

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	101
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb412-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 64-PIN

			PIC24FJXX	XGA/GB406						
Features	64GA	128GA	256GA	64GB	128GB	256GB				
Operating Frequency		•	DC – 3	32 MHz	•	·				
Program Memory (bytes)	64K	128K	256K	64K	128K	256K				
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064				
Data Memory (bytes)	8K 16K 8K 16K									
Interrupt Sources (soft vectors/ NMI traps)	113 (107/6)									
I/O Ports			Ports B, C	, D, E, F, G						
Total I/O Pins		53			52					
Remappable Pins	30 (2	9 I/Os, 1 inpu	t only)	29 (2	8 I/Os, 1 input	t only)				
Timers:										
Total Number (16-bit)			19	(1,2)						
32-Bit (from paired 16-bit timers)				9						
Input Capture w/Timer Channels			6	(2)						
Output Compare/PWM Channels			6	(2)						
Capture/Compare/PWM/Timer:										
Single Output (SCCP)	6 ⁽²⁾									
Multiple Output (MCCP)			1	(2)						
Serial Communications:										
UART			6	(2)						
SPI (3-wire/4-wire)	4(2)									
l ² C				3						
USB On-The-Go		No			Yes					
Cryptographic Engine			Y	es						
Parallel Communications (EPMP/PSP)			Y	es						
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			·	16						
Digital-to-Analog Converter (DAC)				1						
Analog Comparators				3						
CTMU Interface			Y	es						
LCD Controller (available pixels)	248	(35 SEG x 8 0	COM)	240	(34 SEG x 8 0	COM)				
JTAG Boundary Scan			Y	és						
Resets (and delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)									
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing N	Mode Variatio	าร				
Packages			64-Pin TQF	P and QFN						

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

	Pir	/Pad Numl	ber			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin TFBGA	I/O	Input Buffer	Description
VBAT	57	86	A7	Р	_	Backup Battery
VBUS	—	—	—	Р	—	VBUS Supply
VCAP	56	85	В7	I/O	—	External Filter Capacitor Connection (regulator enabled)
Vdd	10,26,38	2,16,37, 46,62	C2,G5,H6, K8,F8,E7	Р	—	Positive Supply for Peripheral Digital Logic and I/O Pins
Vdd	—	_	D6	Р	—	
VLCAP1	5	11	F4	0	ANA	LCD Drive Charge Pump Capacitor Inputs
VLCAP2	6	12	F2	0	ANA	
VREF+	16	25,29	K2,K3	I	ANA	Comparator and A/D Reference Voltage (high) Input
Vref-	15	24,28	K1,L2	Ι	ANA	Comparator and A/D Reference Voltage (low) Input
Vss	9,25,41	15,36,45, 65,75	F5,G6,G7, F10,D10, B10	Ρ	_	Ground Reference for Peripheral Digital Logic and I/O Pins
Vss	—	_	C6	Р	—	1
VUSB3V3	—	_	_	Р	—	3.3V VUSB

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog-level input/output DIG = Digital input/output SMB = SMBus ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated transceiver

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—		_
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF					
bit 15	•=••						bit 8					
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CCP6IF	CCP5IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF					
bit 7	·			·			bit 0					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN					
6:4 <i>4 E</i>			Interviet Floo	Ctatus hit								
DIUIS	1 = Interrupt		curred	Status Dit								
	0 = Interrupt	request has no	t occurred									
bit 14	U2RXIF: UA	RT2 Receiver Ir	nterrupt Flag S	tatus bit								
	1 = Interrupt	request has oc	curred									
1.1.40	0 = Interrupt	request has no	t occurred									
DIT 13	1 = Interrupt	rnal Interrupt 2	Flag Status bit	I								
	0 = Interrupt	request has no	t occurred									
bit 12	T5IF: Timer5 Interrupt Flag Status bit											
	1 = Interrupt	request has oc	curred									
	0 = Interrupt	request has no	t occurred									
bit 11	14IF: limer4	Interrupt Flag s	Status bit									
	0 = Interrupt	request has no	t occurred									
bit 10	OC4IF: Outp	ut Compare Ch	annel 4 Interru	upt Flag Status I	bit							
	1 = Interrupt	request has oc	curred									
	0 = Interrupt	request has no	t occurred									
bit 9	OC3IF: Outp	ut Compare Ch	annel 3 Interru	upt Flag Status I	bit							
	0 = Interrupt	request has no	t occurred									
bit 8	DMA2IF: DM	IA Channel 2 In	terrupt Flag St	tatus bit								
	1 = Interrupt	request has oc	curred									
	0 = Interrupt	request has no	t occurred									
bit 7	CCP6IF: SC	CP6 Capture/Co	ompare Interru	ipt Flag Status I	oit							
	0 = Interrupt	request has od	t occurred									
bit 6	CCP5IF: SC	CP5 Capture/Co	ompare Interru	ipt Flag Status I	oit							
	1 = Interrupt	request has oc	curred									
	0 = Interrupt	request has no	t occurred									
bit 5	Unimplemen	ted: Read as ')' 									
bit 4	INT1IF: Exter 1 = Interrupt	rnal Interrupt 1 request has or	Flag Status bit	l								
	0 = Interrupt	request has no	t occurred									
bit 3	CNIF: Interru	pt-on-Change I	nterrupt Flag S	Status bit								
	1 = Interrupt	request has oc	curred									
	0 = Interrupt	request has no	t occurred									

REGISTER 8-7: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIF	INT4IF	INT3IF	—	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	CCP1IF: MCC 1 = Interrupt r 0 = Interrupt r	CP1 Capture/Co equest has occ equest has not	ompare Interrup urred occurred	ot Flag Status b	it		
bit 14	RTCIF: Real-	Time Clock and	I Calendar Inter	rupt Flag Statu	s bit		
	1 = Interrupt r	equest has occ	curred				
bit 13	DMA5IF: DM	A Channel 5 Int	errupt Flag Sta	tus bit			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 12	SPI3RXIF: SH	PI3 Receive Inte	errupt Flag Stat	us bit			
	0 = Interrupt r	equest has occ	occurred				
bit 11	SPI2RXIF: SP	PI2 Receive Inte	errupt Flag Stat	us bit			
	1 = Interrupt r	equest has occ	urred				
hit 10		equest has not	OCCUITED	ue hit			
	1 = Interrupt r 0 = Interrupt r	equest has occ	urred occurred				
bit 9	SPI4RXIF: SF	PI4 Receive Inte	errupt Flag Stat	us bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 8	KEYSTRIF: C	Cryptographic K	ey Store Progra	am Done Interru	upt Flag Status	bit	
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	occurred				
bit 7	CRYDNIF: Cr	yptographic Op	eration Done Ir	nterrupt Flag St	atus bit		
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 6	INT4IF: Exter	mal Interrupt 4	Flag Status bit				
	1 = Interrupt r	equest has occ	contred				
bit 5	INT3IF: Exter	nal Interrunt 3	Flag Status bit				
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	CCT7IF: SCC	P7 Timer Inter	rupt Flag Status	s bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
—	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0							
bit 15					-		bit 8							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
_	IC3IP2	IC3IP1	IC3IP0	—	DMA3IP2	DMA3IP1	DMA3IP0							
bit 7							bit 0							
Legend:														
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown							
bit 15	Unimplemen	ted: Read as '0	,											
bit 14-12	IC5IP<2:0>:	nput Capture C	hannel 5 Inte	rrupt Priority bit	s									
	111 = Interru	pt is Priority 7 (r	nighest priorit	y interrupt)										
	•													
	•													
	001 = Interrupt is Priority 1													
L:1 11	000 = Interrupt source is disabled													
		neut Capture C	hannal 4 Inta	rrupt Drigrity bit										
DIL TU-0	111 - Interru	nput Capture C	nannel 4 mie	nupi Phoniy bit	.5									
	•		lighest phone	y interrupt)										
	•													
	•	ntin Driarity (1												
	001 = Interru	pt is Priority 1 pt source is disa	abled											
bit 7	Unimplemen	ted: Read as '0	,											
bit 6-4	IC3IP<2:0>:	nput Capture C	hannel 3 Inte	rrupt Priority bit	s									
	111 = Interru	pt is Priority 7 (ł	nighest priorit	y interrupt)										
	•		0 1	,										
	•													
	001 = Interru	pt is Priority 1												
	000 = Interru	pt source is disa	abled											
bit 3	Unimplemen	ted: Read as '0	,											
bit 2-0	DMA3IP<2:0	>: DMA Channe	l 3 Interrupt I	Priority bits										
	111 = Interru	pt is Priority 7 (ł	nighest priorit	y interrupt)										
	•													
	•													
	001 = Interru	pt is Priority 1												
	000 = Interru	pt source is disa	abled											

REGISTER 8-31: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0								
_	—	—	_	—	CMPMD	—	PMMD								
bit 15		· ·				·	bit 8								
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0								
CRCMD	DACMD	—	—	U3MD	I2C3MD	I2C2MD	—								
bit 7							bit 0								
Legend:															
R = Readabl	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	l as '0'									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own								
bit 15-11	Unimplemen	ted: Read as '0	,												
bit 10	CMPMD: Trip	CMPMD: Triple Comparator Module Disable bit													
	1 = Module i	1 = Module is disabled													
hit 0		0 = Module power and clock sources are enabled													
bit 9		Unimplemented: Read as '0'													
DILO	1 = Module i	s disabled	aster Furt Dis												
	0 = Module p	ower and clock	sources are e	enabled											
bit 7	CRCMD: CR	C Module Disab	le bit												
	1 = Module i	s disabled													
	0 = Module p	power and clock	sources are e	enabled											
bit 6	DACMD: DA	C Module Disab	le bit												
	1 = Module i	s disabled													
		bower and clock	sources are e	enabled											
DIT 5-4	Unimplemen	ited: Read as '0													
DIT 3		13 Module Disad	DIE DIT												
	1 = Module r 0 = Module r	s disabled	sources are e	enabled											
bit 2	I2C3MD: I2C	3 Module Disabl	e bit												
	1 = Module i	s disabled													
	0 = Module power and clock sources are enabled														
bit 1	I2C2MD: I2C2 Module Disable bit														
	1 = Module i	s disabled													
	0 = Module p	power and clock	sources are e	enabled											
bit 0	Unimplemen	ted: Read as '0	,												

REGISTER 10-6: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

TABLE 11-8: PORTG REGISTER MAP⁽¹⁾

ster ne	nge									Bits							
Regis Nan	Bit Ra	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ANSG	15:0		ANSG<	:15:12>		—	—		ANSG	<9:6>		_	—	— — ANSG<1:0			G<1:0>
TRISG	15:0		TRISG	<15:12>		_	_		TRISG	<9:6>		_	_		TRISC	<3:0>	
PORTG	15:0		PORTG	<15:12>		_	_		PORTO	6<9:6>		_	_	PORTG<3:0>			
LATG	15:0		LATG<	15:12>		_	_		LATG	<9:6>		_	_	LATG<3:0>			
ODCG	15:0		ODCG<	<15:12>		_	_		ODCG	<9:6>		_	_		ODCG	<3:0>	
IOCPG	15:0		IOCPG-	<15:12>		_	_		IOCPO	6<9:6>		_	_	IOCPG<3:0>			
IOCNG	15:0		IOCNG-	<15:12>		_	_		IOCNG<9:6>				_	IOCNG<3:0>			
IOCFG	15:0		IOCFG-	<15:12>		_	_		IOCFG	6<9:6>		_	_		IOCFO	i<3:0>	
IOCPUG	15:0		IOCPUG	6<15:12>		_	_		IOCPU	G<9:6>		_	_		IOCPU	G<3:0>	
IOCPDG	15:0		IOCPDG	6<15:12>			_		IOCPD	G<9:6>		_	_		IOCPD	G<3:0>	

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

TABLE 11-9: PORTH REGISTER MAP⁽¹⁾

ster ne	ange									Bits							
Regi: Nan	Bit Ra	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ANSH	15:0													—			
TRISH	15:0		TRISH<15:1>												—		
PORTH	15:0		PORTH<15:1>												—		
LATH	15:0	LATH<15:1>												—			
ODCH	15:0								ODCH<1	15:1>							—
IOCPH	15:0								IOCPH<'	15:1>							—
IOCNH	15:0								IOCNH<	15:1>							—
IOCFH	15:0								IOCFH<'	15:1>							_
IOCPUH	15:0								IOCPUH<	:15:1>							_
IOCPDH	15:0								IOCPDH<	:15:1>							_

Legend: — = unimplemented, read as '0'.

Note 1: PORT register maps show full pin count devices. Please refer to Table 1-4 and Table 1-5 for pin count-specific PORT I/O implementation.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8
11_0	11_0						

REGISTER 11-25: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits ⁽¹⁾
	Peripheral Output Number n is assigned to pin, RP5 (see Table 11-12 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: RP4 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP4 (see Table 11-12 for peripheral function numbers).

Note 1: RP5 and its associated bits are not available on PIC24FJXXXGA/GB406 devices.

REGISTER 11-26: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7	·	•		•			bit 0

bit 7

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP7R<5:0>: RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-12 for peripheral function numbers).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	
bit 7		•	•		•		bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8	RP9R<5:0>:	RP9 Output Pir	n Mapping bits					
	Peripheral Ou	tput Number n	is assigned to	pin, RP9 (see T	able 11-12 for	peripheral func	tion numbers).	

REGISTER 11-27: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP8 (see Table 11-12 for peripheral function numbers)

REGISTER 11-28: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknowr			nown	
I							

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-12 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-12 for peripheral function numbers).

bit 7-6

REGISTER 14-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W1 = Write '1' Only bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'					
bit 7	CCPTRIG: CCPx Trigger Status bit					
	1 = Timer has been triggered and is running					
	0 = Timer has not been triggered and is held in Reset					
bit 6	TRSET: CCPx Trigger Set Request bit					
	Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').					
bit 5	TRCLR: CCPx Trigger Clear Request bit					
	Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').					
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit					
	1 = A shutdown event is in progress; CCPx outputs are in the shutdown state					
	0 = CCPx outputs operate normally					
bit 3	SCEVT: Single Edge Compare Event Status bit					
	1 = A single edge compare event has occurred					
	0 = A single edge compare event has not occurred					
bit 2	ICDIS: Input Capture x Disable bit					
	1 = Event on Input Capture x pin (ICx) does not generate a capture event					
	0 = Event on Input Capture x pin will generate a capture event					
bit 1	ICOV: Input Capture x Buffer Overflow Status bit					
	 The Input Capture x FIFO buffer has overflowed 					
	0 = The Input Capture x FIFO buffer has not overflowed					
bit 0	ICBNE: Input Capture x Buffer Status bit					
	1 = Input Capture x buffer has data available					
	0 = Input Capture x buffer is empty					

20.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the USB Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

20.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame (SOF) packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- 8. In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

20.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the *"USB 2.0 Specification"* for information on the device framework command set.
- Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD Data Buffer Address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of 8).
- Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data needs to be transferred, return to Step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the start address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the hand-shake from the device and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction, as described in Chapter 9 of the "USB 2.0 Specification".

Note: Only one control transaction can be performed per frame.

REGISTER 25-1: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

- CTRSIZE6(2.3) CTRSIZE4(2.3) CTRSIZE4(2.3) CTRSIZE2(2.3) CTRSIZE2(2.3) CTRSIZE2(2.3) bit 15 bit 3 bit 8 RW-0(1) <	11-0	R///_(1)	R///-0(1)	R/\//_(1)	R///_(1)	RVV-0(1)	R///_(1)	R/\/_(1)	
bit 15 bit 8 RW-0 ⁽¹⁾ RW-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/S-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ SKEYSEL KEYMOD1 ⁽²⁾ KEYMOD0 ⁽²⁾ KEYWIPE KEYSRC3 ⁽²⁾ KEYSRC2 ⁽²⁾ KEYSRC1 ⁽²⁾ KEYSRC0 ⁽²⁾ bit 7 bit 0 Legend: S = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE-6:0-: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB<0-; where n = CTRSIZEx. The counter increments after each operation and generates a rollover event when the counter rolls over from (2 ⁿ⁻¹ – 1) to 0. 1111110 = 127 bits (CRYTXTB<120-) 1111110 = 127 bits (CRYTXTB<120-) 0000001 = 2 bits (CRYTXTB<126:0-) · · · bit 7 SKEYSEL: Session Key Select bit ⁽¹⁾ 1 = Key generation/encryption/loading performed with CRYKEY<255:128- 0 = Key generation/encryption/perations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = 64-bit, 54-bit, 54-bit		CTRSIZE6 ^(2,3)	CTRSIZE5 ^(2,3)	CTRSIZE4 ^(2,3)	CTRSIZE3 ^(2,3)	CTRSIZE2 ^(2,3)	CTRSIZE1 ^(2,3)	CTRSIZE0 ^(2,3)	
RW-0 ⁽¹⁾	bit 15							bit 8	
RW-0 ⁽¹⁾ Rundedite Restring and as a '0' But is a constant of a bit of a single as a '0' Restring as a '0' Rundedite Rundedi									
SKEYSEL KEYMOD1 ⁽²⁾ KEYMOD0 ⁽²⁾ KEYWIPE KEYSRC3 ⁽²⁾ KEYSRC1 ⁽²⁾ KEYSRC1 ⁽²⁾ KEYSRC1 ⁽²⁾ bit 7 bit 0 Legend: S = Settable Only bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE-6:0>: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB<10>, where n = CTRSIZEx. The counter increments after each operation and generates a rollover event where the counter rolls over from (2 ⁿ⁻¹ - 1) to 0. 1111111 = 128 bits (CRYTXTB<127.0>) 1111111 = 127 bits (CRYTXTB<120>) 0000010 = 3 bits (CRYTXTB<120>) 0000001 = 2 bits (CRYTXTB<10>) 0000001 = 1 bit (CRYTXTB<10>) 0000001 = 2 bits (CRYTXTB<10>) 00000001 = 1 bit (CRYTXTB<10>) 00000001 = 1 bit (CRYTXTB<10>) 00000001 = 1 bit (CRYTXTB<10 0 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127.0> bit 6-5 KEYMOD4(:b): AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 1	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
bit 7 bit 0 Legend: S = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE-6:0-: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB <n:0-, (2<sup="" a="" after="" and="" counter="" each="" event="" from="" generates="" increments="" n="CTRSIZEx." operation="" over="" rollover="" rolls="" the="" when="" where="">n-1 – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0-) 1111110 = 127 bits (CRYTXTB<126:0-) </n:0-,>	SKEYSEL	KEYMOD1(2)	KEYMOD0 ⁽²⁾	KEYWIPE	KEYSRC3(2)	KEYSRC2(2)	KEYSRC1 ⁽²⁾	KEYSRC0(2)	
Legend: S = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE<6:0>: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB <n:0>, where n = CTRSIZEX. The counter increments after each operation and generates a rollover event when the counter rolls over from (2ⁿ⁻¹ – 1) to 0. 1111111 = 128 bits (CRYTXTB<12:0>) 1111110 = 127 bits (CRYTXTB<12:0>) 0000010 = 3 bits (CRYTXTB<10>) 0000000 = 1 bit (CRYTXTB<10>) 0000000 = 1 bit (CRYTXTB<1:0>) 0000000 = 1 bit (CRYTXTB<1:0>) 0 = Reserved 0 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 266-bit AES 00 = 128-bit AES</n:0>	bit 7							bit 0	
Legend: S = Settable Only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE<6:0>: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB <n:0>, where n = CTRSIZEx. The counter increments after each operation and generates a rollover event when the counter rolls over from (2ⁿ⁻¹ – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0>) 1111111 = 128 bits (CRYTXTB<127:0>) 1111111 = 128 bits (CRYTXTB<127:0>) 0000010 = 3 bits (CRYTXTB<126:0>) • • • • • • • • • • • • •</n:0>			<u> </u>						
<pre>R = Readable bit</pre>	Legend:	L1_ L:4	S = Settable Or	lly bit			(0)		
<pre>bit 15 Unimplemented: Read as '0' bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE<6:0-: Counter Size Select bits^(1,2,3) Counter is defined as CRYTXTB<n:0-, (2<sup="" a="" after="" and="" counter="" each="" event="" from="" generates="" increments="" n="CTRSIZEx." operation="" over="" rollover="" rolls="" the="" when="" where="">n-1 – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0-) 1111110 = 127 bits (CRYTXTB<126:0-)</n:0-,></pre>	R = Reada	DIE DIT	VV = VVritable bit	[U = Unimplem	ented bit, read	as 'U'	0.1/12	
bit 15 Unimplemented: Read as '0' bit 14-8 CTRSIZE<6:0>: Counter Size Select bits ^(1,2,3) Counter is defined as CRYTXTB <n:0>, where n = CTRSIZEx. The counter increments after each operation and generates a rollover event when the counter rolls over from (2ⁿ⁻¹ – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0>) 1111110 = 127 bits (CRYTXTB<126:0>) • • • • • • • • • • • • • • • • • • •</n:0>	-n = value	alpor	I = BILIS SEL		0 = Bit is clea	irea	x = Bit is unkn	Own	
bit 10 Crimplement Rear 100 of Crimplemental reaction of the second state of the secon	hit 15	Unimplement	ed. Read as '0'						
Counter is defined as CRYTXTB <n:>, where n = CTRSIZEx. The counter increments after each operation and generates a rollover event when the counter rolls over from (2ⁿ⁻¹ – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0>) 1111110 = 127 bits (CRYTXTB<126:0>) • • • • • • • • • • • • • • • • • • •</n:>	bit 14-8	CTRSIZE<6:0	S: Counter Size	Select bits(1,2	,3)				
<pre>operation and generates a rollover event when the counter rolls over from (2ⁿ⁻¹ – 1) to 0. 1111111 = 128 bits (CRYTXTB<127:0>) 1111110 = 127 bits (CRYTXTB<126:0>)</pre>		Counter is de	fined as CRYT	XTB <n:0>, w</n:0>	here n = CTR	SIZEx. The co	ounter increme	nts after each	
<pre>1111111 = 128 bits (CRYTXTB<127:0>) 1111110 = 127 bits (CRYTXTB<126:0>) 0000010 = 3 bits (CRYTXTB<2:0>) 0000001 = 2 bits (CRYTXTB<1:0>) 0000000 = 1 bit (CRYTXTB<0>); rollover event occurs when CRYTXTB<0> toggles from '1' to '0' bit 7 SKEYSEL: Session Key Select bit^{{1}} 1 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127:0> bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 01 = 192-bit AES 00 = 128-bit AES 01 = 192-bit AES 01 = 192-bit AES 01 = 192-bit AES 02 = Key Encrypt/Decrypt AES 03 = 128-bit AES 04 = 10 = 128-bit AES 05 = 10 = 10 = 128-bit AES 05 = 10 = 10 = 10 = 128-bit AES 05 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =</pre>		operation and	generates a rollo	over event wh	en the counter	rolls over from	(2 ⁿ⁻¹ – 1) to 0.		
 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		11111111 = 12	28 bits (CRYTXT	B<127:0>)					
 . .		•		D<120.07)					
 . .		•							
bit 6-5 KEYMOD<1:0> bits (CRYTXTB<2:0>) 0000001 = 2 bits (CRYTXTB<1:0>) 0000001 = 1 bit (CRYTXTB<0>); rollover event occurs when CRYTXTB<0> toggles from '1' to '0' bit 7 SKEYSEL: Session Key Select bit ⁽¹⁾ 1 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127:0> bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 10 = Reserved 01 = 64-bit tops For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES 00 = 128-bit AES 00 = 128-bit AES		•	hite (CDVTYTB-	2.02)					
 0000000 = 1 bit (CRYTXTB<0>); rollover event occurs when CRYTXTB<0> toggles from '1' to '0' bit 7 SKEYSEL: Session Key Select bit⁽¹⁾ 1 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127:0> bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 		0000001 = 21	bits (CRYTXTB<	1:0>)					
bit 7 SKEYSEL: Session Key Select bit ⁽¹⁾ 1 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127:0> bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES bit 4		0000000 = 1 I	bit (CRYTXTB<0	>); rollover ev	ent occurs whe	en CRYTXTB<	> toggles from	'1' to '0'	
1 = Key generation/encryption/loading performed with CRYKEY<255:128> 0 = Key generation/encryption/loading performed with CRYKEY<127:0> bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES	bit 7	SKEYSEL: Se	ession Key Selec	t bit ⁽¹⁾					
bit 6-5 KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2) For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES 10 = 192-bit AES		1 = Key gener	ation/encryption/	loading perfo	rmed with CRY	KEY<255:128> KEY<127:0>			
For DES Encrypt/Decrypt Operations (CPHRSEL = 0): 11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES	bit 6-5	KEYMOD<1:0	>: AES/DES En	crvpt/Decrvpt	Kev Mode/Kev	Lenath Select	bits ^(1,2)		
11 = 64-bit, 3-key 3DES 10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES 00 = 128-bit AES		For DES Encr	ypt/Decrypt Oper	rations (CPHF	RSEL = 0):				
10 = Reserved 01 = 64-bit, standard 2-key 3DES 00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES 00 = 128-bit AES		11 = 64-bit, 3-	key 3DES						
00 = 64-bit DES For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES		10 = Reserved 01 = 64 - bit st	1 andard 2-key 3D	FS					
For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES bit 4		00 = 64-bit DE	ES	20					
11 = Reserved 10 = 256-bit AES 01 = 192-bit AES 00 = 128-bit AES bit 4		For AES Encry	ypt/Decrypt Oper	ations (CPHF	RSEL = 1):				
$10 = 230 \text{-Dit AES}$ $01 = 192 \text{-bit AES}$ $00 = 128 \text{-bit AES}$ $\mathbf{KEYMURE} Kou DAM Errors Errolls hit(1)$		11 = Reserved							
00 = 128 - bit AES		10 = 250-bit AES 01 = 192-bit AES							
		00 = 128-bit A	ES						
DIL 4 NET WIFE: Key KAIM Erase Enable DIL''	bit 4	KEYWIPE: Ke	ey RAM Erase Er	nable bit ⁽¹⁾					
1 = Erases Key RAM (set only by software, cleared only by hardware on the next clock cycle)		1 = Erases Key RAM (set only by software, cleared only by hardware on the next clock cycle)							
bit 3-0 KEYSRC<3:0>: Cipher Key Source bits ^(1,2)	hit 3-0	0 = Key RAM erase has not been requested of has completedKEVSPC-3:0-: Cipher Key Source bits(1,2)							
Refer to Table 25-1 and Table 25-2 for KEYSRC<3:0> values.		Refer to Table	25-1 and Table 2	25-2 for KEYS	SRC<3:0> value	es.			
Note 4. These hits are react on system Desets or whoneyer the CDV/MD hit (DMDS (0)) is set	Note 1		and on custors F) anota an wh	nover the ODV				
NOTE THE THESE OR STETESELOD SYSTEM RESERVED MEDEVECTOR CRYMIDIAL (PMUXCU2) IS SET	NOLE 1: 2.	Writes to these I	eset on system F bit fields are lock	ed out whene	ver an operatio	n is in progress	.∪~) is set. s (CRYGO hit is	set)	
	2:	Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).							

3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

33.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference
	source. For more information, refer to the following sections in the <i>"dsPIC33/PIC24 Reference Manual"</i> . The information in this data sheet supersedes the information in the FRMs.
	· "Matabalag Timer (MDT)"

- "Watchdog Timer (WDT) (DS39697)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)
- "CodeGuard™ Intermediate Security" (DS70005182)

PIC24FJ256GA412/GB412 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming™
- In-Circuit Emulation

33.1 Configuration Bits

The Flash Configuration Words are stored in the last page location of implemented program memory. Their bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Table 33-1 lists the Configuration register address ranges for each device in Single and Dual Partition Flash modes. A detailed explanation of the various bit functions is provided in Register 33-1 through Register 33-12.

33.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GA412/GB412 FAMILY DEVICES

In PIC24FJ256GA412/GB412 family devices, most of the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

33.1.2 FBOOT

Unlike the Configuration Words, the FBOOT register is not implemented as volatile Flash memory. It is located away from the other Flash Configuration Words, at a constant address for all devices outside of the program memory space. Device Resets do not affect its contents.

Note that the address for FBOOT, 801800h, belongs to the configuration memory space (800000h-FFFFFh), which can only be accessed using Table Reads and Table Writes.

REGISTER 33-9: FDS: DEEP SLEEP CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	U-1							
DSSWEN	—	—	—	—	—	—	—	
bit 15 bit 8								

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
DSWDTEN	SWDTEN DSBOREN DSWDTOSC DSWDTPS4 DSV		DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	DSSWEN: Deep Sleep Software Control Select bit
	 1 = Deep Sleep operation is enabled and controlled by the DSEN bit 0 = Deep Sleep operation is disabled
bit 14-8	Unimplemented: Read as '1'
bit 7	DSWDTEN: Deep Sleep Watchdog Timer Enable bit
	1 = Deep Sleep WDT is enabled
	0 = Deep Sleep WDT is disabled
bit 6	DSBOREN: Deep Sleep Brown-out Reset Enable bit
	1 = BOR is enabled in Deep Sleep mode
	BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)
bit 5	DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit
	1 = Clock source is LPRC
	0 = Clock source is SOSC

36.1 DC Characteristics

TABLE 36-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
PIC24FJ256GA412/GB412 Family:					
Operating Junction Temperature Range	TJ	-40		+100	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – Σ IOH) I/O Pin Power Dissipation: PI/O = Σ ({VDD – VOH} x IOH) + Σ (VOL x IOL)	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ	max – Ta)/	θJA	W

TABLE 36-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Note
Package Thermal Resistance, 12x12x1 mm 100-pin TQFP	θJA	45.0	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm 64-pin TQFP	θJA	48.3	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm 64-pin QFN	θJA	28.0	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1.1 mm 121-pin TFBGA	θJA	40.2	_	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARAC	TERISTICS		Standard C Operating t	Dperating Condit emperature	ions: 2.0V -40°C	to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial		
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions		
Incremental C	Current Brov	vn-out Rese	t (∆BOR) ⁽²⁾					
DC25	4	8	μA	-40°C to +85°C	VBOR			
	4	8	μA	-40°C to +85°C	3.3V			
Incremental C	Current Wate	hdog Timer	(∆WDT) ⁽²⁾					
DC71	0.15	2	μA	-40°C to +85°C	2.0V	AMDT (with L DBC aslasted)(2)		
	0.24	2	μA	-40°C to +85°C	3.3V			
Incremental C	Current HLVI	D (AHLVD) ⁽²⁾)					
DC75	3.8	25	μA	-40°C to +85°C	2.0V			
	3.8	25	μA	-40°C to +85°C	3.3V			
Incremental Current Real-Time Clock and Calendar (ARTCC) ⁽²⁾								
DC77	0.17	2.5	μA	-40°C to +85°C	2.0V	APTCC (with SOSC)(2)		
	0.17	2.5	μA	-40°C to +85°C	3.3V			
DC77A	0.55	2.5	μA	-40°C to +85°C	2.0V	APTCC (with LPPC)(2)		
	0.55	2.5	μA	-40°C to +85°C	3.3V			
Incremental C	Current Deep	Sleep BOR	(ADSBOR)	(2)				
DC81	0.1	0.9	μA	-40°C to +85°C	2.0V	ADoon Sloon BOB(2)		
	0.1	0.9	μA	-40°C to +85°C	3.3V			
Incremental C	Current Deep	Sleep Wate	chdog Time	r (∆DSWDT) ⁽²⁾		_		
DC80	0.1	0.9	μA	-40°C to +85°C	2.0V	ADoon Sloon WDT(2)		
	0.1	0.9	μA	-40°C to +85°C	3.3V			
VBAT A/D Mor	nitor ⁽⁵⁾							
DC91	2		μA	-40°C to +85°C	3.3V	VBAT = 2V		
	5		μA	-40°C to +85°C	3.3V	Vbat = 3.3V		
Incremental C	Current LCD	(∆LCD)						
DC82	5		μA	+25°C	2.0V	(ΔLCD)/LCD internal, 1/8 MUX,		
	5		μA	+25°C	3.3V	1/3 bias ^(2,4)		
DC90	100	—	μA	+25°C	2.0V	(∆LCD)/LCD charge pump,		
	6	_	μΑ	+25°C	3.3V	1/8 MUX, 1/3 bias ^(2,3)		

TABLE 36-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, HLVD, RTCC, DSBOR, DSWDT, LCD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: LCD is enabled and running, no glass is connected; the resistor ladder current is not included.

4: LCD is enabled and running, no glass is connected; the low-power resistor ladder current is included.

5: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

FIGURE 36-13: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 36-34:	SPIX MASTER MODE TIMING REQUIREMENTS	(CKE = 0))
--------------	--------------------------------------	-----------	---

AC CHARACTERISTICS		Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	TCY/2	_		ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾		10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾		10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	-	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge		_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Contacts	Ν	121				
Contact Pitch	е	0.80 BSC				
Overall Height	Α	1.00	1.10	1.20		
Ball Height	A1	0.25	0.30	0.35		
Overall Width	Е	10.00 BSC				
Array Width	E1	8.00 BSC				
Overall Length	D	10.00 BSC				
Array Length	D1	8.00 BSC				
Contact Diameter	b	0.35	0.40	0.45		

Notes:

1. Ball A1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

3. The outer rows and colums of balls are located with respect to datums A and B.

4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2