

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga702t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA705 Devices)

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. This is done by clearing all bits in the ANSx registers. Refer to **Section 11.2** "**Configuring Analog Port Pins (ANSx)**" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

 Set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGCx/PGDx pair, at any time. When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	PSV ⁽²⁾	—	—
bit 7							bit 0
-							

REGISTER 3-2:	CORCON: CPU CORE CONTROL REGISTER
---------------	-----------------------------------

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	PSV: Program Space Visibility (PSV) in Data Space Enable ⁽²⁾
	1 = Program space is visible in Data Space0 = Program space is not visible in Data Space
bit 1-0	Unimplemented: Read as '0'

- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.
 - 2: If PSV = 0, any reads from data memory at 0x8000 and above will cause an address trap error instead of reading from the PSV section of program memory. This bit is not individually addressable.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and singlecycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source register by one or more bits.
SL	Shift Left Source register by one or more bits.
LSR	Logical Shift Right Source register by one or more bits.

File Name	Address	All Resets	File Name	Address	All Resets
A/D			PERIPHERAL PIN	SELECT	
ADC1BUF0	0712	xxxx	RPINR0	0790	3F3F
ADC1BUF1	0714	xxxx	RPINR1	0792	3F3F
ADC1BUF2	0716	xxxx	RPINR2	0794	3F3F
ADC1BUF3	0718	xxxx	RPINR3	0796	3F3F
ADC1BUF4	071A	xxxx	RPINR5	079A	3F3F
ADC1BUF5	071C	xxxx	RPINR6	079C	3F3F
ADC1BUF6	071E	xxxx	RPINR7	079E	3F3F
ADC1BUF7	0720	xxxx	RPINR8	07A0	003F
ADC1BUF8	0722	xxxx	RPINR11	07A6	3F3F
ADC1BUF9	0724	xxxx	RPINR12	07A8	3F3F
ADC1BUF10	0726	xxxx	RPINR18	07B4	3F3F
ADC1BUF11	0728	xxxx	RPINR19	07B6	3F3F
ADC1BUF12	072A	xxxx	RPINR20	07B8	3F3F
ADC1BUF13	072C	xxxx	RPINR21	07BA	3F3F
ADC1BUF14	072E	xxxx	RPINR22	07BC	3F3F
ADC1BUF15	0730	xxxx	RPINR23	07BE	3F3F
AD1CON1	0746	xxxx	RPINR25	07C2	3F3F
AD1CON2	0748	xxxx	RPINR28	07C8	3F3F
AD1CON3	074A	xxxx	RPINR29	07CA	003F
AD1CHS	074C	xxxx	RPOR0	07D4	0000
AD1CSSH	074E	xxxx	RPOR1	07D6	0000
AD1CSSL	0750	xxxx	RPOR2	07D8	0000
AD1CON4	0752	xxxx	RPOR3	07DA	0000
AD1CON5	0754	xxxx	RPOR4	07DC	0000
AD1CHITL	0758	xxxx	RPOR5	07DE	0000
AD1CTMENH	075A	0000	RPOR6	07E0	0000
AD1CTMENL	075C	0000	RPOR7	07E2	0000
AD1RESDMA	075E	0000	RPOR8	07E4	0000
NVM			RPOR9	07E6	0000
NVMCON	0760	0000	RPOR10	07E8	0000
NVMADR	0762	xxxx	RPOR11	07EA	0000
NVMADRU	0764	00xx	RPOR12	07EC	0000
NVMKEY	0766	0000	RPOR13	07EE	0000
			RPOR14	07F0	0000

TABLE 4-11: SFR MAP: 0700h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

11.5.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/Os. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-4:	CONFIGURING UART1
	INPUT AND OUTPUT
	FUNCTIONS

11	Unlock Regi	sters		
asm	volatile	("MOV	#OSCCON, w1	\n"
		"MOV	#0x46, w2	\n"
		"MOV	#0x57, w3	\n"
		"MOV.b	w2, [w1]	\n"
		"MOV.b	w3, [w1]	\n"
		"BCLR	OSCCON, #6")	;
 	or use XC16 builtin_w	built-i rite_0S0	in macro: CCONL(OSCCON &	0xbf);
//	Configure I // Assign U RPINR18bits	nput Fur 1RX To I .U1RXR =	nctions (Table 1 Pin RPO = 0;	1-6)
	// Assign U RPINR18bits	1CTS To .U1CTSR	Pin RP1 = 1;	
//	Configure O // Assign U RPOR1bits.R	utput Fu 1TX To H P2R = 3	unctions (Table Pin RP2	11-7)
	// Assign U RPOR1bits.R	1RTS TO P3R = 47	Pin RP3	
11	Lock Regist	ers		
asm	volatile	("MOV	#OSCCON, w1	\n"
		"MOV	#0x46, w2	\n"
		"MOV	#0x57, w3	\n"
		"MOV.b	w2, [w1]	\n"
		"MOV.b	w3, [w1]	\n"
		"BSET	OSCCON, #6")	;
11	or use XC16	built-	n macro:	
11	builtin w	rite OSC	CONL(OSCCON	0x40);

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 3-0 MOD<3:0>: CCPx Mode Select bits

For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Variable Frequency Pulse mode
- 0110 = Center-Aligned Pulse Compare mode, buffered
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

'1' = Bit is set

REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URDA	ATA<15:8>			
bit 15	bit 15 bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URD/	ATA<7:0>			
bit 7					bit 0		
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

bit 15-0 **URDATA<15:0>:** SPIx Underrun Data bits These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit

> Underrun condition occurs. When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses URDATA<7:0>.

'0' = Bit is cleared

x = Bit is unknown

REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URDA	\TA<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			URDA	\TA<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	ented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown

bit 15-0 URDATA<31:16>: SPIx Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx only uses URDATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<23:16>.

-n = Value at POR

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 19.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- Enable the UARTx by setting the URXEN bit (UxSTA<12>).
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC		
UTXISEL	1 UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC		
URXISEL	1 URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		
bit 7							bit 0		
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/C	learable bit			
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
HS = Hardv	vare Settable bit	HC = Hardwa	re Clearable b	it					
bit 15,13	 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 21 = Interrupt when the last character is a shifted out of the Transmit Shift Register (JSR). 								
bit 14	operatio 00 = Interrup one cha UTXINV: UAF IREN = 0: 1 = UXTX Idle	 operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) UTXINV: UARTx IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 0: 							
	0 = UxTX Idle <u>IREN = 1:</u> 1 = UxTX Idle 0 = UxTX Idle	e state is '1' e state is '1' e state is '0'							
bit 12	URXEN: UAF	RTx Receive En	able bit						
	1 = Receive is	s enabled, UxR	X pin is contro	olled by UARTx					
	0 = Receive i	s disabled, UxF	RX pin is contro	olled by the port	t				
bit 11	UTXBRK: UA	ARTx Transmit I	Break bit						
	1 = Sends Sy cleared b 0 = Sync Bre	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed 							
bit 10	UTXEN: UAR	RTx Transmit Er	nable bit ⁽²⁾						
	1 = Transmit 0 = Transmit controlled	is enabled, Ux is disabled, ar d by the port	TX pin is contr	olled by UARTx Insmission is at	c ported and the	buffer is reset	; UxTX pin is		
bit 9	UTXBF: UAR	Tx Transmit Bu	Iffer Full Statu	s bit (read-only)					
	1 = Transmit 0 = Transmit	buffer is full buffer is not full	, at least one	more character	can be written				
bit 8	TRMT: Transi	mit Shift Regist	er Empty bit (r	ead-only)					
	1 = Transmit 0 = Transmit	Shift Register is Shift Register is	empty and tra not empty, a	ansmit buffer is e transmission is	empty (the last in progress or	transmission ha	as completed)		
Note 1:	The value of this (IREN = 1).	bit only affects	the transmit pr	operties of the i	module when t	he IrDA [®] encoc	ler is enabled		

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

REGISTER 20-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IBF	IBOV	—	—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾
bit 15							bit 8

R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	IBF: Input Buffer Full Status bit
	1 = All writable Input Buffer registers are full
	0 = Some or all of the writable Input Buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit
	1 = A write attempt to a full Input register occurred (must be cleared in software)0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits ⁽¹⁾
	1 = Input buffer contains unread data (reading the buffer will clear this bit)
	0 = Input buffer does not contain unread data
bit 7	OBE: Output Buffer Empty Status bit
	1 = All readable Output Buffer registers are empty
	0 = Some or all of the readable Output Buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	1 = A read occurred from an empty Output Buffer register (must be cleared in software)0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bits
	1 = Output Buffer x is empty (writing data to the buffer will clear this bit)
	 0 = Output Buffer x contains untransmitted data

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1 or Byte 2 and 3) get cleared, even on byte reading.

FIGURE 21-1: RTCC BLOCK DIAGRAM

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—		_	—	WDAY2	WDAY1	WDAY0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	Unimplemen	ted: Read as '	כ'				
bit 13-12	DAYTEN<1:0	>: Binary Code	ed Decimal Val	ue of Days '10'	Digit bits		
	Contains a va	lue from 0 to 3					
bit 11-8	DAYONE<3:0	>: Binary Code	ed Decimal Val	ue of Days '1' I	Digit bits		
	Contains a va	lue from 0 to 9					
bit 7-3	Unimplemented: Read as '0'						
bit 2-0	WDAY<2:0>:	Binary Coded	Decimal Value	of Weekdays ':	1' Digit bits		
	Contains a value from 0 to 6.						

REGISTER 21-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW)⁽¹⁾

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	U-0	U-0			
PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	_	_			
bit 15										
R-0	R/W-0	R/W-0	R/W-0	/W-0 R/W-0 R/W-0 R/W-0						
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7							bit 0			
Legend:		r = Reserved b	it							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkn	own			
bit 15-14	-14 PVCFG<1:0>: A/D Converter Positive Voltage Reference Configuration bits 1x = Unimplemented, do not use 01 = External VREF+ 00 = AVDD									
bit 13	NVCFG0: A/I 1 = External V 0 = AVss	⊃ Converter Neg √REF-	ative Voltage	e Reference Conf	iguration bit					
bit 12	Reserved: M	aintain as '0'								
bit 11	BUFREGEN: 1 = Conversio 0 = A/D resul	A/D Buffer Reg on result is loade t buffer is treated	ister Enable ed into the bu d as a FIFO	bit uffer location dete	rmined by the	e converted cha	nnel			
bit 10	CSCNA: Sca 1 = Scans inp 0 = Does not	n Input Selectior outs scan inputs	ns for CH0+	During Sample A	bit					
bit 9-8	Unimplemen	ted: Read as '0	,							
bit 7	BUFS: Buffer	Fill Status bit								
	 BUFS: Buffer Fill Status bit When DMAEN = 1 and DMABM = 1: 1 = A/D is currently filling the destination buffer from [buffer start + (buffer size/2)] to [buffer start + (buffer size – 1)]. User should access data located from [buffer start] to [buffer start + (buffer size/2) – 1]. 0 = A/D is currently filling the destination buffer from [buffer start] to [buffer start + (buffer size/2) – 1]. User should access data located from [buffer start] to [buffer start + (buffer size/2) – 1]. User should access data located from [buffer start + (buffer size/2)] to [buffer start + (buffer size – 1)]. When DMAEN = 0: 1 = A/D is currently filling ADC1BUF13-ADC1BUF25, user should access data in ADC1BUF0-ADC1BUF12 0 = A/D is currently filling ADC1BUF0-ADC1BUF12, user should access data in 									

REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
ASEN	LPEN	CTMREQ	BGREQ	—	—	ASINT1	ASINT0
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
				WM1	WM0	CM1	CM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	Dit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ASEN: Auto-S	Scan Enable bi	I				
	$\perp = Auto-scan$ 0 = Auto-scan	i is enabled					
hit 14		ower Enable bi	+				
bit 14	1 = 1 ow powe	er is enabled aff	er scan				
	0 = Full power	r is enabled after	er scan				
bit 13	CTMREQ: CT	MU Request b	it				
	1 = CTMU is e	enabled when t	he A/D is enab	led and active			
	0 = CTMU is r	not enabled by	the A/D				
bit 12	BGREQ: Ban	d Gap Request	bit				
	1 = Band gap 0 = Band gap	is enabled whe	en the A/D is e by the A/D	nabled and act	ive		
bit 11-10	Unimplement	ted: Read as 'o)'				
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect) Interrupt Mod	e bits		
	11 = Interrupt 10 = Interrupt 01 = Interrupt 00 = No interr	after Threshol after valid com after Threshol rupt	d Detect seque pare has occu d Detect seque	ence has compl rred ence has compl	leted and valid	compare has c	occurred
bit 7-4	Unimplement	ted: Read as 'd)'				
bit 3-2	WM<1:0>: Wr	rite Mode bits					
	11 = Reserve	d					
	10 = Auto-cor	mpare only (co	nversion result	s are not saved	d, but interrupts	s are generated	d when a valid
	01 = Convert	and save (con	version results	and ASINTX D	locations as de	etermined by th	e register hits
	when a r	match occurs, a	as defined by the	ne CMx bits)			
	00 = Legacy of	operation (conv	ersion data is	saved to a loca	tion determine	d by the Buffer	register bits)
bit 1-0	CM<1:0>: Co	mpare Mode bi	ts				
	11 = Outside defined I	Window mode by the correspo	: Valid match anding buffer pa	occurs if the o air	conversion res	ult is outside o	of the window
	10 = Inside W the corre	/indow mode: V esponding buffe	alid match occ	urs if the conve	ersion result is	inside the wind	ow defined by
	01 = Greater Buffer re	Than mode: Va egister	lid match occu	rs if the result is	s greater than t	he value in the	corresponding
	00 = Less Tha register	an mode: Valid	match occurs i	f the result is lea	ss than the valu	ie in the corresp	oonding Buffer

REGISTER 24-5: AD1CON5: A/D CONTROL REGISTER 5

NOTES:

R/W-0	R/W-0	R/M_0	R/\\/_0	R/M_0	R/M_0	R/M_0	R/W-0					
EDG TWOD	EDGIFUL	EDGISELS	EDGISELZ	EDGISELI	EDGISELU	EDG25TAT	EDGISIAI					
bit 15							bit 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0					
FDG2MOD	FDG2POI	FDG2SEL3	EDG2SEL2	EDG2SEL1	FDG2SEL0	_	IRNGH					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	EDG1MOD: E	Edge 1 Edge-Se	ensitive Select	bit								
	1 = Input is ed	dge-sensitive										
	0 = Input is le	vel-sensitive										
bit 14	EDG1POL: E	dge 1 Polarity	Select bit									
	1 = Edge 1 is	programmed for	or a positive ed	lge response								
	0 = Edge 1 is	programmed for	or a negative e	dge response								
bit 13-10	EDG1SEL<3:	:0>: Edge 1 So	urce Select bits	5								
	1111 = CMP	C3001										
	1101 = CMP	C1OUT										
	1100 = IC3 in	nterrupt										
	1011 = IC2 in	nterrupt										
	1010 = IC1 in	iterrupt										
	1000 = CTEE	07 pin										
	0111 = CTEE)6 pin										
	0110 = CTEE	05 pin										
	0101 = CIEL)4 pin)3 pin										
	0011 = CTEL	01 pin										
	0010 = CTEE	02 pin										
	0001 = OC1											
	0000 = Timer	1 match										
bit 9	EDG2STAT: E	≟dge 2 Status b	oit Dead sea he w	witten te eeste		_						
	Indicates the $1 = Edge 2 back$	Indicates the status of Edge 2 and can be written to control current source.										
	0 = Edge 2 ha	as not occurred										
bit 8	EDG1STAT: E	Edge 1 Status b	oit									
	Indicates the	status of Edge	1 and can be v	vritten to contro	ol current sourc	e.						
	1 = Edge 1 ha	as occurred										
	0 = Edge 1 ha	as not occurred										
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit								
	1 = Input is eq	dge-sensitive										
bit 6		dao 2 Poloritu	Soloct hit									
	1 = Edge 2 is	nrogrammed f	or a positive od	lae response								
	0 = Edge 2 is	programmed for	or a negative e	dge response								

REGISTER 27-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH

TABLE 32-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	_	10	25	ns		
DI35	TINP	INTx Pin High or Low Time (input)	1	—	—	Тсү		
DI40	Trbp	CNx High or Low Time (input)	1	_	—	Тсү		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARACTERISTICS			Standard Operating Conditions: 2 Operating temperature -4				2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial		
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
	·	•	Devie	ce Supp	ly				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2	—	Lesser of: VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V			
			Refere	ence Inp	uts				
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V			
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 1.7	V			
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	-	AVDD + 0.3	V			
			Anal	og Inpu	ts		1		
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)		
AD11	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V			
AD12	VINL	Absolute VINL Input Voltage	AVss - 0.3	—	AVDD/3	V			
AD13		Leakage Current	-	±1.0	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V, Source Impedance = 2.5 k Ω		
AD17	Rin	Recommended Impedance of Analog Voltage Source	-	—	2.5K	Ω	10-bit		
			A/D	Accurac	;y		·		
AD20B	Nr	Resolution	_	12	_	bits			
AD21B	INL	Integral Nonlinearity	_	±1	< ±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD22B	DNL	Differential Nonlinearity	—	—	< ±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD23B	Gerr	Gain Error	-	±1	±4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD24B	EOFF	Offset Error	_	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD25B		Monotonicity ⁽¹⁾	_	—	—	—	Guaranteed		

TABLE 32-24: A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.