

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga702-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Features	PIC24FJ64GA702	PIC24FJ128GA702	PIC24FJ256GA702
Operating Frequency		DC – 32 MHz	
Program Memory (bytes)	64K	128K	256K
Program Memory (instruction words, 24 bits)	22,528	45,056	88,064
Data Memory (bytes)		16K	
Interrupt Sources (soft vectors/NMI traps)		124	
I/O Ports		Ports A, B	
Total I/O Pins		22	
Remappable Pins		18 (18 I/Os, 0 input only)	
DMA		1 6-channel	
16-Bit Timers		3(1)	
Real-Time Clock and Calendar (RTCC)		Yes	
Cyclic Redundancy Check (CRC)		Yes	
Input Capture Channels		3 ⁽¹⁾	
Output Compare/PWM Channels		3(1)	
Input Change Notification Interrupt		21 (remappable pins)	
Serial Communications:			
UART		2(1)	
SPI (3-wire/4-wire)		3(1)	
I ² C		2	
Configurable Logic Cell (CLC)		2(1)	
Parallel Communications (EPMP/PSP)		No	
Capture/Compare/PWM/Timer		4 Multiple CCPs	
Modules		1 (6-output), 3 (2-output)	
JTAG Boundary Scan		Yes	
10/12-Bit Analog-to-Digital Converter (A/D) Module (input channels)		10	
Analog Comparators		3	
CTMU Interface		Yes	
Universal Serial Bus Controller		No	
Resets (and Delays)	MCLR, W	OR, VDD POR, BOR, RESET IN /DT, Illegal Opcode, REPEAT I re Traps, Configuration Word I (OST, PLL Lock)	nstruction,
Instruction Set	76 Base Instru	uctions, Multiple Addressing M	lode Variations
Packages	28-Pin (QFN, UQFN, SOIC, SSOP an	d SPDIP

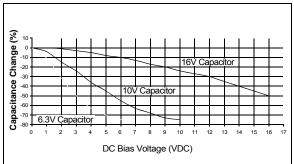
TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJXXXGA702: 28-PIN DEVICES

Note 1: Some peripherals are accessible through remappable pins.

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGCx and PGDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGCx/PGDx) programmed into the device match the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space during code execution.

4.1 Program Memory Space

The program address memory space of the PIC24FJ256GA705 family devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and customer OTP sections of the configuration memory space.

The memory map for the PIC24FJ256GA705 family of devices is shown in Figure 4-1.

File Name	Address	All Resets	File Name	Address	All Resets		
CPU CORE			INTERRUPT CONTROLLER (CONTINUED)				
WREG0	0000	0000	IEC1	009A	0000		
WREG1	0002	0000	IEC2	009C	0000		
WREG2	0004	0000	IEC3	009E	0000		
WREG3	0006	0000	IEC4	00A0	0000		
WREG4	0008	0000	IEC5	00A2	0000		
WREG5	000A	0000	IEC6	00A4	0000		
WREG6	000C	0000	IEC7	00A6	0000		
WREG7	000E	0000	IPC0	00A8	4444		
WREG8	0010	0000	IPC1	00AA	4444		
WREG9	0012	0000	IPC2	00AC	4444		
WREG10	0014	0000	IPC3	00AE	4444		
WREG11	0016	0000	IPC4	00B0	4444		
WREG12	0018	0000	IPC5	00B2	4404		
WREG13	001A	0000	IPC6	00B4	4444		
WREG14	001C	0000	IPC7	00B6	4444		
WREG15	001E	0800	IPC8	00B8	0044		
SPLIM	0020	xxxx	IPC9	00BA	4444		
PCL	002E	0000	IPC10	00BC	4444		
PCH	0030	0000	IPC11	00BE	4444		
DSRPAG	0032	0000	IPC12	00C0	4444		
DSWPAG	0034	0000	IPC13	00C2	0440		
RCOUNT	0036	xxxx	IPC14	00C4	4400		
SR	0042	0000	IPC15	00C6	4444		
CORCON	0044	0004	IPC16	00C8	4444		
DISICNT	0052	xxxx	IPC17	00CA	4444		
TBLPAG	0054	0000	IPC18	00CC	0044		
INTERRUPT CON	TROLLER	•	IPC19	00CE	0040		
INTCON1	0080	0000	IPC20	00D0	4440		
INTCON2	0082	8000	IPC21	00D2	4444		
INTCON4	0086	0000	IPC22	00D4	4444		
IFS0	0088	0000	IPC23	00D6	4400		
IFS1	008A	0000	IPC24	00D8	4444		
IFS2	008C	0000	IPC25	00DA	0440		
IFS3	008E	0000	IPC26	00DC	0400		
IFS4	0090	0000	IPC27	00DE	4440		
IFS5	0092	0000	IPC28	00E0	4444		
IFS6	0094	0000	IPC29	00E2	0044		
IFS7	0096	0000	INTTREG	00E4	0000		
IEC0	0098	0000					

TABLE 4-4: SFR MAP: 0000h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_			_	_	CMPMD	RTCCMD	PMPMD				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
CRCMD	_	—		—	—	I2C2MD					
bit 7							bit C				
Legend:											
R = Readable bit W = Writable bit				•	nented bit, rea						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
			,								
oit 15-11	•	nted: Read as '0									
bit 10		CMPMD: Triple Comparator Module Disable bit									
		1 = Module is disabled									
	•	power and clock		enabled							
bit 9		TCC Module Dis	able bit								
	 1 = Module is disabled 0 = Module power and clock sources are enabled 										
bit 8	•	nanced Parallel									
	1 = Module i			isable bit							
		ower and clock	sources are	enabled							
oit 7	-	C Module Disab									
	1 = Module i	s disabled									
	0 = Module	oower and clock	sources are	enabled							
oit 6-2	Unimplemer	nted: Read as 'o	3								
oit 1	12C2MD: 12C	2 Module Disab	le bit								
	1 = Module i	s disabled									
	0 = Module	power and clock	sources are e	enabled							
bit 0	Unimplemer	nted: Read as 'o	,								

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	
bit 15	·	-		-			bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is			unknown	
bit 15-14	Unimplemen	ted: Read as 'd)'					
bit 13-8	RP1R<5:0>:	RP1 Output Pir	n Mapping bits					
	Peripheral Ou	itput Number n	is assigned to	pin, RP1 (see	Table 11-7 for p	peripheral func	tion numbers).	

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-7 for peripheral function numbers).

REGISTER 11-33: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

Legend: R = Readable bit W = Writable bit			U = Unimplen	nented bit, read	l as '0'		
bit 7							bit 0
_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP2R<5:0>: RP2 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP2 (see Table 11-7 for peripheral function numbers).

'0' = Bit is cleared

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							

REGISTER 11-46: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP28 (see Table 11-7 for peripheral function numbers).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	—	PRLWIP	TMRHWIP	TMRLWIP	RBWIP	RAWIP			
bit 7							bit (
Legend:										
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-5	Unimplemen	ted: Read as '	כי							
bit 4	PRLWIP: CC	PxPRL Write in	Progress Stat	us bit						
				h the buffered	contents is in p	rogress				
	•		0	not in progress						
bit 3		CPxTMRH Wr	0							
	 An update to the CCPxTMRH register with the buffered contents is in progress An update to the CCPxTMRH register is not in progress. 									
bit 2	-	CPxTMRL Writ	-		55.					
			•	vith the buffered	l contente is in	progress				
			0	s not in progres		progress				
bit 1	•	xRB Write in P	•							
	1 = An update	1 = An update to the CCPxRB register with the buffered contents is in progress								
	0 = An update	e to the CCPxR	B register is no	ot in progress		-				
bit 0	RAWIP: CCP	xRA Write in P	rogress Status	bit						
				the buffered co	ontents is in pro	ogress				
	0 = An update	e to the CCPxR	A register is no	ot in progress						

REGISTER 16-8: CCPxSTATH: CCPx STATUS REGISTER HIGH

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8
U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clear	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

'1' = Bit is set

REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URDA	\TA<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URD	ATA<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

bit 15-0 **URDATA<15:0>:** SPIx Underrun Data bits These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit

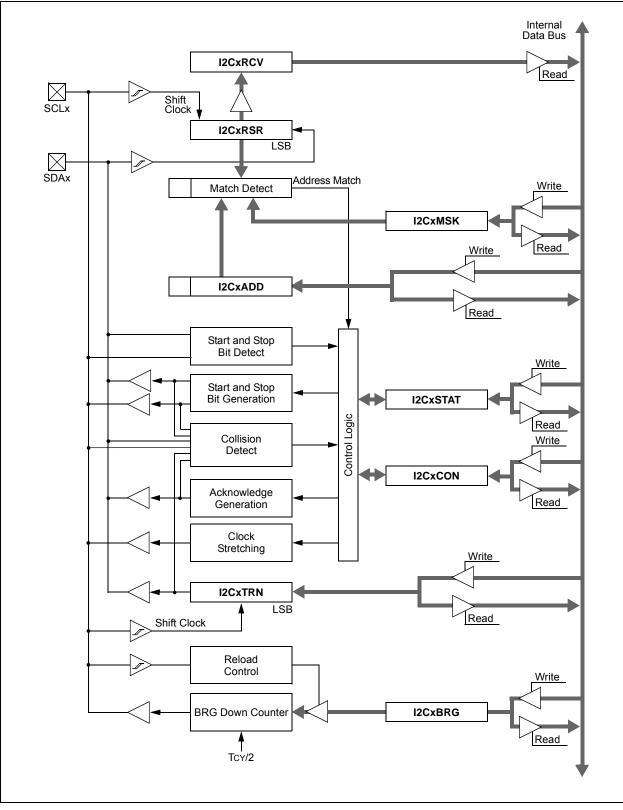
> Underrun condition occurs. When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses URDATA<7:0>.

'0' = Bit is cleared

x = Bit is unknown

REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URD	ATA<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URD	ATA<23:16>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplem	ented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			iown		


bit 15-0 URDATA<31:16>: SPIx Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx only uses URDATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<23:16>.

-n = Value at POR

FIGURE 18-1: I2Cx BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0		—	—			
bit 15							bit 8			
DAMA	DAMA	DANO	DAVA	DAMA	DAMA	DAALO	DAMA			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DWAITB1 bit 7	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0 bit 0			
							bit e			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	11 = Reserve 10 = PMACK 01 = PMACK	x is used to de x is used to de ITM<3:0> = 00	termine when a termine when a	Mode bits a read/write ope a read/write ope um time-out is 2	ration is comp	lete with time-c				
bit 13-11			x Alternate Ma	ster Wait State	bits					
	AMWAIT<2:0>: Chip Select x Alternate Master Wait State bits 111 = Wait of 10 alternate master cycles									
		4 alternate ma 3 alternate ma	-							
bit 10-8			2							
bit 7-6	Unimplemented: Read as '0' DWAITB<1:0>: Chip Select x Data Setup Before Read/Write Strobe Wait State bits									
	11 = Wait of 2 10 = Wait of 2 01 = Wait of 2 00 = Wait of 2	3¼ TCY 2¼ TCY 1¼ TCY								
bit 5-2		-	x Data Read/V	Vrite Strobe Wa	it State bits					
	For Write Ope 1111 = Wait o 0001 = Wait o 0000 = Wait o For Read Ope 1111 = Wait o	of 15½ Tcy of 1½ Tcy of ½ Tcy erations:								
	0001 = Wait 0 0000 = Wait 0									
bit 1-0	DWAITE<1:0 For Write Ope 11 = Wait of 2 10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 For Read Ope 11 = Wait of 2 10 = Wait of 2 01 = Wait of 2 00 =	erations: 3¼ Tcy 2¼ Tcy 1¼ Tcy ¼ Tcy erations: 3 Tcy 2 Tcy 1 Tcy	x Data Hold Af	ter Read/Write	Strobe Wait Sta	ate bits				

REGISTER 20-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV<	15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV	<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

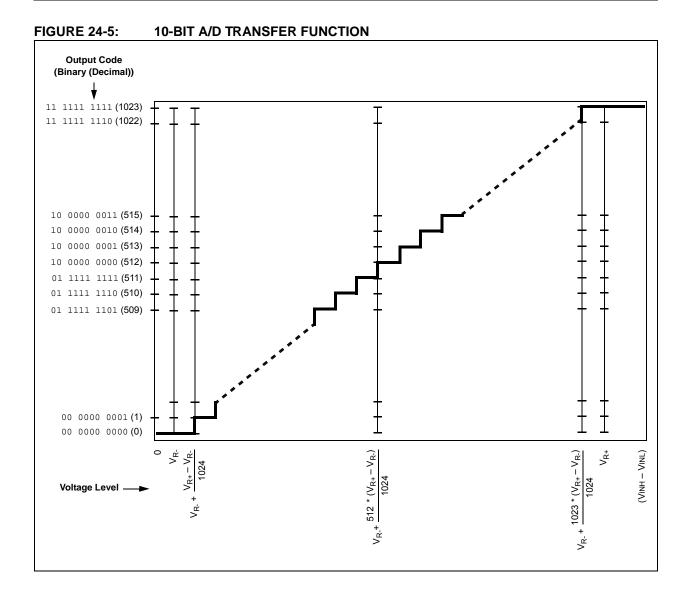
bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

Note 1: A write to this register is only allowed when WRLOCK = 1.

Bit Field Value		Input Source				
Bit Fi		CLC1	CLC2			
DS4<2:0>	011	SDI1	SDI2			
	001	CLC2 Output	CLC1 Output			
DS3<2:0>	100	U1RX	U2RX			
	011	SDO1	SDO2			
	001	CLC1 Output	CLC2 Output			
DS2<2:0>	011	U1TX	U2TX			
	001	CLC2 Output	CLC1 Output			

TABLE 23-1: MODULE-SPECIFIC INPUT DATA SOURCES


REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 | | | | | • | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 2
	0 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 20 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 20 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 2 0 = The Data Source 1 signal is disabled for Gate 2

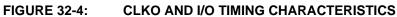
REGISTER 29-5: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	_	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—			—	—	—		—
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	IOL1WAY	PLLSS	SOSCSEL	OSCIOFCN	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM<1:0>: Clock Switching and Monitor Selection bits
	 1x = Clock switching and the Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5	IOL1WAY: Peripheral Pin Select Configuration bit
	 1 = The IOLOCK bit can be set only once (with unlock sequence). 0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit 4	PLLSS: PLL Secondary Selection Configuration bit
	This Configuration bit only takes effect when the PLL is NOT being used by the system (i.e., not selected as part of the system clock source). Used to generate an independent clock out of REFO. 1 = PLL is fed by the Primary Oscillator 0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3	SOSCSEL: SOSC Selection Configuration bit
	1 = Crystal (SOSCI/SOSCO) mode 0 = Digital (SOSCI) Externally Supplied Clock mode
bit 2	OSCIOFCN: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected (10 MHz-32 MHz) 01 = XT Oscillator mode is selected (1.5 MHz-10 MHz) 00 = External Clock mode is selected

DC CHARACTERISTICS		Standard Operating Condition			ns: 2.0V to 3.6V (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	Vol	Output Low Voltage					
DO10		I/O Ports	_	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V
			_	—	0.8	V	IOL = 18 mA, VDD = 3.6V
			_	—	0.35	V	IOL = 5.0 mA, VDD = 2V
DO16		OSCO/CLKO	_	—	0.18	V	IOL = 6.6 mA, VDD = 3.6V
			_	—	0.2	V	IOL = 5.0 mA, VDD = 2V
	Voн	Output High Voltage					
DO20		I/O Ports	3.4	—	—	V	IOH = -3.0 mA, VDD = 3.6V
			3.25	—	—	V	IOH = -6.0 mA, VDD = 3.6V
			2.8	—	—	V	Іон = -18 mA, VDD = 3.6V
			1.65	—	—	V	IOH = -1.0 mA, VDD = 2V
			1.4	—	—	V	IOH = -3.0 mA, VDD = 2V
DO26		OSCO/CLKO	3.3	—	—	V	IOH = -6.0 mA, VDD = 3.6V
			1.85	—	—	V	ІОН = -1.0 mA, VDD = 2V


TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

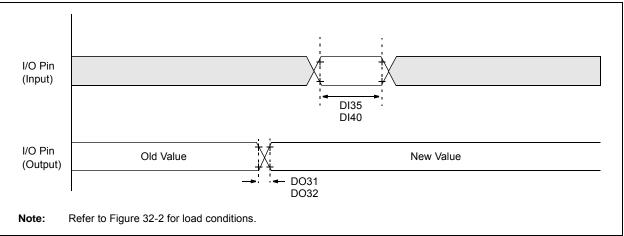
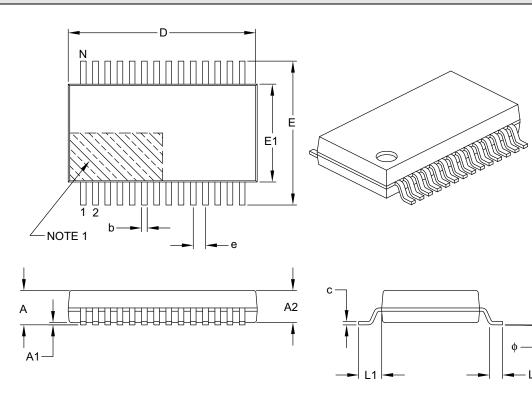

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS		Standard Operating Conditions Operating temperature				s: 2.0V to 3.6V (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial	
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10000		_	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vміn = Minimum operating voltage
D132B		VDD for Self-Timed Write	VMIN		3.6	V	VміN = Minimum operating voltage
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS	
		Self-Timed Row Write Cycle Time	—	1.5	—	ms	
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms	
D134	TRETD	Characteristic Retention	20	—	_	Year	If no other specifications are violated
D135	IDDP	Supply Current during Programming		5		mA	

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.


TABLE 32-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No. Symbol Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions		
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	_	10	25	ns		
DI35	TINP	INTx Pin High or Low Time (input)	1	—	—	Тсү		
DI40	Trbp	CNx High or Low Time (input)	1	—	—	Тсү		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS				
Dimensio	Dimension Limits			MAX				
Number of Pins	28							
Pitch	е		0.65 BSC					
Overall Height	Α	-	2.00					
Molded Package Thickness	A2	1.65	1.75	1.85				
Standoff	A1	0.05	-	-				
Overall Width	Е	7.40	7.80	8.20				
Molded Package Width	E1	5.00	5.30	5.60				
Overall Length	D	9.90	10.20	10.50				
Foot Length	L	0.55	0.75	0.95				
Footprint	L1	1.25 REF						
Lead Thickness	С	0.09	-	0.25				
Foot Angle	φ	0°	4°	8°				
Lead Width	b	0.22	-	0.38				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B