

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuns	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164fm72f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2 General Device Information

The XE164xM series (16-Bit Single-Chip

Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

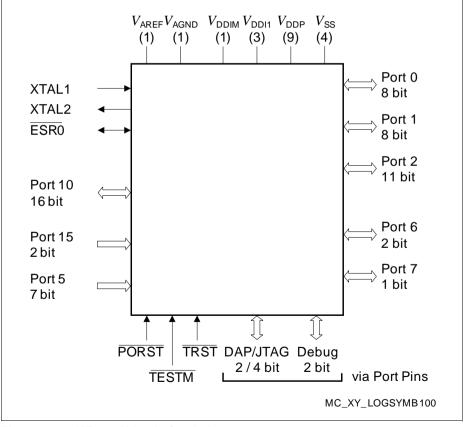


Figure 2 XE164xM Logic Symbol

Table 5 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
13	P6.2	O0 / I	DA/A	Bit 2 of Port 6, General Purpose Input/Output
	EMUX2	01	DA/A	External Analog MUX Control Output 2 (ADC0)
	T6OUT	02	DA/A	GPT12E Timer T6 Toggle Latch Output
	U1C1_SCLK OUT	O3	DA/A	USIC1 Channel 1 Shift Clock Output
	U1C1_DX1C	I	DA/A	USIC1 Channel 1 Shift Clock Input
15	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1
16	P15.2	I	In/A	Bit 2 of Port 15, General Purpose Input
	ADC1_CH2	I	In/A	Analog Input Channel 2 for ADC1
	T5INA	I	In/A	GPT12E Timer T5 Count/Gate Input
17	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input
-	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1
	T6INA	I	In/A	GPT12E Timer T6 Count/Gate Input
18	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input
	ADC1_CH5	I	In/A	Analog Input Channel 5 for ADC1
	T6EUDA	I	In/A	GPT12E Timer T6 External Up/Down Control Input
19	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input
	ADC1_CH6	I	In/A	Analog Input Channel 6 for ADC1
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0
	TDI_A	1	In/A	JTAG Test Data Input

Table 5Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
45	P2.4	O0 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output
	CC2_CC17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.
	A17	ОН	St/B	External Bus Interface Address Line 17
	ESR1_0	I	St/B	ESR1 Trigger Input 0
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input
46	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output
-	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.
	A18	OH	St/B	External Bus Interface Address Line 18
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input
	ESR1_10	I	St/B	ESR1 Trigger Input 10
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input
	CCU62_CCP OS1B	1	St/B	CCU62 Position Input 1

XE164FM, XE164GM, XE164HM, XE164KM XE166 Family / Base Line

Table	Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
73	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	CCU60_COU T63	O2	St/B	CCU60 Channel 3 Output	
	AD7	OH / IH	St/B	External Bus Interface Address/Data Line 7	
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input	
	CCU60_CCP OS0A	I	St/B	CCU60 Position Input 0	
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input	
74	P0.7	O0 / I	St/B	Bit 7 of Port 0, General Purpose Input/Output	
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output	
_	U1C0_SELO 3	O2	St/B	USIC1 Channel 0 Select/Control 3 Output	
	TxDC3	O3	St/B	CAN Node 3 Transmit Data Output	
	A7	ОН	St/B	External Bus Interface Address Line 7	
	U1C1_DX0B	I	St/B	USIC1 Channel 1 Shift Data Input	
	CCU61_CTR APB	1	St/B	CCU61 Emergency Trap Input	
78	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output	
	U1C0_MCLK OUT	O1	St/B	USIC1 Channel 0 Master Clock Output	
	U1C0_SELO 4	O2	St/B	USIC1 Channel 0 Select/Control 4 Output	
	A8	ОН	St/B	External Bus Interface Address Line 8	
	ESR1_3	I	St/B	ESR1 Trigger Input 3	
	CCU62_CTR APB	I	St/B	CCU62 Emergency Trap Input	
	T6INB	I	St/B	GPT12E Timer T6 Count/Gate Input	

XE164FM, XE164GM, XE164HM, XE164KM XE166 Family / Base Line

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
81	P1.1	O0 / I		Bit 1 of Port 1, General Purpose Input/Output
	CCU62_COU T62	O1	St/B	CCU62 Channel 2 Output
	U1C0_SELO 5	02	St/B	USIC1 Channel 0 Select/Control 5 Output
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output
	A9	ОН	St/B	External Bus Interface Address Line 9
	ESR2_3	I	St/B	ESR2 Trigger Input 3
	U2C1_DX0C	I	St/B	USIC2 Channel 1 Shift Data Input
82	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output
-	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output
	AD10	OH / IH	St/B	External Bus Interface Address/Data Line 10
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.
83	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output
	U1C0_SCLK OUT	01	St/B	USIC1 Channel 0 Shift Clock Output
	BRKOUT	O2	St/B	OCDS Break Signal Output
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input
	RxDC2B	I	St/B	CAN Node 2 Receive Data Input
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.

Table 5 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
84	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output	
	CCU62_CC6 2	O1	St/B	CCU62 Channel 2 Output	
	U1C0_SELO 6	O2	St/B	USIC1 Channel 0 Select/Control 6 Output	
	U2C1_SCLK OUT	O3	St/B	USIC2 Channel 1 Shift Clock Output	
	A10	ОН	St/B	External Bus Interface Address Line 10	
	ESR1_4	I	St/B	ESR1 Trigger Input 4	
	CCU61_T12 HRB	I	St/B	External Run Control Input for T12 of CCU61	
	CCU62_CC6 2INA	I	St/B	CCU62 Channel 2 Input	
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input	
	U2C1_DX1C	I	St/B	USIC2 Channel 1 Shift Clock Input	
85	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output	
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output	
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output	
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.	
	AD12	OH / IH	St/B	External Bus Interface Address/Data Line 12	
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input	
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input	

3.1 Memory Subsystem and Organization

The memory space of the XE164xM is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

		P		
Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'8000 _H	EF'FFFF _H	480 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'7FFF _H	32 Kbytes	With Flash timing
Reserved for PSRAM	E0'8000 _H	E7'FFFF _H	480 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'7FFF _H	32 Kbytes	Maximum speed
Reserved for Flash	CD'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 3	CC'0000 _H	CC'FFFF _H	64 Kbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	3)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ⁴⁾	21'0000 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	-
USIC alternate regs.	20'B000 _H	20'BFFF _H	4 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'6000 _H	20'7FFF _H	8 Kbytes	-
USIC registers	20'4000 _H	20'5FFF _H	8 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-

Table 7 XE164xM Memory Map ¹⁾

3.9 Capture/Compare Units CCU6x

The XE164xM types feature the CCU60, CCU61, CCU62 unit(s).

The CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- Control modes for multi-channel AC drives
- Output levels can be selected and adapted to the power stage

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE164xM to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

Functional Description

Table 10 Instruction Set Summary (cont'd)					
Mnemonic	Description	Bytes			
NOP	Null operation	2			
CoMUL/CoMAC	Multiply (and accumulate)	4			
CoADD/CoSUB	Add/Subtract	4			
Co(A)SHR	(Arithmetic) Shift right	4			
CoSHL	Shift left	4			
CoLOAD/STORE	Load accumulator/Store MAC register	4			
CoCMP	Compare				
CoMAX/MIN	Maximum/Minimum	4			
CoABS/CoRND	Absolute value/Round accumulator	4			
CoMOV	Data move	4			
CoNEG/NOP	Negate accumulator/Null operation	4			

1) The Enter Power Down Mode instruction is not used in the XE164xM, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

4 Electrical Parameters

The operating range for the XE164xM is defined by its electrical parameters. For proper operation the specified limits must be respected when integrating the device in its target environment.

4.1 General Parameters

These parameters are valid for all subsequent descriptions, unless otherwise noted.

4.1.1 Absolut Maximum Rating Conditions

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for an extended time may affect device reliability.

During absolute maximum rating overload conditions ($V_{\rm IN} > V_{\rm DDP}$ or $V_{\rm IN} < V_{\rm SS}$) the voltage on $V_{\rm DDP}$ pins with respect to ground ($V_{\rm SS}$) must not exceed the values defined by the absolute maximum ratings.

Parameter	Symbol Values			5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output current on a pin when high value is driven	I _{OH} SR	-30	-	-	mA	
Output current on a pin when low value is driven	I _{OL} SR	-	-	30	mA	
Overload current	$I_{\rm OV}{\rm SR}$	-10	-	10	mA	1)
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	100	mA	1)
Junction Temperature	$T_{\rm J}{\rm SR}$	-40	-	150	°C	
Storage Temperature	$T_{\rm ST}{ m SR}$	-65	-	150	°C	
Digital supply voltage for IO pads and voltage regulators	$V_{ m DDPA}, V_{ m DDPB}$	-0.5	-	6.0	V	
Voltage on any pin with respect to ground (Vss)	$V_{\rm IN}$ SR	-0.5	-	V _{DDP} + 0.5	V	$V_{\rm IN} \leq V_{\rm DDP(max)}$

Table 11 Absolute Maximum Rating Parameters

 Overload condition occurs if the input voltage V_{IN} is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures.

Sample time and conversion time of the XE164xM's A/D converters are programmable. The timing above can be calculated using **Table 18**.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time ¹⁾ t _s
000000 _B	f _{SYS}	00 _H	$t_{ADCI} \times 2$
000001 _B	f _{SYS} / 2	01 _H	$t_{\sf ADCI} imes {f 3}$
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} \times 4$
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$
111110 _B	f _{SYS} / 63	FE _H	$t_{\rm ADCI} imes 256$
111111 _B	f _{SYS} / 64	FF _H	$t_{\rm ADCI} imes 257$

 Table 18
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20 \text{ MHz}$, i.e. $t_{ADCI} = 50 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$
Conversion 10-	bit:	
	t _{C10}	= $13 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 13×50 ns + 2×12.5 ns = 0.675 µs
Conversion 8-b	it:	
	t _{C8}	= $11 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 11×50 ns + 2×12.5 ns = 0.575 µs

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$
Conversion 10-	bit:	
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 16×75 ns + 2×25 ns = $1.25 \ \mu s$
Conversion 8-b	it:	
	t _{C8}	= $14 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 14×75 ns + 2×25 ns = 1.10 µs

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

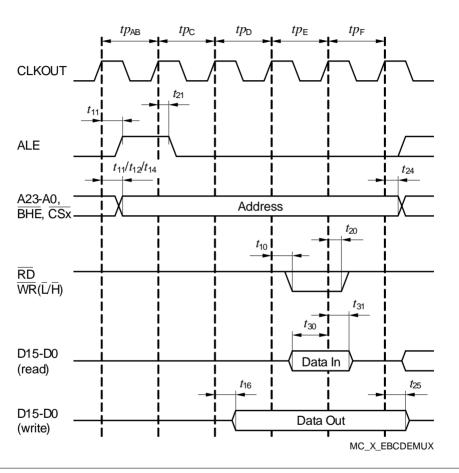
Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

4.6.4 Pad Properties

The output pad drivers of the XE164xM can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.


The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . The following table lists the pad parameters.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

Electrical Parameters

4.6.5.1 Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (\overline{RD} or \overline{WR}).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

Electrical Parameters

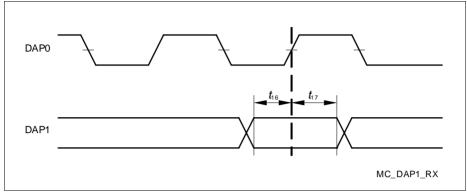


Figure 28 DAP Timing Host to Device

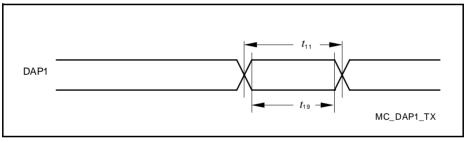


Figure 29 DAP Timing Device to Host

Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram.

Package and Reliability

Package Outlines

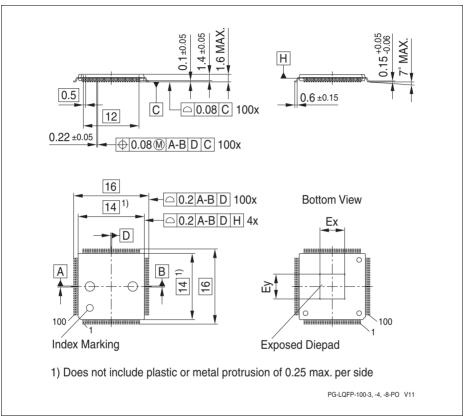


Figure 32 PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

5.2 Thermal Considerations

When operating the XE164xM in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 125 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} \cdot V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- · Reduce the number of output pins
- Reduce the load on active output drivers