

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	Communications Processor Module (CPM)
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	512kB
Voltage - I/O	3.30V
Voltage - Core	1.60V
Operating Temperature	-40°C ~ 75°C (TJ)
Mounting Type	Surface Mount
Package / Case	332-BFBGA, FCBGA
Supplier Device Package	332-FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8103vt1200f

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MSC8103 Features

- SC140 core
 - Architecture optimized for efficient C/C++ code compilation
 - Four 16-bit ALUs and two 32-bit AGUs
 - 1200 DSP MMACS running at 300 MHz
 - Very low power dissipation
 - Variable-length execution set (VLES) execution model
 - JTAG/Enhanced OnCE debug port
 - Communications processor module (CPM)
 - Programmable protocol machine using a 32-bit RISC engine
 - 155 Mbps ATM interface (including AAL 0/1/2/5)
 - 10/100 Mbit Ethernet interface
 - Up to four E1/T1 interfaces or one E3/T3 interface and one E1/T1 interface
 - HDLC support up to T3 rates, or 256 channels
- 64- or 32-bit wide bus interface
 - Support for bursts for high efficiency
 - Glueless interface to 60x-compatible bus systems
 - Multi-master support
 - Programmable memory controller
 - Control for up to eight banks of external memory
 - User-programmable machines (UPM) allowing glueless interface to various memory types (SRAM, DRAM, EPROM, and Flash memory) and other user-definable peripherals
 - Dedicated pipelined SDRAM memory interface
- Large internal SRAM
 - 256K 16-bit words (512 KB)
 - Unified program and data space configurable by the application
 - Word and byte addressable
- DMA controller
 - 16 DMA channels, FIFO based, with burst capabilities
 - Sophisticated addressing capabilities
- Small foot print package
 - 17 mm × 17 mm lidded FC-PBGA package with lead-bearing or lead-free spheres
- Very low power consumption
 - Separate power supply for internal logic (1.6 V) and for I/O (3.3 V)
- Enhanced 16-bit parallel host interface (HDI16)
 - Supports a variety of microcontroller, microprocessor, and DSP bus interfaces
 - Phase-lock loops (PLLs)
- System PLL
 - CPM DPLLs (SCC and SCM)
- Process technology
 - 0.13 micron copper interconnect process technology

Signals/Connections

The MSC8103 external signals are organized into functional groups, as shown in **Table 1-1**, **Figure 1-1**, and **Figure 1-2**. **Table 1-1** lists the functional groups, states the number of signal connections in each group, and references the table that gives details on multiplexed signals within each group. **Figure 1-1** shows MSC8103 external signals organized by function. **Figure 1-2** indicates how the parallel input/output (I/O) ports signals are multiplexed. Because the parallel I/O design supported by the MSC8103 communications processor module (CPM) is a subset of the parallel I/O signals supported by the MPC8260 device, port pins are not numbered sequentially.

Functional Group	Number of Signal Connections	Detailed Description		
Power (V _{CC} , V _{DD} , and GND)		80	Table 1-2 on page 1-4	
Clock		6	Table 1-3 on page 1-4	
Reset, configuration, and EOnCE		11	Table 1-4 on page 1-5	
System bus, HDI16, and interrupts	133	Table 1-5 on page 1-7		
Memory controller	27	Table 1-6 on page 1-13		
CPM input/output parallel ports	Port A	26	Table 1-7 on page 1-16	
	Port B	14	Table 1-8 on page 1-21	
	Port C	18	Table 1-9 on page 1-24	
	Port D	8	Table 1-10 on page 1-33	
JTAG test access port (TAP)		5	Table 1-11 on page 1-36	
Reserved (denotes connections that are always reserved)		5	Table 1-12 on page 1-36	

Table 1-1.	MSC8103 Functional	Signal Groupings
------------	--------------------	------------------

1.1 Power Signals

Power Name	Description
V _{DD}	Internal Logic Power V_{DD} dedicated for use with the device core. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V_{DD} power rail.
V _{DDH}	Input/Output Power This source supplies power for the I/O buffers. The user must provide adequate external decoupling capacitors.
V _{CCSYN}	System PLL Power V _{CC} dedicated for use with the system Phase Lock Loop (PLL). The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V _{CC} power rail.
V _{CCSYN1}	SC140 PLL Power V_{CC} dedicated for use with the SC140 core PLL. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V _{CC} power rail.
GND	System Ground An isolated ground for the internal processing logic. This connection must be tied externally to all chip ground connections, except GND _{SYN} and GND _{SYN1} . The user must provide adequate external decoupling capacitors.
GND _{SYN}	System PLL Ground Ground dedicated for system PLL use. The connection should be provided with an extremely low-impedance path to ground.
GND _{SYN1}	SC140 PLL Ground 1 Ground dedicated for SC140 core PLL use. The connection should be provided with an extremely low-impedance path to ground.

Table 1-2. Power and Ground Signal Inputs

1.2 Clock Signals

Signal Name	Туре	Signal Description
CLKIN	Input	Clock In Primary clock input to the MSC8103 PLL.
MODCK1	Input	Clock Mode Input 1 Defines the operating mode of internal clock circuits.
тсо	Output	Transfer Code 0 Supplies information that can be useful for debugging bus transactions initiated by the MSC8103.
BNKSEL0	Output	Bank Select 0 Selects the SDRAM bank when the MSC8103 is in 60x-compatible bus mode.
MODCK2	Input	Clock Mode Input 2 Defines the operating mode of internal clock circuits.
TC1	Output	Transfer Code 1 Supplies information that can be useful for debugging bus transactions initiated by the MSC8103.
BNKSEL1	Output	Bank Select 1 Selects the SDRAM bank when the MSC8103 is in 60x-compatible bus mode.
MODCK3	Input	Clock Mode Input 3 Defines the operating mode of internal clock circuits.
TC2	Output	Transfer Code 2 Supplies information that can be useful for debugging bus transactions initiated by the MSC8103.
BNKSEL2	Output	Bank Select 2 Selects the SDRAM bank when the MSC8103 is in 60x-compatible bus mode.

Table 1-3. Clock Signals

als/Connections

Signal Name	Туре	Signal Description
BTM[0-1]	Input	Boot Mode 0–1 Determines the MSC8103 boot mode when PORESET is deasserted. See the emulation and debug chapter in the <i>SC140 DSP Core Reference Manual</i> for details on how to set these pins.
EE4 ¹		EOnCE Event 4 After PORESET is deasserted, you can configure EE4 as an input (default) or an output. See the emulation and debug chapter in the <i>SC140 DSP Core Reference Manual</i> for details on the ETRSMT Register.
	Input	Enable Address Event Detection Channel 4 or generate an EOnCE event.
	Output	The DSP wrote the EOnCE Transmit Register (ETRSMT). Triggers external debugging equipment.
EE5 ¹		EOnCE Event 5 After PORESET is deasserted, you can configure EE5 as an input (default) or an output.
	Input	Enable Address Event Detection Channel 5.
	Output	Detection by Address Event Detection Channel 5. Triggers external debugging equipment.
EED ¹		Enhanced OnCE (EOnCE) Event Detection After PORESET is deasserted, you can configure EED as an input (default) or output:
	Input	Enable the Data Event Detection Channel.
	Output	Detection by the Data Event Detection Channel. Triggers external debugging equipment.
PORESET	Input	Power-On Reset When asserted, this line causes the MSC8103 to enter power-on reset state.
RSTCONF	Input	Reset Configuration Used during reset configuration sequence of the chip. A detailed explanation of its function is provided in the "Power-On Reset Flow" and "Hardware Reset Configuration" sections of the MSC8103 Reference Manual.
HRESET	Input	Hard Reset When asserted, this open-drain line causes the MSC8103 to enter the hard reset state.
SRESET	Input	Soft Reset When asserted, this open-drain line causes the MSC8103 to enter the soft reset state.
Note: See the e	mulation and deb	ug chapter in the SC140 DSP Core Reference Manual for details on how to configure these pins.

 Table 1-4.
 Reset, Configuration, and EOnCE Event Signals (Continued)

1.4 System Bus, HDI16, and Interrupt Signals

The system bus, HDI16, and interrupt signals are grouped together because they use a common set of signal lines. Individual assignment of a signal to a specific signal line is configured through registers in the System Interface Unit (SIU) and the Host Interface (HDI16). 1-5 describes the signals in this group.

Note: To boot from the host interface, the HDI16 must be enabled by pulling up the HPE signal line during PORESET. The configuration word must then be loaded from the host. The configuration word must set the Internal Space Port Size bit in the Bus Control Register (BCR[ISPS]) to change the system data bus width from 64 bits to 32 bits and reassign the upper 32 bits to their HDI16 functions. Never set the Host Port Enable (HEN) bit in the Host Port Control Register (HPCR) to enable the HDI16, unless the bus size is first changed from 64 bits to 32 bits. Otherwise, unpredictable operation may occur.

 Table 1-7.
 Port A Signals (Continued)

Name		Dedicated			
General- Purpose I/O	Peripheral Controller: Dedicated Signal Protocol	Dedicated I/O Data Direction	Description		
PA27	FCC1: RXSOC UTOPIA slave	Output	FCC1: UTOPIA Receive Start of Cell Asserted by the MSC8103 (UTOPIA slave) for an external PHY when RXD[0–7] contains the first valid byte of the cell.		
	FCC1: RX_DV MII	Input	FCC1: Media Independent Interface Receive Data Valid Asserted by an external fast Ethernet PHY to indicate that valid data is being sent. The presence of carrier sense but not RX_DV indicates reception of broken packet headers, probably due to bad wiring or a bad circuit.		
PA26	FCC1: RXCLAV UTOPIA slave	Output	FCC1: UTOPIA Slave Receive Cell Available Asserted by the MSC8103 (UTOPIA slave PHY) when one complete ATM cell is available for transfer.		
	FCC1: RXCLAV UTOPIA master, or	Input	FCC1: UTOPIA Master Receive Cell Available Asserted by an external PHY when one complete ATM cell is available for transfer.		
	RXCLAV0 UTOPIA master, Multi-PHY, direct polling	Input	FCC1: UTOPIA Master Receive Cell Available 0 Direct Polling Asserted by an external PHY when one complete ATM cell is available for transfer.		
	FCC1: RX_ER MII	Input	FCC1: Media Independent Interface Receive Error Asserted by an external fast Ethernet PHY to indicate a receive error, which often indicates bad wiring.		
PA25	FCC1: TXD0 <i>UTOPIA</i>	Output	FCC1: UTOPIA Transmit Data Bit 0 The MSC8103 outputs ATM cell octets (UTOPIA interface data) on TXD[0–7]. TXD0 is the least significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes.		
	SDMA: MSNUM0	Output	Module Serial Number Bit 0 The MSNUM has 6 bits that identify devices using the serial DMA (SDMA) modules. MSNUM[0–4] is the sub-block code of the current peripheral controller using SDMA. MSNUM5 indicates the section, transmit (0) or receive (1), that is active during the transfer. The information is recorded in the SDMA transfer error registers.		
PA24	FCC1: TXD1 UTOPIA	Output	FCC1: UTOPIA Transmit Data Bit 1 The MSC8103 outputs ATM cell octets (UTOPIA interface data) on TXD[0–7]. This is bit 1 of the transmit data. TXD7 is the most significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes.		
	SDMA: MSNUM1	Output	Module Serial Number Bit 1 The MSNUM has 6 bits that identify devices using the serial DMA (SDMA) modules. MSNUM[0–4] is the sub-block code of the current peripheral controller using SDMA. MSNUM5 indicates the section, transmit (0) or receive (1), that is active during the transfer. The information is recorded in the SDMA transfer error registers.		
PA23	FCC1: TXD2 UTOPIA	Output	FCC1: UTOPIA Transmit Data Bit 2 The MSC8103 outputs ATM cell octets (UTOPIA interface data) on TXD[0–7]. This is bit 2 of the transmit data. TXD7 is the most significant bit. When no ATM data is available, idle cells are inserted. A cell is 53 bytes.		

als/Connections

Table 1-9.	Port C Signals	(Continued)
------------	----------------	-------------

Name		Dedicated			
General- Purpose I/O	Peripheral Controller: Dedicated I/O <i>Protocol</i>	I/O Data Direction	Description		
PC5	SMC1: SMTXD	Output	SMC1: Transmit Data The SMC interface consists of SMTXD, SMRXD, SMSYN, and a clock. Not all signals are used for all applications. SMCs are full-duplex ports that supports three protocols or modes: UART, transparent, or general-circuit interface (GCI).		
	SI2: L1ST3	Output	Serial Interface 2: Layer 1 Strobe 3 The MSC8103 time-slot assigner supports up to four strobe outputs that can be asserted on a bit or byte basis. The strobe outputs are useful for interfacing to other devices that do not support the multiplexed interface or for enabling/disabling three-state I/O buffers in a multiple-transmitter architecture. These strobes can also generate output wave forms for such applications as stepper-motor control.		
	FCC2: CTS HDLC serial, HDLC nibble, and transparent	Input	FCC2: Clear To Send In th <u>e</u> standard modem interface signals supported by FCC2 (RTS, CTS, and CD). CTS is asynchronous with the data.		
PC4	SMC1: SMRXD	Input	SMC1: Receive Data The SMC interface consists of SMTXD, SMRXD, SMSYN, and a clock. Not all signals are used for all applications. SMCs are full-duplex ports that supports three protocols or modes: UART, transparent, or general-circuit interface (GCI).		
	SI2: L1ST4	Output	Serial Interface 2: Layer 1 Strobe 4 The MSC8103 time-slot assigner supports up to four strobe outputs that can be asserted on a bit or byte basis. The strobe outputs are useful for interfacing to other devices that do not support the multiplexed interface or for enabling/disabling three-state I/O buffers in a multiple-transmitter architecture. These strobes can also generate output wave forms for such applications as stepper-motor control.		
	FCC2: CD HDLC serial, HDLC nibble, and transparent	Input	FCC2: Carrier Detect In the standard modem interface signals supported by FCC2 ($\overline{\text{RTS}}$, $\overline{\text{CTS}}$ and $\overline{\text{CD}}$). $\overline{\text{CD}}$ is asynchronous with the data.		

Table 1-10.	Port D Signals	(Continued)
-------------	----------------	-------------

Name		Dedicated			
General- Purpose I/O	Peripheral Controller: Dedicated I/O Protocol	Dedicated I/O Data Direction	Description		
PD19	FCC1: TXADDR4 UTOPIA master	Output	FCC1: Multi-PHY Master Transmit Address Bit 4 Multiplexed Polling This is master transmit address bit 4.		
	FCC1: TXADDR4 <i>UTOPIA slave</i>	Input	FCC1: UTOPIA Slave Transmit Address Bit 4 This is slave transmit address bit 4.		
	FCC1: TXCLAV3 UTOPIA multi-PHY master, direct polling	Input	FCC1: UTOPIA Multi-PHY master Transmit Cell Available 3 Direct Polling Asserted by an external UTOPIA slave PHY to indicate that it can accept one complete ATM cell.		
	BRG1O	Output	Baud Rate Generator 1 Output The CPM supports up to 8 BRGs for use internally by the bank-of-clocks selection logic and/or to provide an output to one of the 8 BRG pins. BRG10 can be the internal input to the SIU timers. When CLK5 is selected (see PC27 above), it is the source for BRG10 which is the default input for the SIU timers. See the system interface unit (SIU) chapter in the <i>MSC8103 Reference Manual</i> for additional information. If CLK5 is not enabled, BRG10 uses an internal input. If TMCLK is enabled (see PC26 above), the BRG10 input to the SIU timers is disabled.		
	SPI: SPISEL	Input	SPI: Select The SPI interface comprises four signals: master out slave in (SPIMOSI), master in slave out (SPIMISO), clock (SPICLK) and select (SPISEL). The SPI can be configured as a slave or master in single- or multiple-master environments. SPISEL is the enable input to the SPI slave. In a multimaster environment, SPISEL (always an input) detects an error when more than one master is operating. SPI masters must output a slave select signal to enable SPI slave devices by using a separate general-purpose I/O signal. Assertion of an SPI SPISEL while it is master causes an error.		
PD18	FCC1: RXADDR4 UTOPIA master	Output	FCC1: UTOPIA Master Receive Address Bit 4 This is master receive address bit 4.		
	FCC1: RXADDR4 UTOPIA slave	Input	FCC1: UTOPIA Slave Receive Address Bit 4 This is slave receive address bit 4.		
	FCC1: RXCLAV3 UTOPIA multi-PHY master, direct polling	Input	FCC1: UTOPIA Multi-PHY Master Receive Cell Available 3 Direct Polling Asserted by an external PHY when one complete ATM cell is available for transfer.		
	SPI: SPICLK	Input/ Output	SPI: Clock The SPI interface comprises four signals: master out slave in (SPIMOSI), master in slave out (SPIMISO), clock (SPICLK) and select (SPISEL). The SPI can be configured as a slave or master in single- or multiple-master environments. SPICLK is a gated clock, active only during data transfers. Four combinations of SPICLK phase and polarity can be configured. When the SPI is a master, SPICLK is the clock output signal that shifts received data in from SPIMISO and transmitted data out to SPIMOSI.		

No.	Characteristics	Expression	Min	Max	Unit
4	Delay from SPLL lock to DLL lock DLL enabled BCLK = 18 MHz BCLK = 75 MHz DLL disabled 	3073 / BLCK —	40).72 .97 .0	μs μs ns
5	 Delay from SPLL lock to HRESET deassertion DLL enabled BCLK = 18 MHz BCLK = 75 MHz DLL disabled BCLK = 18 MHz BCLK = 75 MHz 	3585 / BLCK 512 / BLCK	47	0.17 7.5 8.4 83	μs μs μs μs
6	 Delay from SPLL lock to SRESET deassertion DLL enabled BCLK = 18 MHz BCLK = 75 MHz DLL disabled BCLK = 18 MHz BCLK = 75 MHz 	3588 / BLCK 515 / BLCK	47 28).33 .84 .61 87	μs μs μs μs
Note: Value given for lowest possible CLKIN frequency 18 MHz to ensure proper initialization of reset sequence. Value given for lowest possible CLKIN frequency 18 MHz to ensure proper initialization of reset sequence.					

Table 2-14.	Reset Timing	(Continued)
-------------	--------------	-------------

2.6.4.3 Host Reset Configuration

Host reset configuration allows the host to program the reset configuration word via the Host port after PORESET is deasserted, as described in the *MSC8103 Reference Manual*. The MSC8103 samples the signals described in **Table 2-13** one the rising edge of PORESET when the signal is deasserted.

If HPE is sampled high, the host port is enabled. In this mode the RSTCONF pin *must* be pulled up. The device extends the internal PORESET until the host programs the reset configuration word register. The host must write four 8-bit half-words to the Host Reset Configuration Register address to program the reset configuration word, which is 32 bits wide. For more information, see the *MSC8103 Reference Manual*. The reset configuration word is programmed before the internal PLL and DLL in the MSC8103 are locked. The host must program it after the rising edge of the PORESET input. In this mode, the host must have its own clock that does not depend on the MSC8103 clock. After the PLL and DLL are locked, HRESET remains asserted for another 512 bus clocks and is then released. The SRESET is released three bus clocks later (see Figure 2-7).

ical and Electrical Specifications

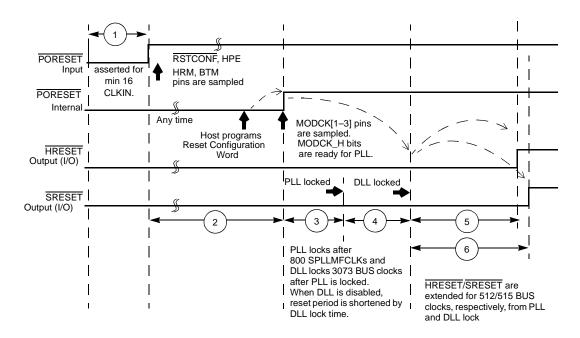


Figure 2-7. Host Reset Configuration Timing

AC Timings

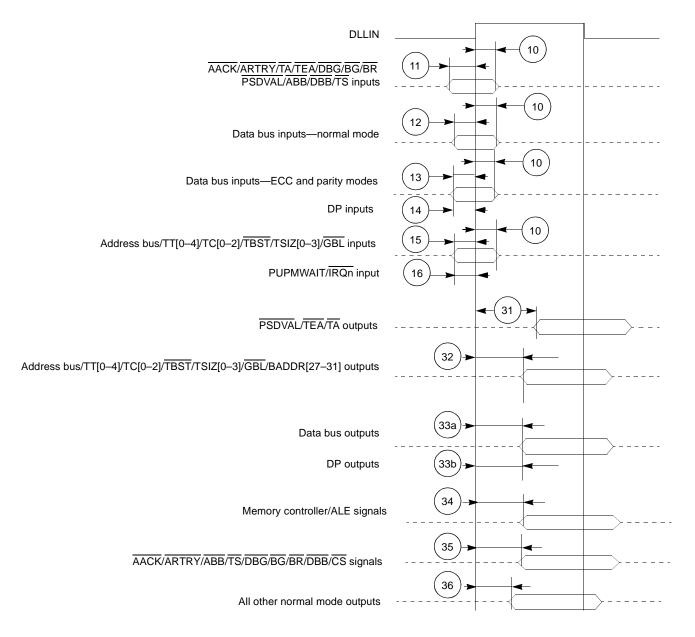


Figure 2-10. Bus Signal Timing

2.6.7 CPM Timings

No.	Characteristic	Typical	Unit		
39	FCC input set-up time before low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	10 5	ns ns		
17					
18	SCC/SMC/SPI/I ² C input set-up time before low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	20 5	ns ns		
19	SCC/SMC/SPI/I ² C input hold time after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial clock input)	0 5	ns ns		
20	TDM input set-up time before low-to-high serial clock transition	5	ns		
21	TDM input hold time after low-to-high serial transition	5	ns		
22	PIO/TIMER/DMA input set-up time before low-to-high serial clock transition	10	ns		
23	PIO/TIMER/DMA input hold time after low-to-high serial clock transition	3	ns		
Note:	FCC, SCC, SMC, SPI, I ² C are non-multiplexed serial interface signals.				

Table 2-20.	CPM Input Characteristics
-------------	---------------------------

Table 2-21. CPM Output Characteristics

No.	Characteristic	Min	Max	Unit		
41	FCC output delay after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial input clock)	0 2	6 18	ns ns		
38	SCC/SMC/SPI/I ² C output delay after low-to-high clock transition a. internal clock (BRGxO) b. external clock (serial input clock)	0 0	20 30	ns ns		
40	40 TDM output delay after low-to-high serial clock transition			ns		
42	PIO/TIMER/DMA output delay after low-to-high serial clock transition	1	14	ns		
Note:	Note: FCC, SCC, SMC, SPI, I ² C are Non-Multiplexed Serial Interface signals.					

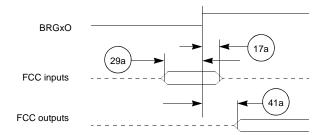


Figure 2-18. FCC Internal Clock Diagram

Packaging

This chapter provides information about the MSC8103 package, including diagrams of the package pinouts and tables showing how the signals discussed in **Chapter 1** are allocated. The MSC8103 is available in a 332-pin lidded flip chip-plastic ball grid array (FC-PBGA).

3.1 FC-PBGA Package Description

Figure 3-1 and **Figure 3-2** show top and bottom views of the FC-PBGA package, including pinouts. **Table 3-1** lists the MSC8103 signals alphabetically by signal name. Connections with multiple names are listed individually by each name. Signals with programmable polarity are shown both as signals which are asserted low (default) and high (that is, NAME/NAME). **Table 3-2** lists the signals numerically by pin number. Each pin number is listed once with the various signals that are multiplexed to it. For simplicity, signals with programmable polarity are shown in this table only with their default name (asserted low).

Note: The package description in this chapter applies to packages with lead-bearing and lead-free spheres.

Signal Name	Number
D8	D6
D9	C6
D10	B6
D11	A6
D12	G7
D13	E7
D14	D7
D15	C7
D16	B7
D17	A7
D18	F8
D19	D8
D20	C8
D21	B8
D22	A8
D23	G9
D24	D9
D25	C9
D26	В9
D27	A9
D28	F10
D29	D10
D30	C10
D31	B10
D32	A10
D33	G11
D34	D11
D35	C11
D36	B11
D37	A11
D38	F12
D39	D12
D40	C12
D41	B12

 Table 3-1.
 MSC8103 Signal Listing By Name (Continued)

Signal Name	Number
RXD3 for FCC2 MII/HDLC nibble	R4
RXD4 for FCC1 UTOPIA 8	W8
RXD5 for FCC1 UTOPIA 8	W3
RXD6 for FCC1 UTOPIA 8	M7
RXD7 for FCC1 UTOPIA 8	T4
RXENB for FCC1	K1
RXPRTY for FCC1 UTOPIA 8	N7
RXSOC for FCC1	L1
SCL	R4
SDA	U2
SMRXD for SMC1	P10
SMRXD for SMC2	U10
SMSYN for SMC1	V9
SMSYN for SMC2	V10
SMTXD for SMC1	W10
SMTXD for SMC2	W9
SMTXD for SMC2	V3
SPARE1	R2
SPARE5	U11
SPICLK	U3
SPIMISO	U4
SPIMOSI	N7
SPISEL	V2
SRESET	W4
TA	J13
TBST	U13
TC0	E18
TC1	F18
TC2	G18
ТСК	G4
TDI	H6
TDO	F1
TEA	G17
TEST	W6

 Table 3-1.
 MSC8103 Signal Listing By Name (Continued)

Signal Name	Number
V _{DD}	H16
V _{DD}	J4
V _{DD}	L16
V _{DD}	L4
V _{DD}	N4
V _{DD}	P16
V _{DD}	R11
V _{DD}	R13
V _{DD}	R8
V _{DDH}	E10
V _{DDH}	E11
V _{DDH}	E13
V _{DDH}	E15
V _{DDH}	E4
V _{DDH}	E6
V _{DDH}	E8
V _{DDH}	G15
V _{DDH}	G16
V _{DDH}	G5
V _{DDH}	J15
V _{DDH}	J16
V _{DDH}	K16
V _{DDH}	K5
V _{DDH}	M4
V _{DDH}	N15
V _{DDH}	N16
V _{DDH}	R10
V _{DDH}	R12
V _{DDH}	R14
V _{DDH}	R15
V _{DDH}	R6
V _{DDH}	R7
V _{DDH}	R9
V _{DDH}	T15

 Table 3-1.
 MSC8103 Signal Listing By Name (Continued)

Number	Signal Name				
E5	V _{DD}				
E6	V _{DDH}				
E7	D13				
E8	V _{DDH}				
E9	V _{DD}				
E10	V _{DDH}				
E11	V _{DDH}				
E12	V _{DD}				
E13	V _{DDH}				
E14	D47 / HD15				
E15	V _{DDH}				
E16	D56 / HACK / HRRQ				
E17	PSDA10 / PGPL0				
E18	MODCK1 / TC0 / BNKSEL0				
E19	PSDCAS / PGPL3				
F1	TDO				
F2	EED				
F3	BTM1 / EE5				
F4	V _{DD}				
F5	GND				
F6	IRQ7 / DP7 / DACK4				
F7	GND				
F8	D18				
F9	GND				
F10	D28				
F11	GND				
F12	D38 / HD6				
F13	GND				
F14	PSDWE / PGPL1				
F15	GND				
F16	V _{DD}				
F17	PWE7 / PSDDQM7 / PBS7				
F18	MODCK2 / TC1 / BNKSEL1				
F19	BCTL0				
G1	PA31 / FCC1:UTOPIA8:TXENB / FCC1:MII:COL				
G2	TMS				
G3	TRST				
G4	ТСК				
G5	V _{DDH}				

 Table 3-2.
 MSC8103 Signal Listing by Pin Designator (Continued)

Number	Signal Name			
M7	PA16 / FCC1:UTOPIA8:RXD6 / FCC1:MII and HDLC nibble:RXD1			
M13	A21			
M14	A26			
M15	GND			
M16	CS0			
M17	CS5			
M18	CS7			
M19	CS4			
N1	PC25 / DMA: DACK2 / BRG7O / CLK7 / TIN4			
N2	PA25 / FCC1:UTOPIA8:TXD0 / SDMA:MSNUM0			
N3	PB25 / FCC2:MII and HDLC nibble:TXD3 / TDMA1:nibble:L1TXD3 / TDMC2:L1TSYNC			
N4	V _{DD}			
N5	PC23 / EXT2 / DMA:DACK1 / CLK9			
N6	GND			
N7	PD17 / FCC1:UTOPIA8:RXPRTY / SPI:SPIMOSI / BRG2O			
N8	CLKIN			
N9	GND			
N10	PC6 / FCC1:UTOPIA8:RXADDR2 / FCC1:UTOPIA8:RXADDR2/RXCLAV1 FCC1:CD / SI2:LIST2			
N11	TSIZ3			
N12	TT1			
N13	тто			
N14	A1			
N15	V _{DDH}			
N16	V _{DDH}			
N17	A28			
N18	A30			
N19	A31			
P1	PC24 / DMA:DREQ2 / BRG8O / CLK8 / TIN3/TOUT4			
P2	PA24 / FCC1:UTOPIA8:TXD1 / SDMA:MSNUM1			
P3	PB24 / FCC2:MII and HDLC nibble:TXD2 / TDMA1:nibble:L1RXD3 / TDMC2:L1RSYNC			
P4	PA23 / FCC1:UTOPIA8:TXD2			
P5	PB20 / FCC2:MII and HDLC nibble:RXD1 / TDMA1:nibble:L1TXD1 / TDMD2:L1RSYNC			
P6	GND			
P7	GND			
P8	DLLIN			
P9	GND			

 Table 3-2.
 MSC8103 Signal Listing by Pin Designator (Continued)

3.2 Lidded FC-PBGA Package Mechanical Drawing

Notes: 1. Dimensioning and tolerancing per ASME Y14.5M–1994.

2. Dimensions in millimeters.

A Maximum solder ball diameter measured parallel to Datum A.

A Primary Datum A and the seating plane are defined by the spherical crowns of the solder balls.

CASE 1473-01

Figure 3-3. Case 1473-01 Mechanical Information, 332-pin Lidded FC-PBGA Package

Ordering Information

For product availability, consult a Freescale Semiconductor sales office or authorized distributor.

Part	Supply Voltage	Package Type	Pin Count	Mask Set	Sphere Type	Core Frequency (MHz)	Order Number
MSC8103	1.6 V core	Lidded Flip Chip Plastic Ball	332	2K87M	Pb-bearing	275	MSC8103M1100F
	3.3 V I/O	Grid Array (FC-PBGA)			Pb-free	275	MSC8103VT1100F
					Pb-bearing	300	MSC8103M1200F
					Pb-free	300	MSC8103VT1200F

How to Reach Us:

Home Page:

www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

MSC8103 Rev. 12 8/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™], the Freescale logo, and StarCore are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2001, 2008.