

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete	
Туре	SC140 Core	
Interface	Communications Processor Module (CPM)	
Clock Rate	275MHz	
Non-Volatile Memory	External	
On-Chip RAM	512kB	
Voltage - I/O	3.30V	
Voltage - Core	1.60V	
Operating Temperature	-40°C ~ 105°C (TJ)	
Mounting Type	Surface Mount	
Package / Case	332-BFBGA, FCBGA	
Supplier Device Package	332-FCBGA (17x17)	
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8103vt1100f	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Target Applications

The MSC8103 targets applications requiring very high performance, very large amounts of internal memory, and such networking capabilities as:

- Third-generation wideband wireless infrastructure systems
- Packet Telephony systems
- Multi-channel modem banks
- Multi-channel xDSL

Product Documentation

The documents listed in **Table 1** are required for a complete description of the MSC8103 and are necessary to design properly with the part. Documentation is available from the following sources (see back cover for details):

- A local Freescale distributor
- A Freescale Semiconductor sales office
- A Freescale Semiconductor Literature Distribution Center
- The world wide web (WWW)

	Table 1.	MSC8103 Documentation
--	----------	-----------------------

Name	Description	Order Number
MSC8103 Technical Data	MSC8103 features list and physical, electrical, timing, and package specifications	MSC8103/D
MSC8101 User's Guide	Detailed functional description of the MSC8101 memory configuration, operation, and register programming. All details apply to the MSC8103.	MSC8101UG/D
MSC8103 Reference Manual	Detailed description of the MSC8103 processor core and instruction set	MSC8103RM/D
SC140 DSP Core Reference Manual	Detailed description of the SC140 family processor core and instruction set	MNSC140CORE/D
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the MSC8103 product website

Although there are eight interrupt request (\overline{IRQ}) connections to the core processor, there are multiple external lines that can connect to these internal signal lines. After reset, the default configuration includes two $\overline{IRQ1}$ and two $\overline{IRQ7}$ input lines. The designer must select one line for each required interrupt and reconfigure the other external signal line or lines for alternate functions.

Signal	Data Flow	Description	
A[0-31]	Input/Output	Address Bus When the MSC8103 is in external master bus mode, these pins function as the address bus. The MSC8103 drives the address of its internal bus masters and responds to addresses generated by external bus masters. When the MSC8103 is in Internal Master Bus mode, these pins are used as address lines connected to memory devices and are controlled by the MSC8103 memory controller.	
TT[0-4]	Input/Output	Bus Transfer Type The bus master drives these pins during the address tenure to specify the type of transaction.	
TSIZ[0-3]	Input/Output	Transfer Size The bus master drives these pins with a value indicating the number of bytes transferred in the current transaction.	
TBST	Input/Output	Bus Transfer Burst The bus master asserts this pin to indicate that the current transaction is a burst transaction (transfers four quad words).	
IRQ1	Input	Interrupt Request 1 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
GBL	Input/Output	Global ¹ When a master within the chip initiates a bus transaction, it drives this pin. When an external master initiates a bus transaction, it should drive this pin. Assertion of this pin indicates that the transfer is global and it should be snooped by caches in the system.	
Reserved	Output	The primary configuration is reserved.	
BADDR29	Output	Burst Address 29 ¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8103 memory controller.	
IRQ2	Input	Interrupt Request 2 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
Reserved	Output	The primary configuration is reserved.	
BADDR30	Output	Burst Address 30 ¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8103 memory controller.	
IRQ3	Input	Interrupt Request 3 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
Reserved	Output	The primary configuration is reserved.	
BADDR31	Output	Burst Address 31 ¹ One of five outputs of the memory controller. These pins connect directly to memory devices controlled by the MSC8103 memory controller.	
IRQ5	Input	Interrupt Request 5 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	

Table 1-5.	System Bus.	HDI16, and	Interrupt Signals
	System Dus,	nono, anu	interrupt Signals

Table 1-5. System Bus, HDI16, and Interrupt Signals (Cont

Signal	Data Flow	Description
D[32–47]	Input/Output	Data Bus Bits 32–47 In write transactions the bus master drives the valid data on this bus. In read transactions the slave drives the valid data on this bus.
HD[0–15]	Input/Output	Host Data ² When the HDI16 interface is enabled, these signals are lines 0-15 of the bidirectional tri-state data bus.
D[48–51]	Input/Output	Data Bus Bits 48–51 In write transactions the bus master drives the valid data on these pins. In read transactions the slave drives the valid data on these pins.
HA[0–3]	Input	Host Address Line 0–3 ³ When the HDI16 interface bus is enabled, these lines address internal host registers.
D52	Input/Output	Data Bus Bit 52 In write transactions the bus master drives the valid data on this pin. In read transactions the slave drives the valid data on this pin.
HCS1	Input	Host Chip Select ³ When the HDI16 interface is enabled, this is one of the two chip-select pins. The HDI16 chip select is a logical OR of HCS1 and HCS2.
D53	Input/Output	Data Bus Bit 53 In write transactions the bus master drives the valid data on this pin. In read transactions the slave drives the valid data on this pin.
HRW	Input	Host Read Write Select ³ When the HDI16 interface is enabled in Single Strobe mode, this is the read/write input (HRW).
HRD/HRD	Input	Host Read Strobe ³ When the HDI16 is programmed to interface with a double data strobe host bus, this pin is the read data strobe Schmitt trigger input (HRD/HRD). The polarity of the data strobe is programmable.
D54	Input/Output	Data Bus Bit 54 In write transactions the bus master drives the valid data on this pin. In read transactions the slave drives the valid data on this pin.
HDS/HDS	Input	Host Data Strobe ³ When the HDI16 is programmed to interface with a single data strobe host bus, this pin is the data strobe Schmitt trigger input (HDS/HDS). The polarity of the data strobe is programmable.
HWR/HWR	Input	Host Write Data Strobe ³ When the HDI16 is programmed to interface with a double data strobe host bus, this pin is the write data strobe Schmitt trigger input (HWR/HWR). The polarity of the data strobe is programmable.
D55	Input/Output	Data Bus Bit 55 In write transactions the bus master drives the valid data on this pin. In read transactions the slave drives the valid data on this pin.
HREQ/HREQ	Output	Host Request ³ When the HDI1 <u>6 is programmed to interface with a single host request host bus, this pin is the host request output (HREQ/HREQ). The polarity of the host request is programmable. The host request may be programmed as a driven or open-drain output.</u>
HTRQ/HTRQ	Output	Transmit Host Request ³ When the HDI16 is programmed to interface with a double host request host bus, this pin is the transmit host request output (HTRQ/HTRQ). The signal can be programmed as driven or open drain. The polarity of the host request is programmable.

als/Connections

T-11-4 C	O	IDIAO - LILIA		
Table 1-5.	System Bus, F	HDI16, and Interrup	ot Signals	(Continued)

Signal	Data Flow	Description	
ĪRQ5	Input	Interrupt Request 5 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP5	Input/Output	Data Parity 5 ¹ The agent that drives the data bus also drives the data parity signals. The value driven on the data parity five pin should give odd parity (odd number of ones) on the group of signals that includes data parity 5 and D[40–47].	
DREQ4	Input	DMA Request 4 ¹ An external peripheral uses this pin to request DMA service.	
EXT_DBG3	Output	External Data Bus Grant 3 ^{1,2} The MSC8103 asserts this pin to grant data bus ownership to an external bus master.	
IRQ6	Input	Interrupt Request 6 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP6	Input/Output	Data Parity 6 ¹ The agent that drives the data bus also drives the data parity signals. The value driven on the data parity six pin should give odd parity (odd number of ones) on the group of signals that includes data parity 6 and D[48–55].	
DACK3	Output	DMA Acknowledge 3 ¹ The DMA controller drives this output to acknowledge the DMA transaction on the bus.	
IRQ7	Input	Interrupt Request 7 ¹ One of eight external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP7	Input/Output	Data Parity 7 ¹ The master or slave that drives the data bus also drives the data parity signals. The value driven on the data parity seven pin should give odd parity (odd number of ones) on the group of signals that includes data parity 7 and D[56–63].	
DACK4	Output	DMA Acknowledge ¹ The DMA controller drives this output to acknowledge the DMA transaction on the bus.	
TA	Input/Output	Transfer Acknowledge Indicates that a data beat is valid on the data bus. For single beat transfers, assertion of \overline{TA} indicates the termination of the transfer. For burst transfers, \overline{TA} is asserted four times to indicate the transfer of four data beats with the last assertion indicating the termination of the burst transfer.	
TEA	Input/Output	Transfer Error Acknowledge Indicates a bus error. masters within the MSC8103 monitor the state of this pin. The MSC8103 internal bus monitor can assert this pin if it identifies a bus transfer that is hung.	
NMI	Input	Non-Maskable Interrupt When an external device asserts this line, the MSC8103 NMI input is asserted.	
NMI_OUT	Output	Non-Maskable Interrupt Driven from the MSC8103 internal interrupt controller. Assertion of this output indicates that a non-maskable interrupt, pending in the MSC8103 internal interrupt controller, is waiting to be handled by an external host.	
PSDVAL	Input/Output	Data Valid Indicates that a data beat is valid on the data bus. The difference between the TA pin and PSDVAL is that the TA pin is asserted to indicate data transfer terminations while the PSDVAL signal is asserted with each data beat movement. Thus, when TA is asserted, PSDVAL is asserted, but when PSDVAL is asserted, TA is not necessarily asserted. For example when the SDMA initiates a double word (2x64 bits) transfer to a memory device that has a 32-bit port size, PSDVAL is asserted three times without TA, and finally both pins are asserted to terminate the transfer.	

 Table 1-7.
 Port A Signals (Continued)

Name			
General- Purpose I/O	Peripheral Controller: Dedicated Signal Protocol	 Dedicated I/O Data Direction 	Description
PA17	FCC1: RXD7 UTOPIA	Input	FCC1: UTOPIA Receive Data Bit 7. The MSC8103 inputs ATM cell octets (UTOPIA interface data) on RXD[0–7]. RXD7 is the most significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes. To support Multi-PHY configurations, RXD[0–7] is tri-stated, enabled only when RXENB is asserted.
	FCC1: RXD0 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC1: MII and HDLC Nibble Receive Data Bit 0 RXD[3–0] is supported by MII and HDLC nibble mode in FCC1. RXD0 is the least significant bit.
	FCC1: RXD HDLC serial and transparent	Input	FCC1: HDLC Serial and Transparent Receive Data Bit This is the single receive data bit supported by HDLC and transparent modes.
PA16	FCC1: RXD6 <i>UTOPIA</i>	Input	FCC1: UTOPIA Receive Data Bit 6. The MSC8103 inputs ATM cell octets (UTOPIA interface data) on RXD[0–7]. This is bit 6 of the receive data. RXD7 is the most significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes. To support Multi-PHY configurations, RXD[0–7] is tri-stated, enabled only when RXENB is asserted.
	FCC1: RXD1 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC1: MII and HDLC Nibble Receive Data Bit 1 This is bit 1 of the receive nibble data. RXD3 is the most significant bit.
PA15	FCC1: RXD5 UTOPIA	Input	FCC1: UTOPIA Receive Data Bit 5 The MSC8103 inputs ATM cell octets (UTOPIA interface data) on RXD[0–7]. This is bit 5 of the receive data. RXD7 is the most significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes. To support Multi-PHY configurations, RXD[0–7] is tri-stated, enabled only when RXENB is asserted.
	RXD2 MII and HDLC nibble	Input	FCC1: MII and HDLC Nibble Receive Data Bit 2 This is bit 2 of the receive nibble data. RXD3 is the most significant bit.
PA14	FCC1: RXD4 UTOPIA	Input	FCC1: UTOPIA Receive Data Bit 4. The MSC8103 inputs ATM cell octets (UTOPIA interface data) on RXD[0–7]. RXD7 is the most significant bit. RXD0 is the least significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes. To support Multi-PHY configurations, RXD[0–7] is tri-stated, enabled only when RXENB is asserted.
	FCC1: RXD3 <i>MII</i> and <i>HDLC nibble</i>	Input	FCC1: MII and HDLC Nibble Receive Data Bit 3 RXD3 is the most significant bit of the receive nibble bit.
PA13	FCC1: RXD3 UTOPIA	Input	FCC1: UTOPIA Receive Data Bit 3 The MSC8103 inputs ATM cell octets (UTOPIA interface data) on RXD[0–7]. RXD7 is the most significant bit. RXD0 is the least significant bit. A cell is 53 bytes. To support Multi-PHY configurations, RXD[0–7] is tri-stated, enabled only when RXENB is asserted.
	SDMA: MSNUM2	Output	Module Serial Number Bit 2 The MSNUM has 6 bits that identify devices using the serial DMA (SDMA) modules. MSNUM[0–4] is the sub-block code of the current peripheral controller using SDMA. MSNUM5 indicates the section, transmit (0) or receive (1), that is active during the transfer. The information is recorded in the SDMA transfer error registers.

Table 1-8.	Port B Signals	(Continued)
------------	----------------	-------------

Name		Dedicated	
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	 Dedicated I/O Data Direction 	Description
PB28	FCC2: RTS HDLC serial, HDLC nibble, and transparent	Output	FCC2: Request to Send One of the standard modem interface signals supported by FCC2 ($\overline{\text{RTS}}$, $\overline{\text{CTS}}$, and $\overline{\text{CD}}$). $\overline{\text{RTS}}$ is asynchronous with the data. $\overline{\text{RTS}}$ is typically used in conjunction with $\overline{\text{CD}}$. The MSC8103 FCC2 transmitter requests the receiver to send data by asserting $\overline{\text{RTS}}$ low. The request is accepted when $\overline{\text{CTS}}$ is returned low.
	FCC2: RX_ER <i>MII</i>	Input	FCC2: Media Independent Interface Receive Error Asserted by an external fast Ethernet PHY to indicate a receive error, which often indicates bad wiring.
	SCC2: RTS, TENA	Output	SCC2: Request to Send, Transmit Enable Typically used in conjunction with CD supported by SCC2. The MSC8103 SCC2 transmitter requests the receiver to send data by asserting RTS low. The request is accepted when CTS is returned low. TENA is the signal used in Ethernet mode.
	SI2 TDMB2: L1TSYNC <i>TDM serial</i>	Input	Time-Division Multiplexing B2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the serial interface with time-slot assigner chapter in the <i>MSC8103 Reference</i> <i>Manual.</i>
PB27	FCC2: COL MII	Input	FCC2: Media Independent Interface Collision Detect Asserted by an external fast Ethernet PHY when a collision is detected.
	SI2 TDMC2: L1TXD <i>TDM serial</i>	Output	Time-Division Multiplexing C2: Layer 1 Transmit Data TDMC2 transmits serial data out of L1TXD.
PB26	FCC2: CRS MII	Input	FCC2: Media Independent Interface Carrier Sense Input Asserted by an external fast Ethernet PHY to indicate activity on the cable.
	SI2 TDMC2: L1RXD TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Data TDMC2 receives serial data from L1RXD.
PB25	FCC2: TXD3 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble Transmit Data Bit 3 TXD3 is bit 3 and the most significant bit of the transmit data nibble.
	SI1 TDMA1: L1TXD3	Output	Time-Division Multiplexing A1: Nibble Layer 1 Transmit Data Bit 3 L1TXD3 is bit 3 and the most significant bit of the transmit data nibble.
	TDM nibble SI2 TDMC2: L1TSYNC TDM serial	Input	Time-Division Multiplexing C2: Layer 1 Transmit Synchronization The synchronizing signal for the transmit channel. See the <i>Serial</i> <i>Interface with Time-Slot Assigner</i> chapter in the <i>MSC8103 Reference</i> <i>Manual.</i>
PB24	FCC2: TXD2 <i>MII</i> and <i>HDLC nibble</i>	Output	FCC2: MII and HDLC Nibble: Transmit Data Bit 2 TXD2 is bit 2 of the transmit data nibble.
	SI1 TDMA1: L1RXD3 nibble	Input	Time-Division Multiplexing A1: Nibble Layer 1 Receive Data Bit 3 L1RXD3 is bit 3 and the most significant bit of the receive data nibble.
	SI2 TDMC2: L1RSYNC serial	Input	Time-Division Multiplexing C2: Layer 1 Receive Synchronization The synchronizing signal for the receive channel.

 Table 1-9.
 Port C Signals (Continued)

Name		Dedicated		
General- Purpose I/O	Peripheral Controller: Dedicated I/O <i>Protocol</i>	Dedicated I/O Data Direction	Description	
PC22	SI1: L1ST1	Output	Serial Interface 1: Layer 1 Strobe 1 The MSC8103 time-slot assigner supports up to four strobe outputs that can be asserted on a bit or byte basis. The strobe outputs are useful for interfacing to other devices that do not support the multiplexed interface or for enabling/disabling three-state I/O buffers in a multiple-transmitter architecture. These strobes can also generate output wave forms for such applications as stepper-motor control.	
	CLK10	Input	Clock 10 The CPM supports up to 10 clock input pins sent to the bank-of-clocks selection logic, where they can be routed to the controllers.	
	DMA: DREQ1	Input/ Output	DMA: Request 1 DACK1, DREQ1, DRACK1, and DONE1 belong to the SIU DMA controller. DONE1 and DRACK1 are signals on the same pin and therefore cannot be used simultaneously. There are two sets of DMA pins associated with the PIO ports.	
PC15	SMC2: SMTXD	Output	SMC2: Serial Management Transmit Data The SMC interface consists of SMTXD, SMRXD, SMSYN, and a clock. Not all signals are used for all applications. SMCs are full-duplex ports that support three protocols or modes: UART, transparent, or general-circuit interface (GCI). See also PA9.	
	SCC1: CTS/CLSN	Input	SCC1: Clear To Send, Collision Typically used in conjunction with RTS. The MSC8103 SCC1 transmitter sends out a request to send data signal (RTS). The request is accepted when CTS is returned low. CLSN is the signal used in Ethernet mode. See also PC29.	
	FCC1: TXADDR0 UTOPIA master	Output	FCC1: UTOPIA Master Transmit Address Bit 0 This is master transmit address bit 0.	
	FCC1: TXADDR0 <i>UTOPIA slave</i>	Input	FCC1: UTOPIA Slave Transmit Address Bit 0 This is slave transmit address bit 0.	
PC14	SI1: L1ST2	Output	Serial Interface 1: Layer 1 Strobe 2 The MSC8103 time-slot assigner supports up to four strobe outputs that can be asserted on a bit or byte basis. The strobe outputs are useful for interfacing to other devices that do not support the multiplexed interface or for enabling/disabling three-state I/O buffers in a multiple-transmitter architecture. These strobes can also be generate output wave forms for such applications as stepper-motor control.	
	SCC1: CD, RENA	Input	SCC1: Carrier Detect, Receive Enable Typically used in conjunction with RTS supported by SCC1. The MSC8103MSC8103 SCC1 transmitter requests the receiver to send data by asserting RTS low. The request is accepted when CTS is returned low.	
	FCC1: RXADDR0 UTOPIA master	Output	FCC1: UTOPIA Multi-PHY Master Receive Address Bit 0 This is master receive address bit 0.	
	FCC1: RXADDR0 <i>UTOPIA slave</i>	Input	FCC1: UTOPIA Multi-PHY Slave Receive Address Bit 0 This is slave receive address bit 0.	

Table 1-10.	Port D Signals	(Continued)
-------------	----------------	-------------

	Name	Dedicated		
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	Dedicated I/O Data Direction	Description	
PD19	FCC1: TXADDR4 UTOPIA master	Output	FCC1: Multi-PHY Master Transmit Address Bit 4 Multiplexed Polling This is master transmit address bit 4.	
	FCC1: TXADDR4 <i>UTOPIA slave</i>	Input	FCC1: UTOPIA Slave Transmit Address Bit 4 This is slave transmit address bit 4.	
	FCC1: TXCLAV3 UTOPIA multi-PHY master, direct polling	Input	FCC1: UTOPIA Multi-PHY master Transmit Cell Available 3 Direct Polling Asserted by an external UTOPIA slave PHY to indicate that it can accept one complete ATM cell.	
	BRG1O	Output	Baud Rate Generator 1 Output The CPM supports up to 8 BRGs for use internally by the bank-of-clocks selection logic and/or to provide an output to one of the 8 BRG pins. BRG10 can be the internal input to the SIU timers. When CLK5 is selected (see PC27 above), it is the source for BRG10 which is the default input for the SIU timers. See the system interface unit (SIU) chapter in the <i>MSC8103 Reference Manual</i> for additional information. If CLK5 is not enabled, BRG10 uses an internal input. If TMCLK is enabled (see PC26 above), the BRG10 input to the SIU timers is disabled.	
	SPI: SPISEL	Input	SPI: Select The SPI interface comprises four signals: master out slave in (SPIMOSI), master in slave out (SPIMISO), clock (SPICLK) and select (SPISEL). The SPI can be configured as a slave or master in single- or multiple-master environments. SPISEL is the enable input to the SPI slave. In a multimaster environment, SPISEL (always an input) detects an error when more than one master is operating. SPI masters must output a slave select signal to enable SPI slave devices by using a separate general-purpose I/O signal. Assertion of an SPI SPISEL while it is master causes an error.	
PD18	FCC1: RXADDR4 UTOPIA master	Output	FCC1: UTOPIA Master Receive Address Bit 4 This is master receive address bit 4.	
	FCC1: RXADDR4 UTOPIA slave	Input	FCC1: UTOPIA Slave Receive Address Bit 4 This is slave receive address bit 4.	
	FCC1: RXCLAV3 UTOPIA multi-PHY master, direct polling	Input	FCC1: UTOPIA Multi-PHY Master Receive Cell Available 3 Direct Polling Asserted by an external PHY when one complete ATM cell is available for transfer.	
	SPI: SPICLK	Input/ Output	SPI: Clock The SPI interface comprises four signals: master out slave in (SPIMOSI), master in slave out (SPIMISO), clock (SPICLK) and select (SPISEL). The SPI can be configured as a slave or master in single- or multiple-master environments. SPICLK is a gated clock, active only during data transfers. Four combinations of SPICLK phase and polarity can be configured. When the SPI is a master, SPICLK is the clock output signal that shifts received data in from SPIMISO and transmitted data out to SPIMOSI.	

Physical and Electrical Specifications 2

This document contains detailed information on environmental limits, power considerations, DC/AC electrical characteristics, and AC timing specifications for the MSC8103 communications processor, mask set 2K87M. For additional information, see the *MSC8103 Reference Manual*.

2.1 Absolute Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist. **Table 2-1** describes the maximum electrical ratings for the MSC8103.

Rating		Symbol	Value	Unit
Core supply v	oltage ³	V _{DD}	-0.2 to 1.7	V
PLL supply vo	ltage ³	V _{CCSYN}	-0.2 to 1.7	V
I/O supply vol	tage ³	V _{DDH}	-0.2 to 3.6	V
Input voltage ³		V _{IN}	(GND – 0.2) to 3.6	V
Maximum operating temperature range ⁴		TJ	-40 to 120	°C
Storage temperature range		T _{STG}	-55 to +150	°C
 Functional operating conditions are given in Table 2-2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage. The input voltage must not exceed the I/O supply V_{DDH} by more than 2.5 V at any time, including during power-on reset. In 				

Table 2-1. Absolute Maximum Ratings	able 2-1.	Absolute Maximum Ratings ²
-------------------------------------	-----------	---------------------------------------

3. The input voltage must not exceed the I/O supply V_{DDH} by more than 2.5 V at any time, including during power-on reset. In turn, V_{DDH} can exceed V_{DD}/V_{CCSYN} by more than 3.3 V during power-on reset, but for no more than 100 ms. V_{DDH} should not exceed V_{DD}/V_{CCSYN} by more than 2.1 V during normal operation. V_{DD}/V_{CCSYN} must not exceed V_{DDH} by more than 0.4 V at any time, including during power-on reset. See Section 4.2, *Electrical Design Considerations*, on page 4-1 for more information.

4. Section 4.1, *Thermal Design Considerations*, on page 4-1 includes a formula for computing the chip junction temperature (T_.).

_	_		_	
			7	
			Δ.	
		\sim		

		Maximum Rated Core Frequency			
Clock	Symbol	All	Max. Values for SC140 Clock Rating of:		
		Min	275 MHz	300 MHz	
Input Clock	CLKIN	18 MHz	91.67 MHz	100 MHz	
SPLL MF Clock	SPLLMFCLK	18 MHz	34.38 MHz	37.5 MHz	
Bus/Output	BCLK CLKOUT	18 MHz	91.67 MHz	100 MHz	
Serial Communications Controller	SCLK	35 MHz	91.67 MHz	100 MHz	
Communications Processor Module	CPMCLK	70 MHz	183.3 MHz	200 MHz	
SC140 Core	DSPCLK	72 MHz	275 MHz	300 MHz	
 Baud Rate Generator For BRG DF = 4 For BRG DF = 16 (default) For BRG DF = 64 For BRG DF = 256 	BRGCLK	36 MHz 9 MHz 2.25 MHz 562.5 KHz	91.67 MHz 22.91 MHz 5.73 MHz 1.43 MHz	100 MHz 25 MHz 6.25 MHz 1.56 MHz	

Table 2-11.Clock Ranges

2.6.4 Reset Timing

The MSC8103 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)

Asserting an external PORESET causes concurrent assertion of an internal PORESET signal, HRESET, and SRESET. When the external PORESET signal is deasserted, the MSC8103 samples several configuration pins:

- RSTCONF—determines whether the MSC8103 is a master (0) or slave (1) device
- DBREQ—determines whether to operate in normal mode (0) or invoke the SC140 debug mode (1)
- HPE—disable (0) or enable (1) the host port (HDI16)
- BTM[0–1]—boot from external memory (00) or the HDI16 (01)

All these reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the last sources to cause a reset. **Table 2-12** describes reset causes.

Table 2-12. Reset Causes

Name	Direction	Description
Power-on reset (PORESET)	Input	PORESET initiates the power-on reset flow that resets all the MSC8103s and configures various attributes of the MSC8103, including its clock mode.
Hard reset (HRESET)	Input/Output	The MSC8103 can detect an external assertion of HRESET only if it occurs while the MSC8103 is not asserting reset. During HRESET, SRESET is asserted. HRESET is an open- drain pin.
Soft reset (SRESET)	Input/Output	The MSC8103 can detect an external assertion of SRESET only if it occurs while the MSC8103 is not asserting reset. SRESET is an open-drain pin.

ical and Electrical Specifications

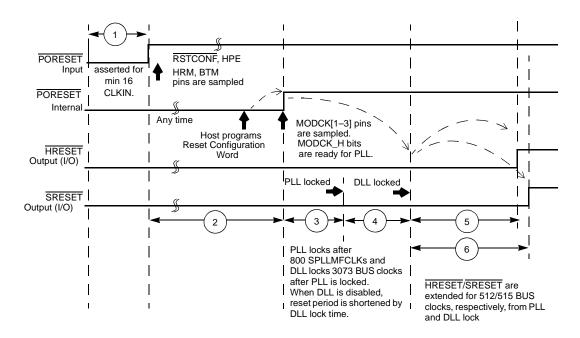
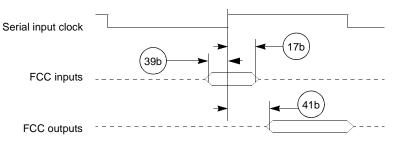



Figure 2-7. Host Reset Configuration Timing

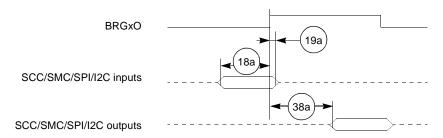


Figure 2-20. SCC/SMC/SPI/I²C Internal Clock Diagram

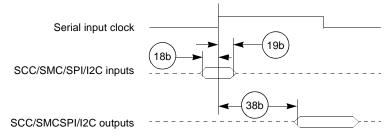


Figure 2-21. SCC/SMC/SPI/I²C External Clock Diagram

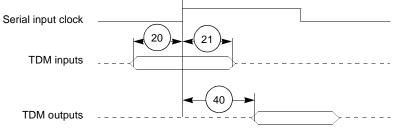
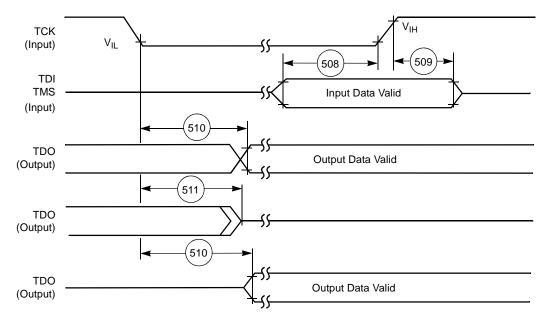
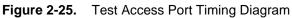




Figure 2-22. TDM Signal Diagram

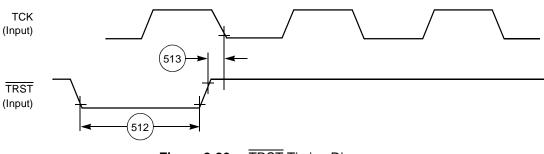


Figure 2-26. TRST Timing Diagram

Signal Name	Number
D42	A12
D43	D13
D44	C13
D45	B13
D46	A13
D47	E14
D48	D14
D49	C14
D50	B14
D51	A14
D52	D15
D53	C15
D54	B15
D55	A15
D56	E16
D57	D16
D58	C16
D59	B16
D60	A16
D61	C17
D62	A17
D63	A18
DACK1	N5
DACK2	N1
DACK3	D5
DACK4	F6
DBB	C18
DBG	B18
DBREQ	D2
DLLIN	P8
DP0	C2
DP1	B1
DP2	D4
DP3	B2

 Table 3-1.
 MSC8103 Signal Listing By Name (Continued)

Signal Name	Number
PA18	W2
PA19	R5
PA20	Т3
PA21	U1
PA22	R3
PA23	P4
PA24	P2
PA25	N2
PA26	M6
PA27	L1
PA28	K1
PA29	J1
PA30	J7
PA31	G1
PB18	R4
PB19	U2
PB20	P5
PB21	T1
PB22	T2
PB23	V1
PB24	P3
PB25	N3
PB26	M3
PB27	M1
PB28	L2
PB29	K4
PB30	H1
PB31	H4
PBS0	K18
PBS1	K17
PBS2	K14
PBS3	J19
PBS4	H19
PBS5	D17

 Table 3-1.
 MSC8103 Signal Listing By Name (Continued)

Number	Signal Name
C4	D2
C5	D5
C6	D9
C7	D15
C8	D20
C9	D25
C10	D30
C11	D35 / HD3
C12	D40 / HD8
C13	D44 / HD12
C14	D49 / HA1
C15	D53 / HRW / HRD
C16	D58 / HDDS
C17	D61
C18	DBB / IRQ3
C19	BADDR29 / IRQ2
D1	HPE / EE1
D2	DBREQ / EE0
D3	THERM2
D4	IRQ2 / DP2 / EXT_DBG2
D5	IRQ6 / DP6 / DACK3
D6	D8
D7	D14
D8	D19
D9	D24
D10	D29
D11	D34 / HD2
D12	D39 / HD7
D13	D43 / HD11
D14	D48 / HA0
D15	D52 / HCS1
D16	D57 / HDSP
D17	PWE5 / PSDDQM5 / PBS5
D18	IRQ1 / GBL
D19	BADDR27
E1	BTM0 / EE4
E2	EE3
E3	EE2
E4	V _{DDH}

 Table 3-2.
 MSC8103 Signal Listing by Pin Designator (Continued)

Number	Signal Name
G6	GND
G7	D12
G8	GND
G9	D23
G10	GND
G11	D33 / HD1
G12	GND
G13	PSDVAL
G14	GND
G15	V _{DDH}
G16	V _{DDH}
G17	TEA
G18	MODCK3 / TC2 / BNKSEL2
G19	POE / PSDRAS / PGPL2
H1	PB30 / FCC2:MII:RX_DV / SCC2:TXD / TDBM2:L1RXD
H2	PD31 / SCC1:RXD / DRACK1 / DONE1
H3	PC31 / BRG10 / CLK1 / TGATE1
H4	PB31 / FCC2:MII:TX_ER / SCC2:RXD / TDMB2:L1TXD
H5	GND
H6	TDI
H7	GND
H13	Reserved / BADDR31 / IRQ5
H14	Reserved / BADDR30 / IRQ3
H15	GND
H16	V _{DD}
H17	BR
H18	ALE
H19	PWE4 / PSDDQM4 / PBS4
J1	PA29 / FCC1:UTOPIA8:TXSOC / FCC1:MII:TX_ER
J2	PD30 / SCC1:TXD / DMA:DRACK2/DONE2
J3	PC30 / EXT1 / BRG20 / CLK2 / TOUT1
J4	V _{DD}
J5	GND
J6	GND
J7	PA30 / FCC1:UTOPIA8:TXCLAV / FCC1:UTOPIA8:TXCLAV0 / FCC1:MII:CRS / FCC1:HDLC and transparent:RTS
J13	TA
J14	GND
J15	V _{DDH}
	חטע

 Table 3-2.
 MSC8103 Signal Listing by Pin Designator (Continued)

Number	Signal Name
J16	V _{DDH}
J17	PSDAMUX / PGPL5
J18	PGTA / PUPMWAIT / PPBS / PGPL4
J19	PWE3 / PSDDQM3 / PBS3
K1	PA28 / FCC1:UTOPIA8:RXENB / FCC1:MII:TX_EN
K2	PD29 / FCC1:UTOPIA8:RXADDR3 / FCC1:UTOPIA8:RXCLAV2 / SCC1:RTS/TENA
K3	PC29 / SCC1:CTS / SCC1:CLSN / BRG3O / CLK3 / TIN2
K4	PB29 / FCC2:MII:TX_EN / TDMB2:L1RSYNC
K5	V _{DDH}
K6	GND
K7	GND
K13	GND
K14	PWE2 / PSDDQM2 / PBS2
K15	GND
K16	V _{DDH}
K17	PWE1 / PSDDQM1 / PBS1
K18	PWE0 / PSDDQM0 / PBS0
K19	CS2
L1	PA27 / FCC1:UTOPIA8:RXSOC / FCC1:MII:RX_DV
L2	PB28 / FCC2:RX_ER / FCC2:HDLC:RTS / SCC2:RTS/TENA / TDMB2:L1TSYN
L3	PC28 / SCC2:CTS/CLSN / BRG4O / CLK4 / TIN1/TOUT2
L4	V _{DD}
L5	GND
L6	GND
L7	PC27 / CLK5 / BRG50 / TGATE2
L13	CS6
L14	GND
L15	GND
L16	V _{DD}
L17	CS1
L18	CS3
L19	BCTL1
M1	PB27 / FCC2:MII:COL / TDMC2:L1TXD
M2	PC26 / TMCLK / BRG6O / CLK6 / TOUT3
M3	PB26 / FCC2:MII:CRS / TDMC2:L1RXD
M4	V _{DDH}
M5	GND
M6	PA26 / FCC1:UTOPIA8:RXCLAV / FCC1:UTOPIA8:RXCLAV0 / FCC1:MII:RX_ER

Table 3-2. MSC8103 Signal Listing by Pin Designator (Continued)

on Considerations

 GND_{SYN} and GND_{SYN1} should be provided with an extremely low impedance path to ground and should be bypassed to V_{CCSYN} and V_{CCSYN1} , respectively, by a 0.01- μ F capacitor located as close as possible to the chip package. The user should also bypass GND_{SYN1} and GND_{SYN1} to V_{CCSYN1} and V_{CCSYN1} with a 0.01- μ F capacitor as closely as possible to the chip package

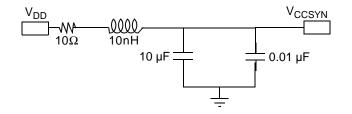


Figure 4-2. VCCSYN and VCCSYN1 Bypass

