

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164fm72f80laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit

Architecture

XE164FM, XE164GM, XE164HM, XE164KM

16-Bit Single-Chip Real Time Signal Controller XE166 Family / Base Line

Data Sheet V2.1 2011-07

Microcontrollers

Summary of Features

1.2 Definition of Feature Variants

The XE164xM types are offered with several Flash memory sizes. **Table 2** describes the location of the available memory areas for each Flash memory size.

Total Flash Size	Flash Area A ¹⁾	Flash Area B	Flash Area C
576 Kbytes	C0'0000 _H	C1'0000 _H	СС'0000 _н
	C0'EFFF _H	C7'FFFF _H	СС'FFFF _н
384 Kbytes	C0'0000 _H	C1'0000 _H	СС'0000 _н
	C0'EFFF _H	C4'FFFF _H	СС'FFFF _н
192 Kbytes	C0'0000 _H	C1'0000 _H	СС'0000 _н
	C0'EFFF _H	C1'FFFF _H	СС'FFFF _н

Table 2 Flash Memory Allocation

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 3	Flash Memory	Module Allocation	(in Kbv	tes)
		medale / medalen	(

Total Flash Size	Flash 0 ¹⁾	Flash 1	Flash 2	Flash 3	
576 Kbytes	256	256		64	
384 Kbytes	256	64		64	
192 Kbytes	128			64	

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

The XE164xM types are offered with different interface options. **Table 4** lists the available channels for each option.

Total Number	Available Channels				
11 ADC0 channels CH0, CH2 CH5, CH8 CH11, CH13, CH15					
6 ADC0 channels	CH0, CH2 CH5, CH8				
5 ADC1 channels	CH0, CH2, CH4, CH5, CH6 (overlay: CH8 CH11)				
4 CAN nodes	CAN0, CAN1, CAN2, CAN3 128 message objects				
2 CAN nodes	CAN0, CAN1 128 message objects				
6 serial channels	U0C0, U0C1, U1C0, U1C1, U2C0, U2C1				
4 serial channels	U0C0, U0C1, U1C0, U1C1				

Table 4 Interface Channel Association

General Device Information

Tabl	able 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
13	P6.2	O0 / I	DA/A	Bit 2 of Port 6, General Purpose Input/Output			
	EMUX2	01	DA/A	External Analog MUX Control Output 2 (ADC0)			
	T6OUT	O2	DA/A	GPT12E Timer T6 Toggle Latch Output			
	U1C1_SCLK OUT	O3	DA/A	USIC1 Channel 1 Shift Clock Output			
	U1C1_DX1C	I	DA/A	USIC1 Channel 1 Shift Clock Input			
15	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input			
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1			
16	P15.2	I	In/A	Bit 2 of Port 15, General Purpose Input			
	ADC1_CH2	I	In/A	Analog Input Channel 2 for ADC1			
	T5INA	I	In/A	GPT12E Timer T5 Count/Gate Input			
17	P15.4	P15.4 I In/A		Bit 4 of Port 15, General Purpose Input			
-	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1			
	T6INA	I	In/A	GPT12E Timer T6 Count/Gate Input			
18	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input			
	ADC1_CH5	I	In/A	Analog Input Channel 5 for ADC1			
	T6EUDA	I	In/A	GPT12E Timer T6 External Up/Down Control Input			
19	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input			
	ADC1_CH6	I	In/A	Analog Input Channel 6 for ADC1			
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1			
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1			
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input			
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0			
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input			
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0			
	TDI_A	I	In/A	JTAG Test Data Input			

General Device Information

Table	Fin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output		
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0		
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
60	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
-	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output		
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1		
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input		
	U0C0_DX1A	Ι	St/B	USIC0 Channel 0 Shift Clock Input		
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input		
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output		
	U1C0_SELO 0	O1	St/B	USIC1 Channel 0 Select/Control 0 Output		
	U1C1_SELO 1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output		
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output		
	A3	ОН	St/B	External Bus Interface Address Line 3		
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input		
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input		

General Device Information

Table	able 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
79	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output		
	U0C0_MCLK OUT	01	St/B	USIC0 Channel 0 Master Clock Output		
	U0C1_SELO 0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output		
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output		
	AD8	OH / IH	St/B	External Bus Interface Address/Data Line 8		
	CCU60_CCP OS1A	1	St/B	CCU60 Position Input 1		
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input		
	BRKIN_B	I	St/B	OCDS Break Signal Input		
	T3EUDB	1	St/B	GPT12E Timer T3 External Up/Down Control Input		
80	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output		
80	U0C0_SELO 4	O1	St/B	USIC0 Channel 0 Select/Control 4 Output		
	U0C1_MCLK OUT	O2	St/B	USIC0 Channel 1 Master Clock Output		
	AD9	OH / IH	St/B	External Bus Interface Address/Data Line 9		
	CCU60_CCP OS2A	1	St/B	CCU60 Position Input 2		
	TCK_B	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.		
	T3INB	1	St/B	GPT12E Timer T3 Count/Gate Input		

General Device Information

Table	able 5 Pin Definitions and Functions (cont d)						
Pin	Symbol	Ctrl.	Туре	Function			
97	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XE164xM completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.			
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.			
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input			
	U1C0_DX0F	Ι	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input			
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input			
-	U1C1_DX2B	Ι	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input			
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.			
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V_{DDPA} .			

Tabla F Din Definitions and Eurotions (cost'd)

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE164xM and of its modules.

Table 6 XE164xM Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3801 _H	00'F07C _H	
SCU_IDMEM	30D0 _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0017'E083 _H		marking EES-AA, ES-AA or AA

3.1 Memory Subsystem and Organization

The memory space of the XE164xM is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

	-			
Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'8000 _H	EF'FFFF _H	480 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'7FFF _H	32 Kbytes	With Flash timing
Reserved for PSRAM	E0'8000 _H	E7'FFFF _H	480 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'7FFF _H	32 Kbytes	Maximum speed
Reserved for Flash	CD'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 3	CC'0000 _H	CC'FFFF _H	64 Kbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	3)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ⁴⁾	21'0000 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	-
USIC alternate regs.	20'B000 _H	20'BFFF _H	4 Kbytes	Accessed via EBC
MultiCAN alternate	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'6000	20'7FFF	8 Khytes	
	20'4000	20'5EEE.	8 Khytes	Accessed via EBC
MultiCAN registers	20'0000	20'3FFF	16 Khytes	Accessed via EBC
External memory area	01'0000	1E'EEE	< 2 Mbytes	Minus segment 0
SER area	00'EE00	00'EEEE	0.5 Kbyte	
Dual-Port RAM	00'E600		2 Khytes	
Reserved for DPRAM	00'F200	00'E5EE	1 Khyte	_
	001200 _H	00'E1EE		
				-
NORK area	UU EUUU _H	UU EFFF _H	4 NDytes	-

Table 7 XE164xM Memory Map ¹⁾

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External CS signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

3.11 Real Time Clock

The Real Time Clock (RTC) module of the XE164xM can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of: – a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 10 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

3.12 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 11 + 5 multiplexed input channels and a sample and hold circuit have been integrated on-chip. 4 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XE164xM support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE164xM from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

4.1.3 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 103.

4.1.4 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XE164xM and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XE164xM provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XE164xM.

4.2.1 DC Parameters

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

 Table 13 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtvp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	$R_{\rm S} = 0$ Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	_	10	200	nA	$V_{\rm IN} > 0 \ {\rm V}; \\ V_{\rm IN} < V_{\rm DDP}$
Absolute input leakage current for all other pins. To be double	I _{OZ2} CC	-	0.2	5	μΑ	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		-	0.2	15	μA	$T_{ m J} \leq$ 150 °C; $V_{ m IN} < V_{ m DDP};$ $V_{ m IN} > V_{ m SS}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	250	-	-	μΑ	6)
Pull Level Keep Current ⁷⁾	$ I_{PLK} $ SR	-	-	30	μA	6)
Input high voltage (all except XTAL1)	$V_{IH}SR$	0.7 x V_{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	-	-	V	$I_{OH} \ge I_{OHnom}^{9)}$

Table 13 DC Characteristics for Upper Voltage Range

4.2.2 DC Parameters for Lower Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

 Table 14 is valid under the following conditions:

 $V_{\text{DDP}} \ge 3.0 \text{ V}; V_{\text{DDPtvp}} = 3.3 \text{ V}; V_{\text{DDP}} \le 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.07 x V _{DDP}	-	_	V	$R_{\rm S} = 0$ Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	_	10	200	nA	$V_{\rm IN} > V_{\rm SS}; \\ V_{\rm IN} < V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double bond pins. ³⁾¹⁾⁴⁾	II _{OZ2} CC	-	0.2	2.5	μA	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\rm o}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
		_	0.2	8	μΑ	$\begin{array}{l} T_{\rm J} \leq {\rm 150~^\circ C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	150	-	-		6)
Pull Level Keep Current ⁷⁾	$ I_{PLK} $ SR	-	-	10	μA	6)
Input high voltage (all except XTAL1)	$V_{IH}SR$	0.7 х V _{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	-	-	V	$I_{OH} \ge I_{OHnom}^{9)}$

Table 14 DC Characteristics for Lower Voltage Range

Figure 16 Equivalent Circuitry for Analog Inputs

- 3) $f_{\rm WU}$ in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) $V_{\rm LV}$ = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for t_{SPO} Timing Measurement

The time required for the transition from **Power-On** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0 V and remains above 3.0 V even though the XE164xM is starting up. No debugger is attached.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for t_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

Coding of bit fields LEVxV in SWD and PVC Configuration Registers

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

Table 20 Coding of bit fields LEVXV in Register SWDCONU						
Code	Default Voltage Level	Notes ¹⁾				
0000 _B	2.9 V					
0001 _B	3.0 V	LEV1V: reset request				
0010 _B	3.1 V					
0011 _B	3.2 V					
0100 _B	3.3 V					
0101 _B	3.4 V					
0110 _B	3.6 V					
0111 _B	4.0 V					
1000 _B	4.2 V					

Table 20 Coding of bit fields LEVxV in Register SWDCON0

4.6.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Slave select output SELO t₁ CC ns t_{SYS} - 8 ¹⁾ active to first SCLKOUT transmit edge Slave select output SELO $t_2 CC$ _ t_{SYS} - 6¹⁾ _ ns inactive after last SCLKOUT receive edge Data output DOUT valid t_3 CC -6 _ 9 ns time Receive data input setup t_4 SR 31 _ _ ns time to SCLKOUT receive edge Data input DX0 hold time t_5 SR -4 ns _ _ from SCLKOUT receive edae

Table 31 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 32	USIC SSC Master Mode Timing for Lower Voltage Range
----------	---

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	<i>t</i> _{SYS} - 10 ¹⁾	_	_	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 9 ¹⁾	-	_	ns	
Data output DOUT valid time	t ₃ CC	-7	-	11	ns	

Electrical Parameters

Figure 26 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.

Parameter	Symbol	Values			Unit	Note /		
		Min.	Тур.	Max.		Test Condition		
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	-	ns			
DAP0 high time	t ₁₂ SR	8	-	_	ns			
DAP0 low time	t ₁₃ SR	8	-	_	ns			
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns			
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns			
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard		
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard		
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard		

Table 36 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Figure 27 Test Clock Timing (DAP0)