

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

## Details

E·XFl

| Product Status             | Obsolete                                                                         |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | C166SV2                                                                          |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 80MHz                                                                            |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, LINbus, SPI, SSC, UART/USART, USI                     |
| Peripherals                | I <sup>2</sup> S, POR, PWM, WDT                                                  |
| Number of I/O              | 76                                                                               |
| Program Memory Size        | 192КВ (192К х 8)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | •                                                                                |
| RAM Size                   | 24K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                        |
| Data Converters            | A/D 11x10b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-LQFP Exposed Pad                                                             |
| Supplier Device Package    | PG-LQFP-100-8                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/sak-xe164km-24f80l-aa |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## **Summary of Features**

# 1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

| Derivative <sup>1)</sup> | Flash<br>Memory <sup>2)</sup> | PSRAM<br>DSRAM <sup>3)</sup> | Capt./Comp.<br>Modules | ADC <sup>4)</sup><br>Chan. | Interfaces <sup>4)</sup>        |
|--------------------------|-------------------------------|------------------------------|------------------------|----------------------------|---------------------------------|
| XE164FM-<br>72FxxL       | 576 Kbytes                    | 32 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1/2       | 11 + 5                     | 4 CAN Nodes,<br>6 Serial Chan.  |
| XE164FM-<br>48FxxL       | 384 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1/2       | 11 + 5                     | 4 CAN Nodes,<br>6 Serial Chan.  |
| XE164FM-<br>24FxxL       | 192 Kbytes                    | 8 Kbytes<br>16 Kbytes        | CC2<br>CCU60/1/2       | 11 + 5                     | 4 CAN Nodes,<br>6 Serial Chan.  |
| XE164GM-<br>72FxxL       | 576 Kbytes                    | 32 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1         | 6 + 5                      | 2 CAN Nodes,<br>4 Serial Chan.  |
| XE164GM-<br>48FxxL       | 384 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1         | 6 + 5                      | 2 CAN Nodes,<br>4 Serial Chan.  |
| XE164GM-<br>24FxxL       | 192 Kbytes                    | 8 Kbytes<br>16 Kbytes        | CC2<br>CCU60/1         | 6 + 5                      | 2 CAN Nodes,<br>4 Serial Chan.  |
| XE164HM-<br>72FxxL       | 576 Kbytes                    | 32 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1/2       | 11 + 5                     | No CAN Nodes,<br>6 Serial Chan. |
| XE164HM-<br>48FxxL       | 384 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1/2       | 11 + 5                     | No CAN Nodes,<br>6 Serial Chan. |
| XE164HM-<br>24FxxL       | 192 Kbytes                    | 8 Kbytes<br>16 Kbytes        | CC2<br>CCU60/1/2       | 11 + 5                     | No CAN Nodes,<br>6 Serial Chan. |
| XE164KM-<br>72FxxL       | 576 Kbytes                    | 32 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1         | 6 + 5                      | No CAN Nodes,<br>6 Serial Chan. |
| XE164KM-<br>48FxxL       | 384 Kbytes                    | 16 Kbytes<br>16 Kbytes       | CC2<br>CCU60/1         | 6 + 5                      | No CAN Nodes,<br>6 Serial Chan. |
| XE164KM-<br>24FxxL       | 192 Kbytes                    | 8 Kbytes<br>16 Kbytes        | CC2<br>CCU60/1         | 6 + 5                      | No CAN Nodes,<br>6 Serial Chan. |

### Table 1 Synopsis of XE164xM Basic Device Types

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 2.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 4. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).



| Table | able 5 Pin Definitions and Functions (cont'd) |            |      |                                                |  |  |  |  |
|-------|-----------------------------------------------|------------|------|------------------------------------------------|--|--|--|--|
| Pin   | Symbol                                        | Ctrl.      | Туре | Function                                       |  |  |  |  |
| 40    | P2.1                                          | O0 / I     | St/B | Bit 1 of Port 2, General Purpose Input/Output  |  |  |  |  |
|       | TxDC0                                         | 01         | St/B | CAN Node 0 Transmit Data Output                |  |  |  |  |
|       | AD14                                          | OH /<br>IH | St/B | External Bus Interface Address/Data Line 14    |  |  |  |  |
|       | T5EUDB                                        | I          | St/B | GPT12E Timer T5 External Up/Down Control Input |  |  |  |  |
|       | ESR1_5                                        | I          | St/B | ESR1 Trigger Input 5                           |  |  |  |  |
| 41    | P2.2                                          | O0 / I     | St/B | Bit 2 of Port 2, General Purpose Input/Output  |  |  |  |  |
|       | TxDC1                                         | 01         | St/B | CAN Node 1 Transmit Data Output                |  |  |  |  |
|       | AD15                                          | OH /<br>IH | St/B | External Bus Interface Address/Data Line 15    |  |  |  |  |
|       | ESR2_5                                        | I          | St/B | ESR2 Trigger Input 5                           |  |  |  |  |
| 42    | P4.0                                          | O0 / I     | St/B | Bit 0 of Port 4, General Purpose Input/Output  |  |  |  |  |
|       | CC2_CC24                                      | O3 / I     | St/B | CAPCOM2 CC24IO Capture Inp./ Compare Out.      |  |  |  |  |
|       | CS0                                           | ОН         | St/B | External Bus Interface Chip Select 0 Output    |  |  |  |  |
| 43    | P2.3                                          | O0 / I     | St/B | Bit 3 of Port 2, General Purpose Input/Output  |  |  |  |  |
|       | U0C0_DOUT                                     | 01         | St/B | t/B USIC0 Channel 0 Shift Data Output          |  |  |  |  |
|       | CC2_CC16                                      | O3 / I     | St/B | CAPCOM2 CC16IO Capture Inp./ Compare Out.      |  |  |  |  |
|       | A16                                           | ОН         | St/B | External Bus Interface Address Line 16         |  |  |  |  |
|       | ESR2_0                                        | I          | St/B | ESR2 Trigger Input 0                           |  |  |  |  |
|       | U0C0_DX0E                                     | I          | St/B | USIC0 Channel 0 Shift Data Input               |  |  |  |  |
|       | U0C1_DX0D                                     | I          | St/B | USIC0 Channel 1 Shift Data Input               |  |  |  |  |
|       | RxDC0A                                        | I          | St/B | CAN Node 0 Receive Data Input                  |  |  |  |  |
| 44    | P4.1                                          | O0 / I     | St/B | Bit 1 of Port 4, General Purpose Input/Output  |  |  |  |  |
|       | TxDC2                                         | O2         | St/B | CAN Node 2 Transmit Data Output                |  |  |  |  |
|       | CC2_CC25                                      | O3 / I     | St/B | CAPCOM2 CC25IO Capture Inp./ Compare Out.      |  |  |  |  |
|       | CS1                                           | ОН         | St/B | External Bus Interface Chip Select 1 Output    |  |  |  |  |
|       | CCU62_CCP<br>OS0B                             | I          | St/B | CCU62 Position Input 0                         |  |  |  |  |
|       | T4EUDB                                        | I          | St/B | GPT12E Timer T4 External Up/Down Control Input |  |  |  |  |
|       | ESR1_8                                        | I          | St/B | ESR1 Trigger Input 8                           |  |  |  |  |



| Tabl | Table 5         Pin Definitions and Functions (cont'd) |        |      |                                               |  |  |  |  |
|------|--------------------------------------------------------|--------|------|-----------------------------------------------|--|--|--|--|
| Pin  | Symbol                                                 | Ctrl.  | Туре | Function                                      |  |  |  |  |
| 54   | P2.7                                                   | O0 / I | St/B | Bit 7 of Port 2, General Purpose Input/Output |  |  |  |  |
|      | U0C1_SELO<br>0                                         | 01     | St/B | USIC0 Channel 1 Select/Control 0 Output       |  |  |  |  |
|      | U0C0_SELO<br>1                                         | O2     | St/B | USIC0 Channel 0 Select/Control 1 Output       |  |  |  |  |
|      | CC2_CC20                                               | O3 / I | St/B | CAPCOM2 CC20IO Capture Inp./ Compare Out.     |  |  |  |  |
|      | A20                                                    | ОН     | St/B | External Bus Interface Address Line 20        |  |  |  |  |
|      | U0C1_DX2C                                              | I      | St/B | USIC0 Channel 1 Shift Control Input           |  |  |  |  |
|      | RxDC1C                                                 | I      | St/B | CAN Node 1 Receive Data Input                 |  |  |  |  |
|      | ESR2_7                                                 | I      | St/B | ESR2 Trigger Input 7                          |  |  |  |  |
| 55   | P0.1                                                   | O0 / I | St/B | Bit 1 of Port 0, General Purpose Input/Output |  |  |  |  |
|      | U1C0_DOUT                                              | 01     | St/B | USIC1 Channel 0 Shift Data Output             |  |  |  |  |
|      | TxDC0                                                  | O2     | St/B | CAN Node 0 Transmit Data Output               |  |  |  |  |
|      | CCU61_CC6<br>1                                         | O3     | St/B | CCU61 Channel 1 Output                        |  |  |  |  |
|      | A1                                                     | OH     | St/B | External Bus Interface Address Line 1         |  |  |  |  |
|      | U1C0_DX0B                                              | I      | St/B | USIC1 Channel 0 Shift Data Input              |  |  |  |  |
|      | CCU61_CC6<br>1INA                                      | I      | St/B | CCU61 Channel 1 Input                         |  |  |  |  |
|      | U1C0_DX1A                                              | I      | St/B | USIC1 Channel 0 Shift Clock Input             |  |  |  |  |
| 56   | P2.8                                                   | O0 / I | DP/B | Bit 8 of Port 2, General Purpose Input/Output |  |  |  |  |
|      | U0C1_SCLK<br>OUT                                       | 01     | DP/B | USIC0 Channel 1 Shift Clock Output            |  |  |  |  |
|      | EXTCLK                                                 | O2     | DP/B | Programmable Clock Signal Output              |  |  |  |  |
|      | CC2_CC21                                               | O3 / I | DP/B | CAPCOM2 CC21IO Capture Inp./ Compare Out.     |  |  |  |  |
|      | A21                                                    | OH     | DP/B | External Bus Interface Address Line 21        |  |  |  |  |
|      | U0C1_DX1D                                              | I      | DP/B | USIC0 Channel 1 Shift Clock Input             |  |  |  |  |



| Table | Table 5         Pin Definitions and Functions (cont'd) |            |      |                                                |  |  |  |  |
|-------|--------------------------------------------------------|------------|------|------------------------------------------------|--|--|--|--|
| Pin   | Symbol                                                 | Ctrl.      | Туре | Function                                       |  |  |  |  |
| 70    | P10.5                                                  | O0 / I     | St/B | Bit 5 of Port 10, General Purpose Input/Output |  |  |  |  |
|       | U0C1_SCLK<br>OUT                                       | O1         | St/B | USIC0 Channel 1 Shift Clock Output             |  |  |  |  |
|       | CCU60_COU<br>T62                                       | O2         | St/B | CCU60 Channel 2 Output                         |  |  |  |  |
|       | U2C0_DOUT                                              | O3         | St/B | USIC2 Channel 0 Shift Data Output              |  |  |  |  |
|       | AD5                                                    | OH /<br>IH | St/B | External Bus Interface Address/Data Line 5     |  |  |  |  |
|       | U0C1_DX1B                                              | I          | St/B | USIC0 Channel 1 Shift Clock Input              |  |  |  |  |
| 71    | P0.6                                                   | O0 / I     | St/B | Bit 6 of Port 0, General Purpose Input/Output  |  |  |  |  |
|       | U1C1_DOUT                                              | 01         | St/B | USIC1 Channel 1 Shift Data Output              |  |  |  |  |
|       | TxDC1                                                  | 02         | St/B | CAN Node 1 Transmit Data Output                |  |  |  |  |
| -     | CCU61_COU<br>T63                                       | O3         | St/B | CCU61 Channel 3 Output                         |  |  |  |  |
|       | A6                                                     | ОН         | St/B | External Bus Interface Address Line 6          |  |  |  |  |
|       | U1C1_DX0A                                              | I          | St/B | USIC1 Channel 1 Shift Data Input               |  |  |  |  |
|       | CCU61_CTR<br>APA                                       | I          | St/B | CCU61 Emergency Trap Input                     |  |  |  |  |
|       | U1C1_DX1B                                              | I          | St/B | USIC1 Channel 1 Shift Clock Input              |  |  |  |  |
| 72    | P10.6                                                  | O0 / I     | St/B | Bit 6 of Port 10, General Purpose Input/Output |  |  |  |  |
|       | U0C0_DOUT                                              | 01         | St/B | USIC0 Channel 0 Shift Data Output              |  |  |  |  |
|       | U1C0_SELO<br>0                                         | O3         | St/B | USIC1 Channel 0 Select/Control 0 Output        |  |  |  |  |
|       | AD6                                                    | OH /<br>IH | St/B | External Bus Interface Address/Data Line 6     |  |  |  |  |
|       | U0C0_DX0C                                              | I          | St/B | USIC0 Channel 0 Shift Data Input               |  |  |  |  |
|       | U1C0_DX2D                                              | Ι          | St/B | USIC1 Channel 0 Shift Control Input            |  |  |  |  |
|       | CCU60_CTR<br>APA                                       | I          | St/B | CCU60 Emergency Trap Input                     |  |  |  |  |



| Tabl | able 5         Pin Definitions and Functions (cont'd) |            |      |                                                                                                                                                                               |  |  |  |  |
|------|-------------------------------------------------------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin  | Symbol                                                | Ctrl.      | Туре | Function                                                                                                                                                                      |  |  |  |  |
| 84   | P1.2                                                  | O0 / I     | St/B | Bit 2 of Port 1, General Purpose Input/Output                                                                                                                                 |  |  |  |  |
|      | CCU62_CC6<br>2                                        | O1         | St/B | CCU62 Channel 2 Output                                                                                                                                                        |  |  |  |  |
|      | U1C0_SELO<br>6                                        | O2         | St/B | USIC1 Channel 0 Select/Control 6 Output                                                                                                                                       |  |  |  |  |
|      | U2C1_SCLK<br>OUT                                      | O3         | St/B | USIC2 Channel 1 Shift Clock Output                                                                                                                                            |  |  |  |  |
|      | A10                                                   | ОН         | St/B | External Bus Interface Address Line 10                                                                                                                                        |  |  |  |  |
|      | ESR1_4                                                | I          | St/B | ESR1 Trigger Input 4                                                                                                                                                          |  |  |  |  |
| -    | CCU61_T12<br>HRB                                      | I          | St/B | External Run Control Input for T12 of CCU61                                                                                                                                   |  |  |  |  |
|      | CCU62_CC6<br>2INA                                     | I          | St/B | CCU62 Channel 2 Input                                                                                                                                                         |  |  |  |  |
|      | U2C1_DX0D                                             | I          | St/B | USIC2 Channel 1 Shift Data Input                                                                                                                                              |  |  |  |  |
|      | U2C1_DX1C                                             | I          | St/B | USIC2 Channel 1 Shift Clock Input                                                                                                                                             |  |  |  |  |
| 85   | P10.12                                                | O0 / I     | St/B | Bit 12 of Port 10, General Purpose Input/Output                                                                                                                               |  |  |  |  |
|      | U1C0_DOUT                                             | 01         | St/B | USIC1 Channel 0 Shift Data Output                                                                                                                                             |  |  |  |  |
|      | TxDC2                                                 | O2         | St/B | CAN Node 2 Transmit Data Output                                                                                                                                               |  |  |  |  |
|      | TDO_B                                                 | OH /<br>IH | St/B | JTAG Test Data Output / DAP1 Input/Output<br>If DAP pos. 1 is selected during start-up, an<br>internal pull-down device will hold this pin low<br>when nothing is driving it. |  |  |  |  |
|      | AD12                                                  | OH /<br>IH | St/B | External Bus Interface Address/Data Line 12                                                                                                                                   |  |  |  |  |
|      | U1C0_DX0C                                             | I          | St/B | USIC1 Channel 0 Shift Data Input                                                                                                                                              |  |  |  |  |
|      | U1C0_DX1E                                             | 1          | St/B | USIC1 Channel 0 Shift Clock Input                                                                                                                                             |  |  |  |  |



## **General Device Information**

| Table            | able 5 Fin Definitions and Functions (Cont d) |        |      |                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------------------|-----------------------------------------------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin              | Symbol                                        | Ctrl.  | Туре | Function                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 97               | PORST                                         | 1      | In/B | Power On Reset Input<br>A low level at this pin resets the XE164xM<br>completely. A spike filter suppresses input pulses<br><10 ns. Input pulses >100 ns safely pass the filter.<br>The minimum duration for a safe recognition<br>should be 120 ns.<br>An internal pull-up device will hold this pin high<br>when nothing is driving it. |  |  |  |  |
| 98               | ESR1                                          | O0 / I | St/B | <b>External Service Request 1</b><br>After power-up, an internal weak pull-up device<br>holds this pin high when nothing is driving it.                                                                                                                                                                                                   |  |  |  |  |
|                  | RxDC0E                                        | I      | St/B | CAN Node 0 Receive Data Input                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                  | U1C0_DX0F                                     | Ι      | St/B | USIC1 Channel 0 Shift Data Input                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                  | U1C0_DX2C                                     | I      | St/B | USIC1 Channel 0 Shift Control Input                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                  | U1C1_DX0C                                     | I      | St/B | USIC1 Channel 1 Shift Data Input                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                  | U1C1_DX2B                                     | Ι      | St/B | USIC1 Channel 1 Shift Control Input                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                  | U2C1_DX2C                                     | I      | St/B | USIC2 Channel 1 Shift Control Input                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 99               | ESR0                                          | O0 / I | St/B | External Service Request 0<br>After power-up, ESR0 operates as open-drain<br>bidirectional reset with a weak pull-up.                                                                                                                                                                                                                     |  |  |  |  |
|                  | U1C0_DX0E                                     | I      | St/B | USIC1 Channel 0 Shift Data Input                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                  | U1C0_DX2B                                     | I      | St/B | USIC1 Channel 0 Shift Control Input                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 10               | V <sub>DDIM</sub>                             | -      | PS/M | <b>Digital Core Supply Voltage for Domain M</b><br>Decouple with a ceramic capacitor, see Data<br>Sheet for details.                                                                                                                                                                                                                      |  |  |  |  |
| 38,<br>64,<br>88 | V <sub>DDI1</sub>                             | -      | PS/1 | <b>Digital Core Supply Voltage for Domain 1</b><br>Decouple with a ceramic capacitor, see Data<br>Sheet for details.<br>All $V_{\text{DDI1}}$ pins must be connected to each other.                                                                                                                                                       |  |  |  |  |
| 14               | V <sub>DDPA</sub>                             | -      | PS/A | Digital Pad Supply Voltage for Domain A<br>Connect decoupling capacitors to adjacent<br>$V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.<br>Note: The A/D_Converters and ports P5, P6 and<br>P15 are fed from supply voltage $V_{\text{DDPA}}$ .                                                                |  |  |  |  |

#### Tabla F Din Definitions and Eurotions (cost'd)



### **General Device Information**

| Table                           | Table 5         Pin Definitions and Functions (cont'd) |       |      |                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------------------------------|--------------------------------------------------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pin                             | Symbol                                                 | Ctrl. | Туре | Function                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 2,<br>25,<br>27,                | $V_{DDPB}$                                             | -     | PS/B | Digital Pad Supply Voltage for Domain B<br>Connect decoupling capacitors to adjacent<br>$V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.                                                                                                              |  |  |  |  |  |
| 50,<br>52,<br>75,<br>77,<br>100 |                                                        |       |      | Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage $V_{\rm DDPB}$ .                                                                                                                                                           |  |  |  |  |  |
| 1,<br>26,<br>51,                | V <sub>SS</sub>                                        | -     | PS/  | <b>Digital Ground</b><br>All $V_{SS}$ pins must be connected to the ground-line<br>or ground-plane.                                                                                                                                                                             |  |  |  |  |  |
| 76                              |                                                        |       |      | Note: Also the exposed pad is connected internally to $V_{SS}$ . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground.<br>For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note. |  |  |  |  |  |

 To generate the reference clock output for bus timing measurement, f<sub>SYS</sub> must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.



## **General Device Information**

# 2.2 Identification Registers

The identification registers describe the current version of the XE164xM and of its modules.

## Table 6 XE164xM Identification Registers

| Short Name  | Value                  | Address              | Notes                       |
|-------------|------------------------|----------------------|-----------------------------|
| SCU_IDMANUF | 1820 <sub>H</sub>      | 00'F07E <sub>H</sub> |                             |
| SCU_IDCHIP  | 3801 <sub>H</sub>      | 00'F07C <sub>H</sub> |                             |
| SCU_IDMEM   | 30D0 <sub>H</sub>      | 00'F07A <sub>H</sub> |                             |
| SCU_IDPROG  | 1313 <sub>H</sub>      | 00'F078 <sub>H</sub> |                             |
| JTAG_ID     | 0017'E083 <sub>H</sub> |                      | marking EES-AA, ES-AA or AA |



## **Functional Description**

With this hardware most XE164xM instructions are executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XE164xM instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.



# **Functional Description**

| Compare Modes           | Function                                                                                                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Mode 2                  | Interrupt-only compare mode;<br>Only one compare interrupt per timer period is generated                                        |
| Mode 3                  | Pin set '1' on match; pin reset '0' on compare timer overflow;<br>Only one compare event per timer period is generated          |
| Double Register<br>Mode | Two registers operate on one pin;<br>Pin toggles on each compare match;<br>Several compare events per timer period are possible |
| Single Event Mode       | Generates single edges or pulses;<br>Can be used with any compare mode                                                          |

# Table 8 Compare Modes (cont'd)



## **Functional Description**



Figure 6 CAPCOM2 Unit Block Diagram



## **Functional Description**

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time



# 4 Electrical Parameters

The operating range for the XE164xM is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

# 4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

# 4.1.1 Absolut Maximum Rating Conditions

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ( $V_{\rm IN} > V_{\rm DDP}$  or  $V_{\rm IN} < V_{\rm SS}$ ) the voltage on  $V_{\rm DDP}$  pins with respect to ground ( $V_{\rm SS}$ ) must not exceed the values defined by the absolute maximum ratings.

| Parameter                                                       | Symbol                      | Values |      |                           | Unit | Note /                             |
|-----------------------------------------------------------------|-----------------------------|--------|------|---------------------------|------|------------------------------------|
|                                                                 |                             | Min.   | Тур. | Max.                      |      | Test Condition                     |
| Output current on a pin when high value is driven               | I <sub>OH</sub> SR          | -30    | -    | -                         | mA   |                                    |
| Output current on a pin when low value is driven                | I <sub>OL</sub> SR          | -      | -    | 30                        | mA   |                                    |
| Overload current                                                | I <sub>OV</sub> SR          | -10    | -    | 10                        | mA   | 1)                                 |
| Absolute sum of overload currents                               | $\Sigma  I_{\rm OV} $<br>SR | -      | -    | 100                       | mA   | 1)                                 |
| Junction Temperature                                            | $T_{\sf J}{\sf SR}$         | -40    | -    | 150                       | °C   |                                    |
| Storage Temperature                                             | $T_{\rm ST}{ m SR}$         | -65    | -    | 150                       | °C   |                                    |
| Digital supply voltage for<br>IO pads and voltage<br>regulators | $V_{ m DDPA}, V_{ m DDPB}$  | -0.5   | -    | 6.0                       | V    |                                    |
| Voltage on any pin with respect to ground (Vss)                 | $V_{\rm IN}$ SR             | -0.5   | -    | V <sub>DDP</sub><br>+ 0.5 | V    | $V_{\rm IN} \leq V_{\rm DDP(max)}$ |

## Table 11 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V<sub>IN</sub> is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.



# 4.2 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XE164xM are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.6.4**.

## Supply Voltage Restrictions

The XE164xM can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

During power-on sequences, the supply voltages may only change with a maximum speed of dV/dt < 5 V/ $\mu$ s, i.e. the target supply voltage may be reached earliest after approx. 1  $\mu$ s.

Note: To limit the speed of supply voltage changes, the employment of external buffer capacitors at pins  $V_{DDPA}/V_{DDPB}$  is recommended.



# 4.2.1 DC Parameters

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current  $I_{OV}$ .

Note: Operating Conditions apply.

 Table 13 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtvp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}$ 

| Parameter                                                                                            | Symbol                   | Values                     |      |                                   | Unit | Note /                                                                                                                      |
|------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|------|-----------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      |                          | Min.                       | Тур. | Max.                              |      | Test Condition                                                                                                              |
| Pin capacitance (digital<br>inputs/outputs). To be<br>doubled for double bond<br>pins. <sup>1)</sup> | C <sub>IO</sub> CC       | _                          | -    | 10                                | pF   | not subject to<br>production test                                                                                           |
| Input Hysteresis <sup>2)</sup>                                                                       | HYS CC                   | 0.11 x<br>V <sub>DDP</sub> | -    | -                                 | V    | $R_{\rm S} = 0$ Ohm                                                                                                         |
| Absolute input leakage current on pins of analog ports <sup>3)</sup>                                 | I <sub>OZ1</sub>  <br>CC | _                          | 10   | 200                               | nA   | $V_{\rm IN} > 0 \ {\rm V}; \\ V_{\rm IN} < V_{\rm DDP}$                                                                     |
| Absolute input leakage<br>current for all other pins.<br>To be double                                | I <sub>OZ2</sub>  <br>CC | -                          | 0.2  | 5                                 | μΑ   | $\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$ |
| bond pins. <sup>3)1)4)</sup>                                                                         |                          | -                          | 0.2  | 15                                | μA   | $T_{ m J} \leq$ 150 °C;<br>$V_{ m IN} < V_{ m DDP};$<br>$V_{ m IN} > V_{ m SS}$                                             |
| Pull Level Force Current <sup>5)</sup>                                                               | $ I_{PLF} $ SR           | 250                        | -    | -                                 | μΑ   | 6)                                                                                                                          |
| Pull Level Keep Current <sup>7)</sup>                                                                | $ I_{PLK} $ SR           | -                          | -    | 30                                | μA   | 6)                                                                                                                          |
| Input high voltage<br>(all except XTAL1)                                                             | $V_{IH}SR$               | 0.7  x<br>$V_{\text{DDP}}$ | -    | V <sub>DDP</sub><br>+ 0.3         | V    |                                                                                                                             |
| Input low voltage<br>(all except XTAL1)                                                              | $V_{\rm IL}{\rm SR}$     | -0.3                       | -    | $0.3 	ext{ x}$<br>$V_{	ext{DDP}}$ | V    |                                                                                                                             |
| Output High voltage <sup>8)</sup>                                                                    | V <sub>OH</sub> CC       | V <sub>DDP</sub><br>- 1.0  | -    | -                                 | V    | $I_{\rm OH} \ge I_{\rm OHmax}$                                                                                              |
|                                                                                                      |                          | V <sub>DDP</sub><br>- 0.4  | -    | -                                 | V    | $I_{\rm OH} \ge I_{\rm OHnom}^{9)}$                                                                                         |

## Table 13 DC Characteristics for Upper Voltage Range



2) The pad supply voltage pins (V<sub>DDPB</sub>) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to  $3 + 0.6 \text{ x} f_{SYS}$ .

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

## Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE164xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ( $V_{\rm DDPA}$ ) supplies the A/D converters and Port 6. Power domain B ( $V_{\rm DDPB}$ ) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from  $V_{\rm DDPA}$ .

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to  $(3 + 0.6 \times f_{SYS})$  mA.



## Table 17ADC Parameters (cont'd)

| Parameter                                                  | Symbol                     | Values                                          |      |                             | Unit | Note /         |
|------------------------------------------------------------|----------------------------|-------------------------------------------------|------|-----------------------------|------|----------------|
|                                                            |                            | Min.                                            | Тур. | Max.                        | 1    | Test Condition |
| Broken wire detection delay against VAGND <sup>2)</sup>    | t <sub>BWG</sub> CC        | -                                               | -    | 50                          | 3)   |                |
| Broken wire detection delay against VAREF <sup>2)</sup>    | t <sub>BWR</sub> CC        | -                                               | -    | 50                          | 4)   |                |
| Conversion time for 8-bit result <sup>2)</sup>             | t <sub>c8</sub> CC         | (11 + STC) x $t_{ADCI}$<br>+ 2 x $t_{SYS}$      |      |                             |      |                |
| Conversion time for 10-bit result <sup>2)</sup>            | <i>t</i> <sub>c10</sub> CC | $(13 + STC) \times t_{ADCI}$<br>+ 2 x $t_{SYS}$ |      |                             |      |                |
| Total Unadjusted Error                                     | TUE <br>CC                 | -                                               | 1    | 2                           | LSB  | 5)             |
| Wakeup time from analog powerdown, fast mode <sup>2)</sup> | t <sub>WAF</sub> CC        | -                                               | -    | 4                           | μS   |                |
| Wakeup time from analog powerdown, slow mode <sup>2)</sup> | t <sub>WAS</sub> CC        | -                                               | -    | 15                          | μS   |                |
| Analog reference ground                                    | $V_{ m AGND}$ SR           | V <sub>SS</sub><br>- 0.05                       | -    | 1.5                         | V    |                |
| Analog input voltage range                                 | $V_{\rm AIN}{ m SR}$       | $V_{\rm AGND}$                                  | -    | $V_{AREF}$                  | V    | 6)             |
| Analog reference voltage                                   | $V_{AREF}$ SR              | V <sub>AGND</sub><br>+ 1.0                      | -    | V <sub>DDPA</sub><br>+ 0.05 | V    | 5)             |

1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t<sub>ADCI</sub> depend on programming.

- The broken wire detection delay against V<sub>AGND</sub> is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66<sub>H</sub>).
- 4) The broken wire detection delay against V<sub>AREF</sub> is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332<sub>H</sub>).
- 5) TUE is tested at V<sub>AREF</sub> = V<sub>DDPA</sub> = 5.0 V, V<sub>AGND</sub> = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I<sub>OV</sub> specification) does not exceed 10 mA, and if V<sub>AREF</sub> and V<sub>AGND</sub> remain stable during the measurement time.
- V<sub>AIN</sub> may exceed V<sub>AGND</sub> or V<sub>AREF</sub> up to the absolute maximum ratings. However, the conversion result in these cases will be X000<sub>H</sub> or X3FF<sub>H</sub>, respectively.



 Table 25
 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtyp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$ 

## Table 25 Standard Pad Parameters for Upper Voltage Range

| Parameter                                                    | Symbol                  | Values |      |                                           | Unit | Note /                        |
|--------------------------------------------------------------|-------------------------|--------|------|-------------------------------------------|------|-------------------------------|
|                                                              |                         | Min.   | Тур. | Max.                                      |      | Test Condition                |
| Maximum output driver current (absolute value) <sup>1)</sup> | I <sub>Omax</sub><br>CC | -      | -    | 10                                        | mA   | Strong driver                 |
|                                                              |                         | -      | -    | 4.0                                       | mA   | Medium driver                 |
|                                                              |                         | -      | -    | 0.5                                       | mA   | Weak driver                   |
| Nominal output driver current (absolute value)               | I <sub>Onom</sub><br>CC | -      | -    | 2.5                                       | mA   | Strong driver                 |
|                                                              |                         | -      | -    | 1.0                                       | mA   | Medium driver                 |
|                                                              |                         | -      | -    | 0.1                                       | mA   | Weak driver                   |
| Rise and Fall times (10% -<br>90%)                           | t <sub>RF</sub> CC      | -      | -    | 4.2 +<br>0.14 x<br><i>C</i> <sub>L</sub>  | ns   | Strong driver;<br>Sharp edge  |
|                                                              |                         | -      | -    | 11.6 +<br>0.22 x<br><i>C</i> <sub>L</sub> | ns   | Strong driver;<br>Medium edge |
|                                                              |                         | _      | -    | 20.6 +<br>0.22 x<br><i>C</i> <sub>L</sub> | ns   | Strong driver;<br>Slow edge   |
|                                                              |                         | -      | -    | 23 +<br>0.6 x<br>C <sub>L</sub>           | ns   | Medium driver                 |
|                                                              |                         | _      | -    | 212 +<br>1.9 x<br><i>C</i> L              | ns   | Weak driver                   |

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI<sub>OL</sub> and Σ-I<sub>OH</sub>) must remain below 50 mA.



# 4.6.5 External Bus Timing

The following parameters specify the behavior of the XE164xM bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

## **Bus Interface Performance Limits**

The output frequency at the bus interface pins is limited by the performance of the output drivers. The fast clock driver (used for CLKOUT) can drive 80-MHz signals, the standard drivers can drive 40-MHz signals

Therefore, the speed of the EBC must be limited, either by limiting the system frequency to  $f_{SYS} \le 80$  MHz or by adding waitstates so that signal transitions have a minimum distance of 12.5 ns.

For a description of the bus protocol and the programming of its variable timing parameters, please refer to the User's Manual.

| Parameter                       | Symbol            | Values |                 |      | Unit | Note /         |
|---------------------------------|-------------------|--------|-----------------|------|------|----------------|
|                                 |                   | Min.   | Тур.            | Max. |      | Test Condition |
| CLKOUT Cycle Time <sup>1)</sup> | t <sub>5</sub> CC | -      | $1/f_{\rm SYS}$ | -    | ns   |                |
| CLKOUT high time                | t <sub>6</sub> CC | 2      | -               | -    |      |                |
| CLKOUT low time                 | t <sub>7</sub> CC | 2      | -               | -    |      |                |
| CLKOUT rise time                | t <sub>8</sub> CC | -      | -               | 3    | ns   |                |
| CLKOUT fall time                | t <sub>9</sub> CC | -      | -               | 3    |      |                |

## Table 27 EBC Parameters

1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).







## Package and Reliability

# 5 Package and Reliability

The XE166 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XE164xM in its target environment.

# 5.1 Packaging

These parameters specify the packaging rather than the silicon.

| Parameter                              | Symbol            | Lin  | nit Values | Unit | Notes                         |
|----------------------------------------|-------------------|------|------------|------|-------------------------------|
|                                        |                   | Min. | Max.       |      |                               |
| Exposed Pad Dimension                  | $E x \times E y$  | -    | 6.2 × 6.2  | mm   | -                             |
| Power Dissipation                      | P <sub>DISS</sub> | -    | 1.0        | W    | -                             |
| Thermal resistance<br>Junction-Ambient | $R_{\Theta JA}$   | -    | 47         | K/W  | No thermal via <sup>1)</sup>  |
|                                        |                   |      | 29         | K/W  | 4-layer, no pad <sup>2)</sup> |
|                                        |                   |      | 23         | K/W  | 4-layer, pad <sup>3)</sup>    |

 Table 39
 Package Parameters (PG-LQFP-100-8)

1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) or a 4-layer board without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.

Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

## Package Compatibility Considerations

The XE164xM is a member of the XE166 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.