

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb410t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA412 (CONTINUED)

Pin	Function	Pin	Function
J1	SEG4/AN3/C2INA/IOCB3/RB3	K7	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/IOCB14/RB14
J2	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/IOCB2/RB2	K8	VDD
J3	PGED2/SEG63/AN7/ RP7 /U6TX/IOCB7/RB7	K9	SEG39/ RP5 /IOCD15/RD15
J4	AVdd	K10	SEG12/RP16/IOCF3/RF3
J5	IOCH7/RH7	K11	SEG40/ RP30 /IOCF2/RF2
J6	TCK/IOCA1/RA1	L1	PGEC2/LCDBIAS3/AN6/RP6/IOCB6/RB6
J7	SEG18/AN12/U6RX/CTED2/PMA11/IOCB12/RB12	L2	SEG36/VREF-/CVREF-/PMA7/IOCA9/RA9
J8	IOCH9/RH9	L3	AVss
J9	IOCH10/RH10	L4	SEG30/AN9/TMPR/RP9/T1CK/IOCB9/RB9
J10	SEG41/ RP15 /IOCF8/RF8	L5	IOCH7/RH7
J11	SDA1/IOCG3/RG3	L6	SEG53/ RP31 /IOCF13/RF13
K1	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/RP1/CTED12/IOCB1/RB1	L7	SEG19/AN13/SDI4/CTED1/PMA10/IOCB13/RB13
K2	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/RP0/IOCB0/RB0	L8	SEG9/AN15/RP29/CTED6/PMA0/PMALL/IOCB15/RB15
K3	SEG37/VREF+/CVREF+/DVREF+/PMA6/IOCA10/RA10	L9	SEG38/ RPI43 /IOCD14/RD14
K4	SEG31/AN8/ RP8 /PWRGT/IOCB8/RB8	L10	SEG10/ RP10 /PMA9/IOCF4/RF4
K5	AN11/REFI1/SS4/FSYNC4/PMA12/IOCB11/RB11	L11	SEG11/RP17/PMA8/IOCF5/RF5
K6	SEG54/RPI32/CTED7/PMA18/IOCF12/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
SPI (Continued)			CLC	•		I2C3ADD	4C0	000000000000000000000000000000000000000
SPI1BUFL	400	000000000000000000	CLC1CONL	464	000000000000000000	I2C3MSK	4C2	000000000000000000000000000000000000000
SPI1BUFH	402	000000000000000000	CLC1CONH	466	000000000000000000	DMA		
SPI1BRGL	404	000xxxxxxxxxxx	CLC1SEL	468	000000000000000000	DMACON	4C4	000000000000000000000000000000000000000
SPI1IMSKL	408	000000000000000000	CLC1GLSL	46C	000000000000000000	DMABUF	4C6	000000000000000000000000000000000000000
SPI1IMSKH	40A	000000000000000000	CLC1GLSH	46E	000000000000000000	DMAL	4C8	0000000000000000000
SPI1URDTL	40C	000000000000000000	CLC2CONL	470	000000000000000000	DMAH	4CA	0000000000000000000
SPI1URDTH	40E	00000000000000000	CLC2CONH	472	00000000000000000	DMACH0	4CC	000000000000000000
SPI2CON1L	410	00000000000000000	CLC2SEL	474	00000000000000000	DMAINT0	4CE	000000000000000000
SPI2CON1H	412	000000000000000000	CLC2GLSL	478	000000000000000000	DMASRC0	4D0	000000000000000000
SPI2CON2L	414	000000000000000000	CLC2GLSH	47A	000000000000000000	DMADST0	4D2	0000000000000000000
SPI2STATL	418	000000000101000	CLC3CONL	47C	0101001100011000	DMACNT0	4D4	000000000000000000000000000000000000000
SPI2STATH	41A	000000000000000000	CLC3CONH	47E	000000000000000000	DMACH1	4D6	000000000000000000
SPI2BUFL	41C	000000000000000000	CLC3SEL	480	000000000000000000	DMAINT1	4D8	000000000000000000
SPI2BUFH	41E	000000000000000000	CLC3GLSL	484	000000000000000000000000000000000000000	DMASRC1	4DA	000000000000000000000000000000000000000
SPI2BRGL	420	000xxxxxxxxxxx	CLC3GLSH	486	000000000000000000000000000000000000000	DMADST1	4DC	000000000000000000000000000000000000000
SPI2IMSKL	424	000000000000000000000000000000000000000	CLC4CONL	488	000000000000000000000000000000000000000	DMACNT1	4DE	000000000000000000000000000000000000000
SPI2IMSKH	426	000000000000000000000000000000000000000	CLC4CONH	48A	000000000000000000000000000000000000000	DMACH2	4E0	000000000000000000000000000000000000000
SPI2URDTL	428	000000000000000000000000000000000000000	CLC4SEL	48C	000000000000000000000000000000000000000	DMAINT2	4E2	000000000000000000000000000000000000000
SPI2URDTH	42A	000000000000000000000000000000000000000	CLC4GLSL	490	000000000000000000000000000000000000000	DMASRC2	4E4	000000000000000000000000000000000000000
SPI3CON1L	42C	000000000000000000	CLC4GLSH	492	000000000000000000000000000000000000000	DMADST2	4E6	000000000000000000000000000000000000000
SPI3CON1H	42E	000000000000000000	l ² C			DMACNT2	4E8	000000000000000000000000000000000000000
SPI3CON2L	430	000000000000000000	I2C1RCV	494	000000000000000000	DMACH3	4EA	000000000000000000000000000000000000000
SPI3STATL	434	000000000101000	I2C1TRN	496	00000001111111	DMAINT3	4EC	000000000000000000000000000000000000000
SPI3STATH	436	000000000000000000	I2C1BRG	498	000000000000000000	DMASRC3	4EE	000000000000000000000000000000000000000
SPI3BUFL	438	000000000000000000	I2C1CONL	49A	00010000000000000	DMADST3	4F0	000000000000000000000000000000000000000
SPI3BUFH	43A	000000000000000000	I2C1CONH	49C	000000000000000000	DMACNT3	4F2	000000000000000000000000000000000000000
SPI3BRGL	43C	000xxxxxxxxxxx	I2C1STAT	49E	000000000000000000	DMACH4	4F4	000000000000000000
SPI3IMSKL	440	000000000000000000	I2C1ADD	4A0	000000000000000000	DMAINT4	4F6	000000000000000000
SPI3IMSKH	442	00000000000000000	I2C1MSK	4A2	00000000000000000	DMASRC4	4F8	000000000000000000
SPI3URDTL	444	000000000000000000	I2C2RCV	4A4	000000000000000000	DMADST4	4FA	000000000000000000
SPI3URDTH	446	00000000000000000	I2C2TRN	4A6	000000011111111	DMACNT4	4FC	000000000000000000000000000000000000000
SPI4CON1L	448	00000000000000000	I2C2BRG	4A8	00000000000000000	DMACH5	4FE	000000000000000000
SPI4CON1H	44A	00000000000000000	I2C2CONL	4AA	0001000000000000		•	
SPI4CON2L	44C	00000000000000000	I2C2CONH	4AC	00000000000000000			
SPI4STATL	450	000000000101000	I2C2STAT	4AE	00000000000000000			
SPI4STATH	452	000000000000000000	I2C2ADD	4B0	000000000000000000			
SPI4BUFL	454	000000000000000000	I2C2MSK	4B2	000000000000000000000000000000000000000			
SPI4BUFH	456	000000000000000000	I2C3RCV	4B4	000000000000000000			
SPI4BRGL	458	000xxxxxxxxxxx	I2C3TRN	4B6	00000001111111			
SPI4IMSKL	45C	000000000000000000	I2C3BRG	4B8	000000000000000000			
SPI4IMSKH	45E	000000000000000000	I2C3CONL	4BA	00010000000000000			
SPI4URDTL	460	000000000000000000	I2C3CONH	4BC	000000000000000000			
SPI4URDTH	462	000000000000000000	I2C3STAT	4BE	000000000000000000000000000000000000000			

TABLE 4-9: SFR BLOCK 400h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

REGISTER	5-2: DMAC	CHn: DMA Cł	HANNEL n C	ONTROL RE	GISTER		
U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
_	_	—	—	_	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7							bit
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
			.1				
bit 15-13	-	ted: Read as '().				
bit 12	Reserved: Ma		.,				
bit 11	-	ted: Read as '(
bit 10		Write Mode bit write is initiate		for over write			
		write is initiate			e to DIVIADS IT	I	
bit 9		dress and Cou)			
					reloaded to th	eir previous va	lues upon th
		e next operation		•			(0)
					ded on the star	t of the next ope	eration ⁽²⁾
bit 8		A Channel Soft	•				
		equest is initiate request is pend		automatically of	cleared upon c	ompletion of a [OMA transfer
bit 7-6	SAMODE<1:0	0>: Source Add	lress Mode Se	lection bits			
		Cn is used in P					
		Cn is decremen Cn is incremen					
		Cn remains un				mpletion	
bit 5-4		0>: Destination	-	-			
		Tn is used in P				nchanged	
	10 = DMADS	Tn is decremer	nted based on	the SIZE bit aft	ter a transfer co	ompletion	
		Tn is incremen				mpletion	
hit 2 2		Tn remains und	-	-	Dietion		
bit 3-2		0>: Transfer Mo		nis			
	10 = Continuo	ed Continuous r	noue				
		ed One-Shot mo	ode				
	00 = One-Sho	ot mode					
bit 1	SIZE: Data Si	ze Selection bi	t				
	1 = Byte (8-bi 0 = Word (16-						
bit 0	CHEN: DMA	Channel Enable	e bit				
	1 = The corre	sponding chan	nel is enabled				
		sponding chan					
Note 1: O	nly the original D	MACNTn is rec	uired to be sto	red to recover fl	he original DMA	SRCn and DM	ADSTn value
	MACNTn will alv		-		-		
	e number of tra	-			-		

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24F Family Reference Manual", "Dual Partition Flash Program Memory" (DS70005156). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GA412/GB412 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA412/GB412 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

1 1 1 24 Bits \sim Using Program Counter 0 Program 0 Counter Working Reg EA Usina Table TBLPAG Reg 1/0Instruction 8 Bits 16 Bits ▲. User/Configuration Byte 24-Bit EA Select Space Select 1

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

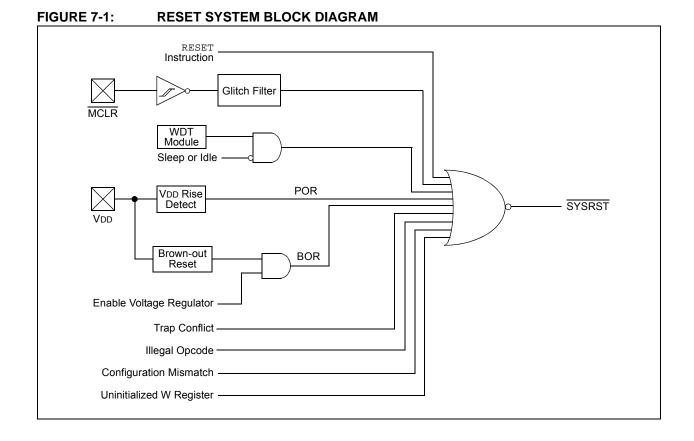
7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). In addition, Reset events occurring while an extreme power-saving feature is in use (such as VBAT) will set one or more status bits in the RCON2 register (Register 7-2). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON registers should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 source interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GA412/GB412 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<8>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

R/W-0	R-0, HSC	R/W-0	U-0	U-0	U-0	U-0	R/W-0					
GIE	DISI	SWTRAP	_	_	_	_	ALTIVT					
bit 15							bit					
			DAMO	DAVO	DANA	DAMA	DANO					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP					
bit 7							bit					
Legend:		HSC = Hardwa	are Settable/C	learable bit								
R = Readab	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown					
bit 15		nterrupt Enable										
		and associated	•		bled							
L:L 4 4		s are disabled; t	•	napled								
bit 14		DISI: DISI Instruction Status bit										
	1 = DISI instruction is active 0 = DISI instruction is not active											
bit 13		oftware Trap Sta										
		= Generates a software trap										
	0 = Software	trap is not requ	ested									
bit 12-9	Unimplemen	ted: Read as '0	,									
bit 8	ALTIVT: Enable Alternate Interrupt Vector Table bit											
		ernate Interrupt ndard (default)		or Table								
bit 7-5	Unimplemen	ted: Read as '0	3									
bit 4	INT4EP: Exte	INT4EP: External Interrupt 4 Edge Detect Polarity Select bit										
		on negative edg										
bit 3		INT3EP: External Interrupt 3 Edge Detect Polarity Select bit										
	1 = Interrupt	on negative edg	ge	2								
bit 2	-	ernal Interrupt 2		Polarity Select h								
		on negative edg	-									
		on positive edg										
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect I	Polarity Select b	bit							
		on negative edg										
bit 0		ernal Interrupt 0		Polarity Select b	bit							
		on negative edg	-		-							
	0 = Interrupt											

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0					
_	_	—			CMPMD	—	PMMD					
bit 15							bit 8					
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0					
CRCMD	DACMD			U3MD	I2C3MD	I2C2MD	_					
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15-11	Unimplemen	ted: Read as '0	3									
bit 10	CMPMD: Trip	le Comparator N	Module Disabl	e bit								
		= Module is disabled										
L:1 0	•	ower and clock		enabled								
bit 9	-	ted: Read as '0										
bit 8	-	PMMD: Enhanced Parallel Master Port Disable bit 1 = Module is disabled										
			sources are e	nabled								
bit 7	•	 0 = Module power and clock sources are enabled CRCMD: CRC Module Disable bit 										
	1 = Module is disabled											
	0 = Module p	0 = Module power and clock sources are enabled										
bit 6	DACMD: DAG	C Module Disabl	le bit									
	1 = Module is disabled											
	•	ower and clock		enabled								
bit 5-4	-	ted: Read as '0										
bit 3	U3MD: UART3 Module Disable bit											
	 1 = Module is disabled 0 = Module power and clock sources are enabled 											
bit 2	-	3 Module Disabl										
	1 = Module is		C Dit									
		ower and clock	sources are e	enabled								
bit 1	12C2MD: 12C2	2 Module Disabl	e bit									
	1 = Module is											
	-	ower and clock		enabled								
		ted: Read as '0										

REGISTER 10-6: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

15.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS70000352). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA412/GB412 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

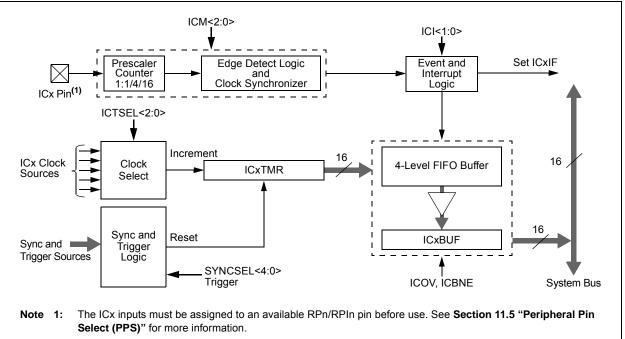
Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- Synchronous and Trigger modes of Output compare Operation, with up to 30 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- · Configurable Interrupt Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 15-1) and ICxCON2 (Register 15-2). A general block diagram of the module is shown in Figure 15-1.

15.1 General Operating Modes

15.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

REGISTER 19-2: UxSTAL: UARTx STATUS LOW AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition) will reset the receive buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	The value of this bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

REGISTER 19-3: UxSTAH: UARTx STATUS HIGH AND CONTROL REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADMASK7 | ADMASK6 | ADMASK5 | ADMASK4 | ADMASK3 | ADMASK2 | ADMASK1 | ADMASK0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| | | | | | | | |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADMADDF	ADMADDR6	ADMADDR5	ADMADDR4	ADMADDR3	ADMADDR2	ADMADDR1	ADMADDR0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	ADMASK<7:0>: ADMADDR<7:0> Masking bits
	1 = Corresponding ADMADDRx bit is used to detect the address match
	0 = Corresponding ADMADDRx bit is not used to detect the address match
bit 7-0	ADMADDR<7:0>: Address Detect Task Off-Load bits
	Used with the ADMASK<7:0> bits to off-load the task of detecting the address character from the processor during Address Detect mode.

20.1 Hardware Configuration

20.1.1 DEVICE MODE

20.1.1.1 D+ Pull-up Resistor

PIC24FJ256GA412/GB412 family devices have a built-in 1.5 kΩ resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

20.1.1.2 The VBUS Pin

In order to meet the USB 2.0 specification requirement, relating to the back drive voltage on the D+/D- pins, the USB module incorporates VBUS-level sensing comparators. When the comparators detect the VBUS level below the VA_SESS_VLD level, the hardware will automatically disable the D+ pull-up resistor described in **Section 20.1.1.1** "D+ Pull-up Resistor". This allows the device to automatically meet the back drive requirement for D+ and D-, even if the application firmware does not explicitly monitor the VBUS level. Therefore, the VBUS microcontroller pin should not be left floating in USB Device mode application designs, and should normally be connected to the VBUS pin on the USB connector/cable (either directly or through a small resistance \leq 100 ohms).

20.1.1.3 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- Bus Power Only mode
- · Self-Power Only mode
- Dual Power with Self-Power Dominance mode

Bus Power Only mode (Figure 20-2) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the *"USB 2.0 OTG Specification"*, the total effective capacitance, appearing across VBUS and ground, must be no more than 10 μ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 20-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable when the USB module is operated in USB Device mode.

The Dual Power with Self-Power Dominance mode (Figure 20-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

FIGURE 20-2: BUS POWER ONLY INTERFACE EXAMPLE

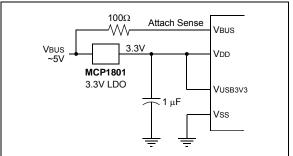


FIGURE 20-3: SELF-POWER ONLY

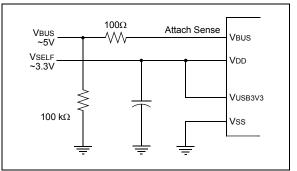
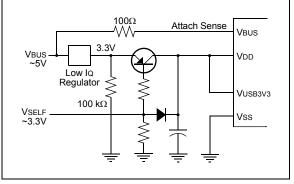



FIGURE 20-4:

DUAL POWER EXAMPLE

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
ACKP	PTSZ1	PTSZ0	_	_	_	_	_				
bit 7	11021	11020					l bit (
Legend:	1.11		1.11			1					
R = Readable		W = Writable		-	nented bit, read						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	1 = Disables	Select x Disable the Chip Select the Chip Select	t x functionalit								
bit 14		elect x Polarity	bit								
	1 = Active-hi 0 = Active-lo										
bit 13		ICSx Port Enab	ole bit								
		port is enabled									
		port is disabled									
bit 12	1 = Nibble/b	elect x Nibble/B yte enable is ac yte enable is ac	tive-high <u>(</u> PMI	BE0, PMBE1)							
bit 11		-	•								
bit 10	Unimplemented: Read as '0' WRSP: Chip Select x Write Strobe Polarity bit										
	For Slave Mo 1 = Write str	odes and Maste obe is active-hig obe is active-lo	<u>r Mode when s</u> gh <u>(PMWR</u>)								
	1 = Enable s	lode when SM = strobe is active-l strobe is active-l	high (PMENB))							
bit 9	RDSP: Chip	Select x Read S	Strobe Polarity	bit							
	1 = Read str	odes and Maste obe is active-hi obe is active-lo	gh <u>(PMRD</u>)	<u>SM = 0:</u>							
	1 = Read/wr	lode when SM = ite strobe is act rite strobe is act	ive-high (PMR								
bit 8	1 = Read/wr	lect x Strobe Mo ite and enable s d write strobes	strobes (PMRI	D/PMWR and P MWR)	MENB)						
bit 7		Select x Acknow									
	1 = ACK is a	nctive-high <u>(PM</u> nctive-low (PMA	ACK1)								
bit 6-5		Chip Select x P									
	11 = Reserve 10 = 16-bit p 01 = 4-bit po	-	15:0>) :0>)								
	00 - 0 - 0100		.0~1								

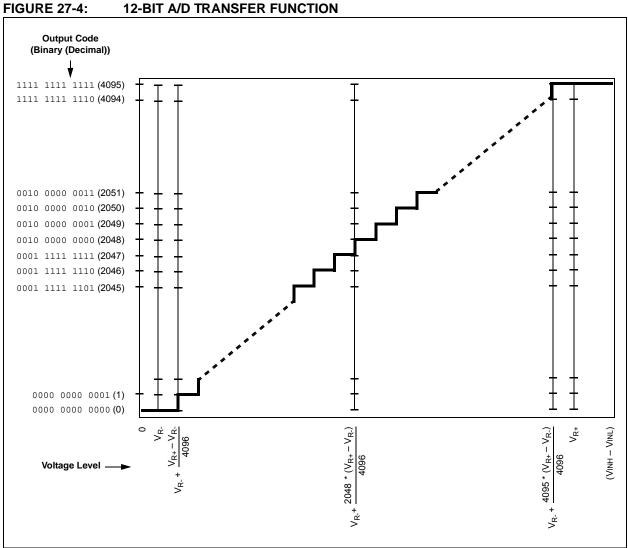
REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 3
	0 = Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 3
	0 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3

25.6 Encrypting a Session Key

Note:	ECB and CBC modes are restricted to		
128-bit session keys only.			


- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.

Note:	Setting	SKEYEN	permanently	makes
	Key #1 a	available as	a Key Encrypt	ion Key
	only. It cannot be used for other encryption			
	or decry	ption operat	tions after that.	

- 3. Set OPMOD<3:0> to '1110'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired, set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the software generated session key into the CRYKEY register or generate a random key into the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused key bits are ignored.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the encryption is done.
- 8. Read the encrypted session key out of the appropriate CRYTXT register.
- 9. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- 10. Set KEYSRC<3:0> to '0000' to use the session key to encrypt data.

25.7 Receiving a Session Key

- Note: ECB and CBC modes are restricted to 128-bit session keys only.
- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.
- Note: Setting SKEYEN permanently makes Key #1 available as a Key Encryption Key only. It cannot be used for other encryption or decryption operations after that. It also permanently disables the ability of software to decrypt the session key into the CRYTXTA register, thereby breaking programmatic security (i.e., software can read the unencrypted key).
- 3. Set OPMOD<3:0> to '1111'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired; set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the encrypted session key received into the appropriate CRYTXT register.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the process is done.
- 8. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- Set KEYSRC<3:0> to '0000' to use the newly generated session key to encrypt and decrypt data.

REGISTER 28-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DAC Trigger Source Select bits
 - 11111

... = Unimplemented

10010

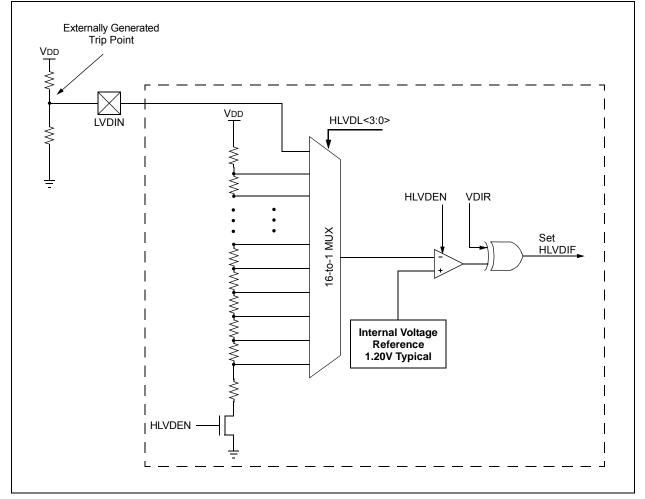
10001 = External Interrupt 1 (INT1)

- 10000 = SCCP7
- 01111 = SCCP6
- 01110 = SCCP5
- 01101 = SCCP4
- 01100 = SCCP3
- 01011 = SCCP2
- 01010 = MCCP1
- 01001 = Unimplemented
- 01000 = Timer5 match
- 00111 = Timer4 match
- 00110 = Timer3 match
- 00101 = Timer2 match
- 00100 = Timer1 match
- 00011 = A/D conversion done
- 00010 = Comparator 3 trigger
- 00001 = Comparator 2 trigger
- 00000 = Comparator 1 trigger

bit 1-0 DACREF<1:0>: DAC Reference Source Select bits

11 = 2.4V internal band gap (2 * VBG)⁽¹⁾

- 10 = AVDD
- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** The internal band gap reference is automatically enabled whenever the DAC is enabled.


32.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725). The information in this data sheet supersedes the information in the FRM. The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

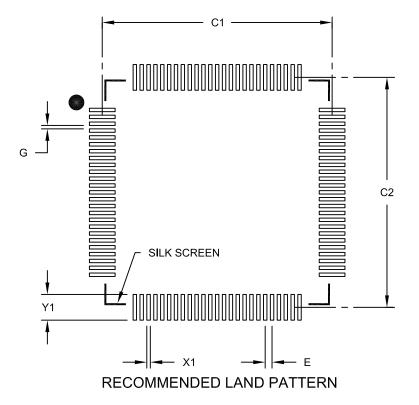

The HLVD Control register (see Register 32-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 32-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	s MILLIMETERS		S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

Μ

Ρ

Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
Registers	
Selectable Input Sources	
Selectable Output Sources	
Pin Descriptions	
PIC24FJXXXGA406 Devices	4
PIC24FJXXXGA410 Devices	8
PIC24FJXXXGA412 Devices	12
PIC24FJXXXGB406 Devices	6
PIC24FJXXXGB410 Devices	10
PIC24FJXXXGB412 Devices	15
Pinout Descriptions	
PIC24FJ256GA412 Family	27
PIC24FJ256GB412 Family	
Power-Saving Features	
Clock Frequency and Clock Switching	
Deep Sleep WDT	
Doze Mode	
Hardware-Based Modes	

Instruction-Based Modes	198
Deep Sleep	200
I/O Pins	201
Idle	199
Sleep	199
Low-Voltage/Retention Sleep	199
Overview of Modes	
Power-on Resets (PORs)	202
Selective Peripheral Control	
VBAT Mode	203
Product Identification System	554
Program Memory	
Access Using Table Instructions	91
Address Construction	89
Address Space	
Dual Partition Configuration Words	73
Flash Configuration Words	73
Hard Memory Vectors	
Organization	
OTP Memory	73
Reading from Program Memory Using EDS	92
Single and Dual Partition Memory Organization.	70
Program Memory Maps	
Default for PIC24FJ256GA412/GB412 Family	69
Single and Dual Partition Flash Modes	71
Pull-ups and Pull-Downs (I/O)	222
Pulse-Width Modulation (PWM) Mode	
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	284
R	
••	
Real-Time Clock and Calendar (RTCC) with	
Timestamp	391
Real-Time Clock and Calendar. See RTCC.	
Register Maps	
PORTA	
PORTB	
PORTC	
PORTD	
PORTE	
PORTF	
PORTG	
PORTH	
PORTJ	221
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	439
AD1CHITL (A/D Scan Compare Hit,	

/ B ronnie (/ P oban obinparo nit,	
Low Word)	439
AD1CHS (A/D Sample Select)	437
AD1CON1 (A/D Control 1)	431
AD1CON2 (A/D Control 2)	433
AD1CON3 (A/D Control 3)	434
AD1CON4 (A/D Control 4)	435
AD1CON5 (A/D Control 5)	436
AD1CSSH (A/D Input Scan Select, High Word)	440
AD1CSSL (A/D Input Scan Select, Low Word)	440
AD1CTMENH (A/D CTMU Enable, High Word)	441
AD1CTMENL (A/D CTMU Enable, Low Word)	441
ANCFG (A/D Band Gap Reference	
Configuration)	438
BDnSTAT Prototype (Buffer Descriptor n Status,	
CPU Mode)	335
BDnSTAT Prototype (Buffer Descriptor n Status,	
USB Mode)	334

NOTES: