

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga702t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Address	All Resets	File Name	Address	All Resets	
DMA (CONTINUED)			DMA (CONTINUED)			
DMAINT5	0500	0000	DMADST5	0504	0000	
DMASRC5	0502	0000	DMACNT5	0506	0001	

TABLE 4-9: SFR MAP: 0500h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

TABLE 4-10: SFR MAP: 0600h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
I/O			PORTB (CONTINUED)		
PADCON	065E	0000	ANSB	067E	FFFF
IOCSTAT	0660	0000	IOCPB	0680	0000
PORTA			IOCNB	0682	0000
TRISA	0662	FFFF	IOCFB	0684	0000
PORTA	0664	0000	IOCPUB	0686	0000
LATA	0666	0000	IOCPDB	0688	0000
ODCA	0668	0000	PORTC		
ANSA	066A	FFFF	TRISC	068A	FFFF
IOCPA	066C	0000	PORTC	068C	0000
IOCNA	066E	0000	LATC	068E	0000
IOCFA	0670	0000	ODCC	0690	0000
IOCPUA	0672	0000	ANSC	0692	FFFF
IOCPDA	0674	0000	IOCPC	0694	0000
PORTB			IOCNC	0696	0000
TRISB	0676	FFFF	IOCFC	0698	0000
PORTB	0678	0000	IOCPUC	069A	0000
LATB	067A	0000	IOCPDC	069C	0000
ODCB	067C	0000		•	•

Legend: x = undefined. Reset values are shown in hexadecimal.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The RCFGCAL and NVMCON registers are only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ256GA705 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN<1:0> (FPOR<1:0>) Configuration bits.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 32.1 "DC Characteristics"**.

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant			
POR	FNOSC<2:0> Configuration bits			
BOR	(FOSCSEL<2:0>)			
MCLR				
WDTO	COSC<2:0> Control bits (OSCCON<14:12>)			
SWR	(03000114.122)			

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 **PSV:** Not used as part of the interrupt module

bit 1-0 Unimplemented: Read as '0'

Note 1: For complete register details, see Register 3-2.

2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		T3MD	T2MD	T1MD		_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADC1MD
bit 7		L					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as '	כי				
bit 13	T3MD: Timer	3 Module Disat	ole bit				
	1 = Module is	disabled					
h# 40		ower and clock		enabled			
DIT 12	1 ZIVID: Timer	2 Module Disat	DIE DIT				
	1 = Module is 0 = Module p	ower and clock	sources are e	enabled			
bit 11	T1MD: Timer	1 Module Disat	ole bit				
	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 10-8	Unimplement	ted: Read as '	כי				
bit 7	12C1MD: 12C1	1 Module Disat	ole bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 6	U2MD: UARI	2 Module Disa	ble bit				
	\perp = Module is	ower and clock	sources are e	nabled			
bit 5	U1MD: UART	1 Module Disa	ble bit				
Site	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 4	SPI2MD: SPI2	2 Module Disal	ole bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 3	SPI1MD: SPI	1 Module Disal	ble bit				
	\perp = Module is	ower and clock		nabled			
bit 2-1		ted: Read as '	n'				
bit 0	ADC1MD: A/	Converter M	- odule Disable ł	pit			
	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	enabled			

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		_			CMPMD	RTCCMD	PMPMD
bit 15	·						bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
CRCMD	—	—	—	—		I2C2MD	—
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-11	Unimplement	ted: Read as '0	3				
bit 10	CMPMD: Trip	le Comparator I	Module Disabl	e bit			
	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	nabled			
bit 9	RTCCMD: RT	CC Module Dis	able bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	nabled			
bit 8	PMPMD: Enh	anced Parallel	Master Port Di	isable bit			
	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	nabled			
bit 7	CRCMD: CRO	C Module Disab	le bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	nabled			
bit 6-2	Unimplement	ted: Read as '0	,				
bit 1	12C2MD: 12C2	2 Module Disab	le bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	napled			
bit 0	Unimplement	ted: Read as '0	,				

PERIPHERAL PIN SELECT 11.5.6 REGISTERS

The PIC24FJ256GA705 family of devices implements a total of 34 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (19)
- Output Remappable Peripheral Registers (15)

Note: Input and Output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.5.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-13: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	OCTRIG1R<5:0>: Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits

REGISTER 11-14: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15						·	bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0
Legend:							

REGISTER 11-27: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-28: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TXCKR5	TXCKR4	TXCKR3	TXCKR2	TXCKR1	TXCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **TXCKR<5:0>:** Assign General Timer External Input (TxCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

13.0 TIMER2/3

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 module is a 32-bit timer, which can also be configured as independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 can operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D event trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON is shown in generic form in Register 13-1; T3CON is shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 is the least significant word; Timer3 is the most significant word of the 32-bit timer.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bits are used for setup and control. Timer2 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags. To configure Timer2/3 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
- Load the timer period value. PR3 will contain the most significant word (msw) of the value, while PR2 contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. Note that while Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2>. TMR3 always contains the most significant word of the count, while TMR2 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit (T2CON<3>).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 11111 = Not used
 - 11110 = Not used 11101 = Not used 11100 = CTMU trigger⁽¹⁾ 11011 = A/D interrupt⁽¹⁾
 - 11010 = CMP3 trigger⁽¹⁾
 - 11001 = CMP2 trigger⁽¹⁾
 - 11000 = CMP1 trigger⁽¹⁾
 - 10111 = Not used
 - 10110 = MCCP4 IC/OC interrupt
 - 10101 = MCCP3 IC/OC interrupt
 - 10100 = MCCP2 IC/OC interrupt
 - 10011 = MCCP1 IC/OC interrupt
 - 10010 = IC3 interrupt⁽²⁾
 - 10001 = IC2 interrupt⁽²⁾
 - 10000 = IC1 interrupt⁽²⁾
 - 01111 = Not used
 - 01110 = Not used
 - 01101 = Timer3 match event
 - 01100 = Timer2 match event
 - 01011 = Timer1 match event
 - 01010 = Not used
 - 01001 = Not used
 - 01000 = Not used
 - 00111 = MCCP4 Sync/Trigger out
 - 00110 = MCCP3 Sync/Trigger out
 - 00101 = MCCP2 Sync/Trigger out
 - 00100 = MCCP1 Sync/Trigger out
 - 00011 = OC3 Sync/Trigger out
 - 00010 = OC2 Sync/Trigger out
 - 00001 = OC1 Sync/Trigger out
 - 00000 **= Off**
- Note 1: Use these inputs as Trigger sources only and never as Sync sources.
 - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on $OCx^{(2)}$
- 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
- 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
- 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
- 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
- 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
- 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
- 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - 3: The Comparator 1 output controls the OC1-OC3 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 3-0 MOD<3:0>: CCPx Mode Select bits

For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Variable Frequency Pulse mode
- 0110 = Center-Aligned Pulse Compare mode, buffered
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3)

 $FSCL = \frac{FCY}{(I2CxBRG + 2) * 2}$

or:

$$I2CxBRG = \left[\frac{FCY}{(FSCL * 2)} - 2\right]$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various systemlevel parameters. The actual clock rate should be measured in its intended application.

3: BRG values of 0 and 1 are forbidden.

18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Benuired System Foo	For	I2CxBI	RG Value	Actual FscL	
	FCT	(Decimal)	(Hexadecimal)		
100 kHz	16 MHz	78	4E	100 kHz	
100 kHz	8 MHz	38	26	100 kHz	
100 kHz	4 MHz	18	12	100 kHz	
400 kHz	16 MHz	18	12	400 kHz	
400 kHz	8 MHz	8	8	400 kHz	
400 kHz	4 MHz	3	3	400 kHz	
1 MHz	16 MHz	6	6	1.000 MHz	
1 MHz	8 MHz	2	2	1.000 MHz	

TABLE 18-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 18-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	х	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	x	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

- 2: This address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

R/W-0	U-0	HC, R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15						I	bit 8
R/W-0	R/W-0	R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
·							
Legend:		HC = Hardwa	re Clearable bi	t			
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	I2CEN: I2Cx 1 = Enables 0 = Disables	Enable bit (writ the I2Cx module the I2Cx modul	able from softw e and configure e; all I ² C pins a	vare only) es the SDAx an are controlled b	d SCLx pins as	s serial port pin s	S
bit 14	Unimplemer	nted: Read as ')'				
bit 13	12CSIDL: 120	Cx Stop in Idle N	lode bit				
	1 = Discontin	ues module opera	eration when de	evice enters Idl	e mode		
hit 12			ntrol bit $(l^2 C S)$	ave mode only	\(1)		
	Source: Source Release Control bit (if C slave mode only) ⁽¹⁾ Module resets and (I2CEN = 0) sets SCLREL = 1. $\frac{ f STREN = 0:}{1} = \text{Releases clock}$ 0 = Forces clock low (clock stretch) $\frac{ f STREN = 1:}{1 = \text{Releases clock}}$ 0 = Releases clock						
bit 11	STRICT: 12C	x Strict Reserve	d Address Rule	e Enable bit			
	 1 = Strict reserved addressing is enforced (for reserved addresses, refer to Table 18-2) In Slave Mode: The device doesn't respond to reserved address space and addresses falling in that category are NACKed. In Master Mode: The device is allowed to generate addresses with reserved address space. 0 = Reserved addressing would be Acknowledged In Slave Mode: The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. In Master Mode: Reserved. 						
bit 10	A10M: 10-Bi	t Slave Address	Flag bit				
	1 = I2CxADE) is a 10-bit slav	e address				
hit 0		VIS a 7-DIL Slave	Disable bit				
JIL J	1 = Slew rate 0 = Slew rate	e control is disate e control is enab	bled for Standa led for High-Sp	rd Speed mode beed mode (400	e (100 kHz, also 0 kHz)	o disabled for 1	MHz mode)
Note 1:	Automatically cle of slave reception ting the SCLREL specified in Sect	ared to '0' at th n. The user soft bit. This delay ion 32.0 "Elect	e beginning of ware must prov must be greate rical Characte	slave transmiss vide a delay be r than the minin eristics".	sion; automatic tween writing t mum setup tim	ally cleared to o the transmit t e for slave tran	^{'0'} at the end ouffer and set- smissions, as

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
PMPEN		PSIDL	ADRMUX1	ADRMUX0	_	MODE1	MODE0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
CSF1	CSF0	ALP	ALMODE		BUSKEEP	IRQM1	IRQM0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared x = Bit is unknow				
bit 15	PMPEN: Parallel Master Port Enable bit								
	1 = EPMP is enabled								
bit 14	Unimplemented: Read as '0'								
bit 13	PSIDL: Parallel Master Port Stop in Idle Mode bit								
	1 = Discontinues module operation when device enters Idle mode								
	0 = Continues module operation in Idle mode								
bit 12-11	ADRMUX<1:0	0>: Address/D	ata Multiplexing	Selection bits		h			
	11 = Lower a	ddress bits are ddress bits are	multiplexed wi	ith data bits usi	ng 3 address p ng 2 address p	nases hases			
	01 = Lower a	ddress bits are	multiplexed wi	th data bits usi	ng 1 address p	hase			
	00 = Address and data appear on separate pins								
bit 10	Unimplement	ted: Read as '	0'						
bit 9-8	MODE<1:0>: Parallel Port Mode Select bits								
	11 = Master n 10 = Enhance	node -d PSP [,] nins u	sed are PMRD	PMWR PMC	S_PMD<7:0> a	and PMA<1.0>			
	01 = Buffered	PSP; pins use	ed are PMRD, I	PMWR, PMCS	and PMD<7:0	>			
	00 = Legacy Parallel Slave Port; pins used are PMRD, PMWR, PMCS and PMD<7:0>								
bit 7-6	CSF<1:0>: Chip Select Function bits								
	11 = Reserved								
	10 = PMA14 is used for Chip Select 1 01 = Reserved								
	00 = PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1								
bit 5	ALP: Address Latch Polarity bit								
	1 = Active-hig	gh <u>(PMALL, PMALL, PM</u>	ALH and PMA	ALU)					
bit 4		W (PIVIALL, PIV Idress Latch Si	ALH and PIMA	LU)					
bit 4	1 = Enables "	'smart" addres	s strobes (each	address nhas	e is only prese	nt if the current	access would		
	cause a c	different addres	ss in the latch t	han the previou	is address)				
	0 = Disables	"smart" addres	ss strobes						
bit 3	Unimplemented: Read as '0'								
bit 2	BUSKEEP: B	us Keeper bit							
	1 = Data bus 0 = Data bus	keeps its last	value when not pedance state	actively being	driven elv being driver	n			
bit 1-0	IRQM<1:0>:	nterrupt Requ	est Mode bits		by being arres				
	11 = Interrupt	is generated v	vhen Read Buff	er 3 is read or V	Vrite Buffer 3 is	written (Buffere	ed PSP mode),		
	or on a r	read or write of	peration when I	PMA<1:0> = 11	(Addressable	PSP mode onl	y)		
	10 = Reserve	d tis generated -	at the end of a	read/write over	2				
	00 = No interr	rupt is generated	ed		•				

REGISTER 20-1: PMCON1: EPMP CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0		
bit 15		·		·	•	·	bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unknown			
bit 15-14	Unimplemented: Read as '0'								
bit 13-12	HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits								
	Contains a va	lue from 0 to 2							
bit 11-8	HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits								
	Contains a va	lue from 0 to 9							
bit 7	Unimplemented: Read as '0'								
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits								
	Contains a va	lue from 0 to 5							
bit 3-0	bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits								
	Contains a va	lue from 0 to 9							
Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset \sqrt{MCLR}									

REGISTER 21-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)⁽¹⁾

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Assembly Mnemonic	Assembly Syntax		Description		# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f.WREG	WREG = $f - WREG - (\overline{C})$	1	1	C DC N OV Z
	SUBB	#lit10 Wp	$W_n = W_n - \lim_{t \to 0} \frac{1}{C}$	1	1	C, DC, N, OV, Z
	GUDD	when we we	$Wd = Wb Wc (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	WD, WS, Wa		1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	Wd = Wb - IIt5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	±		1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG - f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd		1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	f = WREG - f - (C)	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG $- f - (C)$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = Iit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)