: UART5 Transmitter Interrupt Enable bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 8-35: IPC13: INTERRUPT PRIORITY CONTRO	L REGISTER 13
---	---------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	CRYDNIP2	CRYDNIP21	CRYDNIP0		INT4IP2	INT4IP1	INT4IP0					
oit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
	INT3IP2	INT3IP1	INT3IP0	—		_	_					
bit 7							bit C					
Legend:												
R = Readab	le bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15	Unimplemen	ted: Read as '0	,									
bit 14-12	-	0>: Cryptograph		one Interrupt F	Priority bits							
		111 = Interrupt is Priority 7 (highest priority interrupt)										
	•											
	•											
	•											
	001 = Interru	pt is Priority 1 pt source is disa	abled									
bit 11		ited: Read as '0										
	-			ita								
bit 10-8		External Interro										
	•	pt is Priority 7 (I	nignest priority	interrupt)								
	•											
	•											
	001 = Interru											
	000 = Interru	pt source is disa	abled									
bit 7	Unimplemen	ted: Read as '0	,									
bit 6-4	INT3IP<2:0>:	External Interro	upt 3 Priority b	its								
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interru	nt is Priority 1										
		pt source is disa	abled									
bit 3-0		ted: Read as '0										
510-0	Sumblemen	icu. Neau as u										

	REGISTER 8-43:	IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0
bit 15			•		-		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
bit 7						•	bit 0
Legend:							

Legena:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	Unimple	mented: Read as '0'		
bit 14-12	U4ERIP•	<2:0>: UART4 Error Interrupt	Priority bits	
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
	000 = In	terrupt source is disabled		
bit 11	Unimple	mented: Read as '0'		
bit 10-8		<2:0>: USB1 (USB OTG) Inte		
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
		terrupt source is disabled		
bit 7	-	mented: Read as '0'		
bit 6-4		P<2:0>: I2C2 Bus Collision Ir		
	111 = In	terrupt is Priority 7 (highest p	riority interrupt)	
	•			
	•			
		terrupt is Priority 1		
1.1.0		terrupt source is disabled		
bit 3	-	mented: Read as '0'		
bit 2-0		P<2:0>: I2C1 Bus Collision In		
	•	terrupt is Priority 7 (highest p	nonty interrupt)	
	•			
	•			
		terrupt is Priority 1		
	$000 = \ln 3$	terrupt source is disabled		

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1				
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0				
bit 15						•	bit				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
CPDIV1	CPDIV0	PLLEN		—		_	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown				
bit 1E		on Interrupt hi									
bit 15		on Interrupt bi		et the CPU perip	oheral clock ra	tio to 1·1					
		have no effect									
bit 14-12	DOZE<2:0>:	CPU Periphera	I Clock Ratio	Select bits							
	111 = 1 : 128										
	110 = 1:64										
	101 = 1:32 100 = 1:16										
	100 = 1.16 011 = 1.8 (default)										
	010 = 1:4										
	001 = 1:2										
	000 = 1:1	(1)									
bit 11	DOZEN: Doze										
		0> bits specify pheral clock ra		oheral clock ratio)						
bit 10-8		FRC Postscal									
	111 = 31.25 k	Hz (divide-by-2	256)								
	110 = 125 kHz (divide-by-64)										
	101 = 250 kHz (divide-by-32)										
	100 = 500 kHz (divide-by-16)										
	011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4)										
	010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) (default)										
	000 = 8 MHz	• • • •	,								
bit 7-6	CPDIV<1:0>:	System Clock	Select bits (po	ostscaler select f	rom fast PLL b	oranch)					
	CPDIV<1:0>: System Clock Select bits (postscaler select from fast PLL branch) 11 = 4 MHz (divide-by-8) ⁽²⁾										
	$10 = 8 \text{ MHz} (divide-by-4)^{(2)}$										
	01 = 16 MHz (divide-by-2) 00 = 32 MHz (divide-by-1)										
L:1 F		• • •									
bit 5		PLL Enable bit	L								
	1 = PLL is alw 0 = PLL is onl		a PLL Oscillat	or mode is seled	ted (OSCCON	 <14:12> = 011	L or 001)				
bit 4-0		ted: Read as '					,				
					interrupt occu						

2: This setting is not allowed while the USB module is enabled.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-14	Unimplement	ted: Read as 'd)'				
bit 13-8	RP1R<5:0>: F	RP1 Output Pir	n Mapping bits				
	Peripheral Ou	tput Number n	is assigned to	pin, RP1 (see T	able 11-12 for	peripheral func	tion numbers).

REGISTER 11-23: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

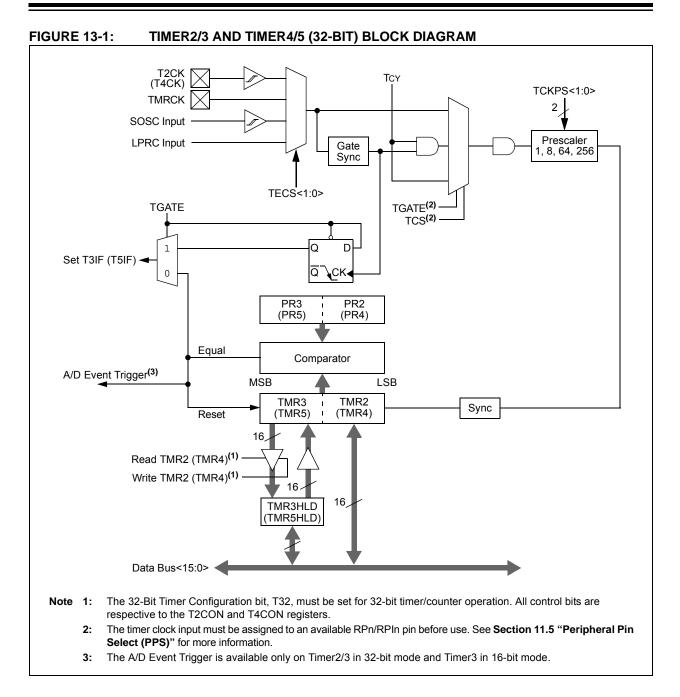
bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP0 (see Table 11-12 for peripheral function numbers).

REGISTER 11-24: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x =		x = Bit is unki	= Bit is unknown	
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, rea		ead as '0'		
Legend:								
bit 7					•		bit	
_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit	
	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits


Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-12 for peripheral function numbers).

bit 7-6

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽³⁾
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit⁽²⁾
 - 1 = Timer source is selected by TECS<1:0>0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TMRCK or TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
 - **3:** In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.

20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	_	VBUSVD
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a Type B cable has been plugged into the USB receptacle 0 = A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 OTG Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 OTG Specification") on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 OTG Specification") on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

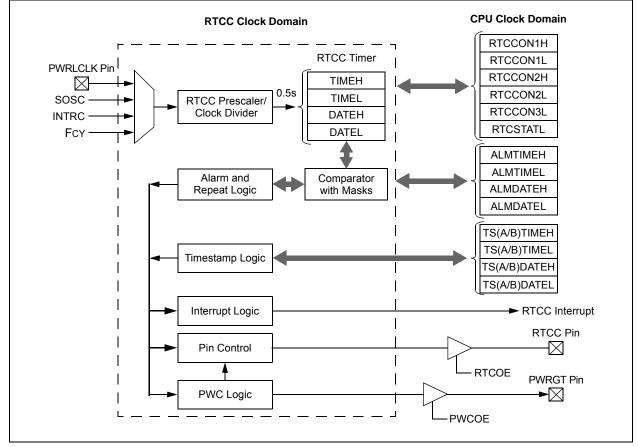
REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	—	—	—	_				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
UTEYE	UOEMON ⁽¹⁾	—	USBSIDL	—	—	PPB1	PPB0				
bit 7							bit				
Legend: R = Readabl	le hit	W = Writable	hit	U = Unimplerr	onted hit rea	ad as 'O'					
-n = Value at		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr	0.000				
	IFUR	I – DILISSE			areu		IOWIT				
bit 15-8	Unimplemen	ted: Read as	0'								
bit 7	•										
SIC 1	UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled										
	• •	ern test is disal									
bit 6	UOEMON: U	SB OE Monito	r Enable bit ⁽¹⁾								
	$1 = \overline{OE} \text{ signa}$ $0 = \overline{OE} \text{ signa}$		dicates interval	s during which	the D+/D- line	es are driving					
bit 5	Unimplemen	ted: Read as '	0'								
bit 4	USBSIDL: US	SB OTG Stop i	n Idle Mode bit								
			peration when t ation in Idle mo	he device enter de	rs Idle mode						
bit 3-2	Unimplemen	ted: Read as '	0'								
bit 1-0	PPB<1:0>: Ping-Pong Buffers Configuration bits										
	11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15										
				abled for all end							
			Buffers are ena Buffers are dis	abled for OUT E abled	inapoint u						
		a ing i ong									

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193). The information in this data sheet supersedes the information in the FRM.


The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Time (Hours, Minutes and Seconds) in 24-Hour (Military Time) Format
- Calendar (Weekday, Date, Month and Year)
- Year range from 2000 to 2099 with automatic Leap Year correction

- Alarm with Configurable Mask and Repeat
 Options
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- Multiple Clock Input Options, Including:
- 32.768 kHz crystal
- External Real-Time Clock (RTC)
- 50/60 Hz power line clock
- 31.25 kHz LPRC clock
- System clock, up to 32 MHz
- User Calibration with a Range of 2 ppm when using 32 kHz Source
- · Interrupt on Alarm and Timestamp Events
- Optional Timestamp Capture for Tamper Pin or Other Events
- User-Configurable Power Control with Dedicated Output Pin to Periodically Wake External Devices

FIGURE 24-1: RTCC HIGH-LEVEL BLOCK DIAGRAM

REGISTER 25-3: CRYSTAT: CRYPTOGRAPHIC STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-x, HSC ⁽¹⁾	R-0, HSC ⁽¹⁾	R/C-0, HS ⁽²⁾	R/C-0, HS ⁽²⁾	U-0	R-0, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾
CRYBSY ⁽⁴⁾	TXTABSY	CRYABRT ⁽⁵⁾	ROLLOVR	—	MODFAIL ⁽³⁾	KEYFAIL ^(3,4)	PGMFAIL ^(3,4)
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable/C	learable bit
R = Readable bit	HS = Hardware Settable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	CRYBSY: Cryptographic Engine Busy Status bit ^(1, 4)
	1 = A cryptographic operation is in progress
	0 = No cryptographic operation is in progress
bit 6	TXTABSY: CRYTXTA Busy Status bit ⁽¹⁾
	1 = The CRYTXTA register is busy and may not be written to
	0 = The CRYTXTA is free and may be written to
bit 5	CRYABRT: Cryptographic Operation Aborted Status bit ^(2,5)
	1 = Last operation was aborted by clearing the CRYGO bit in software
	0 = Last operation completed normally (CRYGO cleared in hardware)
bit 4	ROLLOVR: Counter Rollover Status bit ⁽²⁾
	1 = The CRYTXTB counter rolled over on the last CTR mode operation; once set, this bit must be
	cleared by software before the CRYGO bit can be set again 0 = No rollover event has occurred
bit 3	Unimplemented: Read as '0'
bit 2	MODFAIL: Mode Configuration Fail Flag bit ^(1,3)
	1 = Currently selected operating and Cipher mode configuration is invalid; the CRYWR bit cannot be
	set until a valid mode is selected (automatically cleared by hardware with any valid configuration) 0 = Currently selected operating and Cipher mode configurations are valid
bit 1	KEYFAIL: Key Configuration Fail Status bit ^(1,3,4)
DILI	See Table 25-1 and Table 25-2 for invalid key configurations.
	1 = Currently selected key and mode configurations are invalid; the CRYWR bit cannot be set until a
	valid mode is selected (automatically cleared by hardware with any valid configuration)
	0 = Currently selected configurations are valid
bit 0	PGMFAIL: Key Storage/Configuration Program Fail Flag bit ^(1,3,4)
	1 = The page indicated by KEYPG<3:0> is reserved or locked; the CRYWR bit cannot be set and no
	programming operation can be started
	0 = The page indicated by KEYPG<3:0> is available for programming
Note 1:	These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.
2:	These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
3:	These bits are functional even when the module is disabled (CRYON = 0); this allows mode configurations
	to be validated for compatibility before enabling the module.
4:	These bits are automatically set during all OTP read operations, including the initial read at POR. Once the read is completed, the bit assumes the proper state that reflects the current configuration.

5: If this bit is set, a cryptographic operation cannot be performed.

REGISTER 27-8: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)

- - - CHH<25:24>(1) bit 15 bit 8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15 bit 8	_	—		—	—	—	CHH<2	5:24> ⁽¹⁾
	bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH<2	3:16> ⁽¹⁾			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

Unimplemented: Read as '0' bit 15-10 bit 9-0 CHH<25:16>: A/D Compare Hit bits(1) If CM<1:0> = 11:

- 1 = A/D Result Buffer n has been written with data or a match has occurred
- 0 = A/D Result Buffer n has not been written with data
- For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

REGISTER 27-9: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHF	l<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHI	H<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-0	CHH<15:0>: A/D Compare Hit bits	

If CM<1:0> = 11:

-n = Value at POR

1 = A/D Result Buffer n has been written with data or a match has occurred

0 = A/D Result Buffer n has not been written with data

For All Other Values of CM<1:0>:

'1' = Bit is set

1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

x = Bit is unknown

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 33-6: FWDT: WATCHDOG TIMER CONFIGURATION WORD

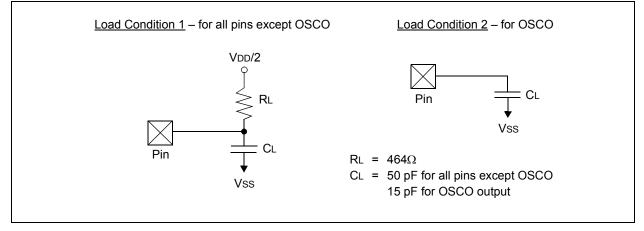
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	_		—	—	—
bit 23							bit 16

U-1	R/PO-1	R/PO-1	U-1	R/PO-1	U-1	R/PO-1	R/PO-1
—	WDTCLK1	WDTCLK0	-	WDTCMX	—	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	FWDTEN1	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	•	•					bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-15	Unimplemented: Read as '1'
bit 14-13	WDTCLK<1:0>: WDT Clock Source Select bits
	When WDTCMX = 1:
	11 = Always uses LPRC
	10 = Uses FRC when WINDIS = 0, system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
	01 = Always uses SOSC
	00 = Uses Fosc/2 when system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
	When WDTCMX = 0:
	LPRC is always the WDT clock source.
bit 12	Unimplemented: Read as '1'
bit 11	WDTCMX: WDT Clock Multiplexer Control bit
	1 = Enables WDT clock multiplexing
	0 = WDT clock multiplexing is disabled
bit 10	Unimplemented: Read as '1'
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Width Select bits
	11 = 25%
	10 = 37.5% 01 = 50%
	00 = 75%
bit 7	WINDIS: Windowed Watchdog Timer Disable bit
	1 = Standard Watchdog Timer is enabled
	0 = Windowed Watchdog Timer is enabled (FWDTEN<1:0> must not be '00')
bit 6-5	FWDTEN<1:0>: Watchdog Timer Configuration bits
	11 = WDT is always enabled; SWDTEN bit has no effect
	10 = WDT is enabled and controlled in firmware by the SWDTEN bit
	 01 = WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled 00 = WDT is disabled; SWDTEN bit is disabled
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	1 = Prescaler ratio of 1:128
	0 = Prescaler ratio of 1:32


36.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GA412/GB412 family AC characteristics and timing parameters.

TABLE 36-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial				
	Operating voltage VDD range as described in Section 36.1 "DC Characteristics ".					

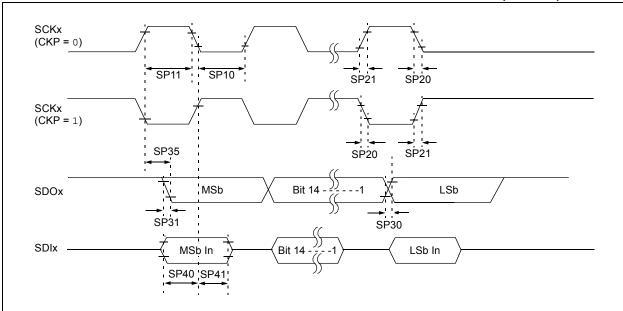

FIGURE 36-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

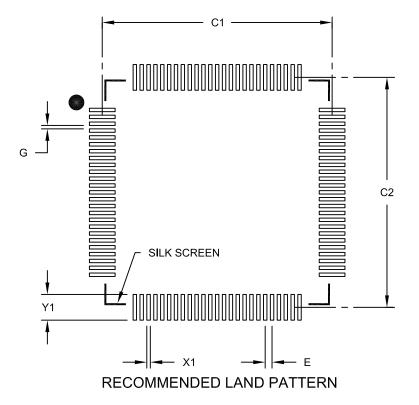
TABLE 36-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15		In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 36-13: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns		


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	Е		0.40 BSC			
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X100)	X1			0.20		
Contact Pad Length (X100)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B