

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	34K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xe164fm-48f80l-aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.1 Pin Configuration and Definition

The pins of the XE164xM are described in detail in **Table 5**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Figure 3 XE164xM Pin Configuration (top view)

Table	able 5 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output				
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)				
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output				
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output				
	CCU62_CCP OS2A	I	St/B	CCU62 Position Input 2				
	ТСК_С	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input				
11	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output				
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)				
	TxDC2	O2	DA/A	CAN Node 2 Transmit Data Output				
	BRKOUT	O3	DA/A	OCDS Break Signal Output				
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1				
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input				
12	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output				
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)				
	T3OUT	O2	DA/A	GPT12E Timer T3 Toggle Latch Output				
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output				
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1				
	RxDC2E	I	DA/A	CAN Node 2 Receive Data Input				
	ESR1_6	I	DA/A	ESR1 Trigger Input 6				

Tabl	Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output			
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output			
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output			
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.			
	A19	ОН	St/B	External Bus Interface Address Line 19			
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input			
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input			
	ESR2_6	I	St/B	ESR2 Trigger Input 6			
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.			
	CS3	OH	St/B	External Bus Interface Chip Select 3 Output			
	RxDC2A	I	St/B	CAN Node 2 Receive Data Input			
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input			
	CCU62_CCP OS2B	I	St/B	CCU62 Position Input 2			
53	P0.0	O0 / I	St/B	Bit 0 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	CCU61_CC6 0	O3	St/B	CCU61 Channel 0 IOutput			
	A0	OH	St/B	External Bus Interface Address Line 0			
	U1C0_DX0A	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 0INA	I	St/B	CCU61 Channel 0 Input			
	ESR1_11	I	St/B	ESR1 Trigger Input 11			

Table	Fin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
86	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC3	O2	St/B	CAN Node 3 Transmit Data Output			
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output			
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when WR, active for ext. writes to the low byte, when WRL.			
	U1C0_DX0D	I	St/B	USIC1 Channel 0 Shift Data Input			
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output			
	CCU62_COU T63	O1	St/B	CCU62 Channel 3 Output			
	U1C0_SELO 7	02	St/B	USIC1 Channel 0 Select/Control 7 Output			
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output			
	A11	ОН	St/B	External Bus Interface Address Line 11			
	ESR2_4	I	St/B	ESR2 Trigger Input 4			
	CCU62_T12 HRB	I	St/B	External Run Control Input for T12 of CCU62			
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output			
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output			
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output			
	RD	OH	St/B	External Bus Interface Read Strobe Output			
	ESR2_2	I	St/B	ESR2 Trigger Input 2			
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input			
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input			

Table	able 5 Pin Definitions and Functions (cont'd)									
Pin	Symbol	Ctrl.	Туре	Function						
90	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output						
	CCU62_COU T61	01	St/B	CCU62 Channel 1 Output						
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output						
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output						
	A12	ОН	St/B	External Bus Interface Address Line 12						
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input						
91	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output						
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output						
	U0C1_DOUT	O2	St/B	USIC0 Channel 1 Shift Data Output						
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output						
	ALE	OH	St/B	External Bus Interf. Addr. Latch Enable Output						
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input						
92	P1.5	O0 / I	St/B	Bit 5 of Port 1, General Purpose Input/Output						
	CCU62_COU T60	01	St/B	CCU62 Channel 0 Output						
	U1C1_SELO 3	02	St/B	USIC1 Channel 1 Select/Control 3 Output						
	BRKOUT	O3	St/B	OCDS Break Signal Output						
	A13	ОН	St/B	External Bus Interface Address Line 13						
	U2C0_DX0C	I	St/B	USIC2 Channel 0 Shift Data Input						

General Device Information

Table	Fin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
2, 25, 27,	V_{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain BConnect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.Note: The on-chip voltage regulators and all portsexcept P5, P6 and P15 are fed from supply voltage V_{DDPB} .				
50, 52, 75, 77, 100								
1, 26, 51,	V _{SS}	-	PS/	Digital Ground All $V_{\rm SS}$ pins must be connected to the ground-line or ground-plane.				
76				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.				

 To generate the reference clock output for bus timing measurement, f_{SYS} must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE164xM and of its modules.

Table 6 XE164xM Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3801 _H	00'F07C _H	
SCU_IDMEM	30D0 _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0017'E083 _H		marking EES-AA, ES-AA or AA

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External CS signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE164xM to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE164xM from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

3.18 Parallel Ports

The XE164xM provides up to 76 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in Table 9.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN
P1	8	I/O	EBC (A15A8), CCU6, USIC
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG
P4	4	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC
P5	11	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	3	I/O	ADC, CAN, GPT12E
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN
P15	5	I	Analog Inputs, GPT12E

Table 9 Summary of the XE164xM's Ports

			•	•	•	,
Parameter Symbol Values			Unit	Note /		
		Min.	Тур.	Max.		Test Condition
Output Low Voltage ⁸⁾	$V_{\rm OL}{\rm CC}$	-	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}$
		-	-	0.4	V	$I_{\rm OL} \leq I_{\rm OLnom}^{9)}$

Table 13 DC Characteristics for Upper Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

- Not subject to production test verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.
- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm CV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: V_{PIN} ≤ V_{ILmax} for a pullup; V_{PIN} ≥ V_{ILmin} for a pulldown.
- 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.
- 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} ≥ V_{IHmin} for a pullup; V_{PIN} ≤ V_{ILmax} for a pulldown.
- 8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 9) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 0.6 \text{ x} f_{SYS}$.

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE164xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from $V_{\rm DDPA}$.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

Table 17ADC Parameters (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50	3)	
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50	4)	
Conversion time for 8-bit result ²⁾	t _{c8} CC	(11 + S ⁻ + 2 x t _S	TC) x t _{AD} YS	ICI		
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	(13 + S ⁻ + 2 x t _S	TC) x t _{AD} YS	CI		
Total Unadjusted Error	TUE CC	-	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode ²⁾	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode ²⁾	t _{WAS} CC	-	-	15	μS	
Analog reference ground	$V_{ m AGND}$ SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	6)
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	5)

1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

- The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66_H).
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_H).
- 5) TUE is tested at V_{AREF} = V_{DDPA} = 5.0 V, V_{AGND} = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

4.6 AC Parameters

These parameters describe the dynamic behavior of the XE164xM.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 17 Input Output Waveforms

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

 Table 25
 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtyp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$

Table 25 Standard Pad Parameters for Upper Voltage Range

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum output driver	I _{Omax}	-	-	10	mA	Strong driver
current (absolute value) ¹⁾	CC	-	-	4.0	mA	Medium driver
		-	-	0.5	mA	Weak driver
Nominal output driver	I _{Onom}	-	-	2.5	mA	Strong driver
current (absolute value)	CC	-	-	1.0	mA	Medium driver
		-	-	0.1	mA	Weak driver
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	4.2 + 0.14 x <i>C</i> _L	ns	Strong driver; Sharp edge
		_	-	11.6 + 0.22 x <i>C</i> _L	ns	Strong driver; Medium edge
		_	-	20.6 + 0.22 x <i>C</i> _L	ns	Strong driver; Slow edge
		-	-	23 + 0.6 x C _L	ns	Medium driver
		_	-	212 + 1.9 x <i>C</i> L	ns	Weak driver

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

Table 32 USIC SSC Master Mode Timing for Lower Voltage Range (cont'd)

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	_	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	-	_	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 33 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	_	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	-	33	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	-	ns	
DAP0 high time	t ₁₂ SR	8	-	_	ns	
DAP0 low time	t ₁₃ SR	8	-	_	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard

Table 36 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Figure 27 Test Clock Timing (DAP0)

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XE164xM depends on the operating temperature. The life time decreases with increasing temperature as shown in **Table 41**.

Table 40Quality Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 41
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	-	JEDEC J-STD-020C

Table 41 Lifetime dependency from Temperature

Operating Time	Operating Temperature
20 a	$T_{ m J} \le 110^{\circ}{ m C}$
95 500 h	$T_{\rm J}$ = 120°C
68 500 h	$T_{\rm J} = 125^{\circ}{\rm C}$
49 500 h	$T_{\rm J}=130^{\circ}{\rm C}$
26 400 h	$T_{\rm J} = 140^{\circ}{\rm C}$
14 500 h	$T_{\rm J} = 150^{\circ}{\rm C}$