

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe164gm24f80laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2 General Device Information

The XE164xM series (16-Bit Single-Chip

Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 2 XE164xM Logic Symbol

General Device Information

2.1 Pin Configuration and Definition

The pins of the XE164xM are described in detail in **Table 5**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Figure 3 XE164xM Pin Configuration (top view)

General Device Information

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00_B, output O1 is selected by 1x01_B, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1).
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function
3	TESTM	I	In/B	Testmode EnableEnables factory test modes, must be held HIGH fornormal operation (connect to V_{DDPB}).An internal pull-up device will hold this pin highwhen nothing is driving it.
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)
	CCU62_CCP OS0A	I	St/B	CCU62 Position Input 0
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE164xM's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.

Table 5 Pin Definitions and Functions

XE164FM, XE164GM, XE164HM, XE164KM XE166 Family / Base Line

General Device Information

Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output		
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output		
	CCU60_CC6 2	02	St/B	CCU60 Channel 2 Output		
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2		
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input		
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input		
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output		
	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output		
	U1C0_SELO 1	02	St/B	USIC1 Channel 0 Select/Control 1 Output		
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output		
	A4	ОН	St/B	External Bus Interface Address Line 4		
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input		
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input		
	ESR2_8	I	St/B	ESR2 Trigger Input 8		
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output		
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output		
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input		
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_SELO 3	02	St/B	USIC0 Channel 0 Select/Control 3 Output		
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.		
	A23	ОН	St/B	External Bus Interface Address Line 23		
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input		
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input		

XE164FM, XE164GM, XE164HM, XE164KM XE166 Family / Base Line

General Device Information

Table 5 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
73	P10.7	O0 / I	St/B	Bit 7 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	O1	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output		
	AD7	OH / IH	St/B	External Bus Interface Address/Data Line 7		
	U0C1_DX0B	I	St/B	USIC0 Channel 1 Shift Data Input		
	CCU60_CCP OS0A	1	St/B	CCU60 Position Input 0		
	T4INB	I	St/B	GPT12E Timer T4 Count/Gate Input		
74	P0.7	O0 / I	St/B	Bit 7 of Port 0, General Purpose Input/Output		
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output		
	U1C0_SELO 3	O2	St/B	USIC1 Channel 0 Select/Control 3 Output		
	TxDC3	O3	St/B	CAN Node 3 Transmit Data Output		
	A7	ОН	St/B	External Bus Interface Address Line 7		
	U1C1_DX0B	Ι	St/B	USIC1 Channel 1 Shift Data Input		
	CCU61_CTR APB	I	St/B	CCU61 Emergency Trap Input		
78	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output		
	U1C0_MCLK OUT	O1	St/B	USIC1 Channel 0 Master Clock Output		
	U1C0_SELO 4	O2	St/B	USIC1 Channel 0 Select/Control 4 Output		
	A8	ОН	St/B	External Bus Interface Address Line 8		
	ESR1_3	I	St/B	ESR1 Trigger Input 3		
	CCU62_CTR APB	1	St/B	CCU62 Emergency Trap Input		
	T6INB	I	St/B	GPT12E Timer T6 Count/Gate Input		

Functional Description

3.1 Memory Subsystem and Organization

The memory space of the XE164xM is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

	-			
Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'8000 _H	EF'FFFF _H	480 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'7FFF _H	32 Kbytes	With Flash timing
Reserved for PSRAM	E0'8000 _H	E7'FFFF _H	480 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'7FFF _H	32 Kbytes	Maximum speed
Reserved for Flash	CD'0000 _H	DF'FFFF _H	<1.25 Mbytes	-
Program Flash 3	CC'0000 _H	CC'FFFF _H	64 Kbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	3)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ⁴⁾	21'0000 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	-
USIC alternate regs.	20'B000 _H	20'BFFF _H	4 Kbytes	Accessed via EBC
MultiCAN alternate	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'6000	20'7FFF	8 Khytes	
	20'4000	20'5EEE.	8 Khytes	Accessed via EBC
MultiCAN registers	20'0000	20'3FFF	16 Khytes	Accessed via EBC
External memory area	01'0000	1E'EEE	< 2 Mbytes	Minus segment 0
SER area	00'EE00	00'EEEE	0.5 Kbyte	
Dual-Port RAM	00'E600		2 Khytes	
Reserved for DPRAM	00'F200	00'E5EE	1 Khyte	_
	001200 _H	00'E1EE		
				-
NORK area	UU EUUU _H	UU EFFF _H	4 NDYIES	-

Table 7 XE164xM Memory Map ¹⁾

Functional Description

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External CS signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

Functional Description

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - module capability: maximum baud rate = f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - module capability: maximum baud rate = f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI (synchronous serial channel with or without data buffer)
 - module capability: maximum baud rate = f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - module capability: maximum baud rate = f_{SYS} / 2
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

4.1.2 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XE164xM. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Voltage Regulator Buffer Capacitance for DMP_M	$C_{\rm EVRM}$ SR	1.0	-	4.7	μF	1)	
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1}$ SR	0.47	-	2.2	μF	1)2)	
External Load Capacitance	$C_{L} \operatorname{SR}$	-	20 ³⁾	-	pF	pin out driver= default 4)	
System frequency	$f_{\rm SYS}{\rm SR}$	-	-	100	MHz	5)	
Overload current for analog inputs ⁶⁾	$I_{\rm OVA}{\rm SR}$	-2	-	5	mA	not subject to production test	
Overload current for digital inputs ⁶⁾	$I_{\rm OVD}{\rm SR}$	-5	-	5	mA	not subject to production test	
Overload current coupling factor for analog inputs ⁷⁾	K _{OVA} CC	-	2.5 x 10⁻⁴	1.5 x 10 ⁻³	-	I _{OV} < 0 mA; not subject to production test	
		_	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁴	-	I _{OV} > 0 mA; not subject to production test	
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²		I _{OV} < 0 mA; not subject to production test	
		_	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³		I _{OV} > 0 mA; not subject to production test	

Table 12 Operating Conditions

Pullup/Pulldown Device Behavior

Most pins of the XE164xM feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 13 Pullup/Pulldown Current Definition

4.2.1 DC Parameters

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

 Table 13 is valid under the following conditions:

 $V_{\text{DDP}} \ge 4.5 \text{ V}; V_{\text{DDPtvp}} = 5 \text{ V}; V_{\text{DDP}} \le 5.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	-	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	0.11 x V _{DDP}	-	-	V	$R_{\rm S} = 0$ Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	_	10	200	nA	$V_{\rm IN}$ > 0 V; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double	I _{OZ2} CC	-	0.2	5	μΑ	$\begin{array}{l} T_{\rm J} \leq 110 ~^{\circ}{\rm C}; \\ V_{\rm IN} < V_{\rm DDP}; \\ V_{\rm IN} > V_{\rm SS} \end{array}$
bond pins. ³⁾¹⁾⁴⁾		-	0.2	15	μA	$T_{ m J} \leq$ 150 °C; $V_{ m IN} < V_{ m DDP};$ $V_{ m IN} > V_{ m SS}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	250	-	-	μA	6)
Pull Level Keep Current ⁷⁾	I _{PLK} SR	-	-	30	μA	6)
Input high voltage (all except XTAL1)	$V_{\rm IH}{ m SR}$	0.7 x V_{DDP}	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	$0.3 ext{ x}$ $V_{ ext{DDP}}$	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	_	-	V	$I_{\text{OH}} \ge I_{\text{OHnom}}^{9)}$

Table 13 DC Characteristics for Upper Voltage Range

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XE164xM into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{\sf INT}{\sf CC}$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.8	2.2	2.7	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ₄₎	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	V_{LV}	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 19 Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XE164xM. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input = clock signal
		4	-	16	MHz	Input = crystal or ceramic resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t ₂ SR	6	-	-	ns	
Input clock rise time	t ₃ SR	-	-	8	ns	
Input clock fall time	t ₄ SR	-	-	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1}{ m SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 24 External Clock Input Characteristics

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XE164xM are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 28	Programmable Bus Cv	vcle Phases (see timino	diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Table 29 EBC External Bus Timing for Upper Voltage Range

Parameter	Symbol		Values	-	Unit	Note /
	-,	Min. Tvp.		Max.	-	Test Condition
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(\text{L/H})}$	<i>t</i> ₁₀ CC	-	7	13	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	7	14	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	8	14	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	8	15	ns	
Output valid delay for CS	<i>t</i> ₁₄ CC	-	7	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	8	15	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	8	15	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	6	8	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	6	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	6	8	ns	
Output hold time for CS	t ₂₄ CC	-3	6	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	6	8	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	25	15	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-7	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

č č č						
Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	-	-	ns	2)
TCK high time	t_2 SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t_4 SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	_	-	ns	

Table 38 JTAG Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.

XE164FM, XE164GM, XE164HM, XE164KM XE166 Family / Base Line

Package and Reliability

Package Outlines

Figure 32 PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XE164xM depends on the operating temperature. The life time decreases with increasing temperature as shown in **Table 41**.

Table 40Quality Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 41
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	-	JEDEC J-STD-020C

Table 41 Lifetime dependency from Temperature

Operating Time	Operating Temperature
20 a	$T_{ m J} \le 110^{\circ}{ m C}$
95 500 h	$T_{\rm J}$ = 120°C
68 500 h	$T_{\rm J} = 125^{\circ}{\rm C}$
49 500 h	$T_{\rm J}=130^{\circ}{\rm C}$
26 400 h	$T_{\rm J} = 140^{\circ}{\rm C}$
14 500 h	$T_{\rm J} = 150^{\circ}{\rm C}$

www.infineon.com

Published by Infineon Technologies AG