

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga702t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA705 Devices)

File Name	Address	All Resets	File Name	Address	All Resets	
OSCILLATOR	-	<u>.</u>	PMD (CONTINUED)			
OSCCON	0100	0xxx	PMD3	017C	0000	
CLKDIV	0102	30x0	PMD4	017E	0000	
OSCTUN	0108	0000	PMD5	0180	0000	
OSCDIV	010C	0001	PMD6	0182	0000	
OSCFDIV	010E	0000	PMD7	0184	0000	
RESET	·		PMD8	0186	0000	
RCON	0110	0003	TIMER			
HLVD			TMR1	0190	0000	
HLVDCON	0114	0000	PR1	0192	FFFF	
РМР			T1CON	0194	0000	
PMCON1	0128	0000	TMR2	0196	0000	
PMCON2	012A	0000	TMR3HLD	0198	0000	
PMCON3	012C	0000	TMR3	019A	0000	
PMCON4	012E	0000	PR2	019C	FFFF	
PMCS1CF	0130	0000	PR3	019E	FFFF	
PMCS1BS	0132	0000	T2CON	01A0	0x00	
PMCS1MD	0134	0000	T3CON	01A2	0x00	
PMCS2CF	0136	0000	СТМИ			
PMCS2BS	0138	0000	CTMUCON1L	01C0	0000	
PMCS2MD	013A	0000	CTMUCON1H	01C2	0000	
PMDOUT1	013C	xxxx	CTMUCON2L	01C4	0000	
PMDOUT2	013E	xxxx	REAL-TIME CLOCK	AND CALENDAR (RT	CC)	
PMDIN1	0140	xxxx	RTCCON1L	01CC	xxxx	
PMDIN2	0142	xxxx	RTCCON1H	01CE	xxxx	
PMSTAT	0144	008F	RTCCON2L	01D0	xxxx	
CRC			RTCCON2H	01D2	xxxx	
CRCCON1	0158	00x0	RTCCON3L	01D4	xxxx	
CRCCON2	015A	0000	RTCSTATL	01D8	00xx	
CRCXORL	015C	0000	TIMEL	01DC	xx00	
CRCXORH	015E	0000	TIMEH	01DE	xxxx	
CRCDATL	0160	xxxx	DATEL	01E0	xx0x	
CRCDATH	0162	xxxx	DATEH	01E2	xxxx	
CRCWDATL	0164	xxxx	ALMTIMEL	01E4	xx00	
CRCWDATH	0166	xxxx	ALMTIMEH	01E6	xxxx	
REFO			ALMDATEL	01E8	xx0x	
REFOCONL	0168	0000	ALMDATEH	01EA	xxxx	
REFOCONH	016A	0000	TSATIMEL	01EC	xx00	
REFOTRIML	016C	0000	TSATIMEH	01EE	xxxx	
PMD			TSADATEL	01F0	xx0x	
PMD1	0178	0000	TSADATEH	01F2	xxxx	
PMD2	017A	0000				

TABLE 4-5:SFR MAP: 0100h BLOCK

 $\label{eq:Legend: x = undefined. Reset values are shown in hexadecimal.}$

8.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC24FJ256GA705 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24FJ256GA705 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24FJ256GA705 family CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

The PIC24FJ256GA705 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains 6 non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The AIVTEN (INTCON2<8>) control bit provides access to the AIVT. If the AIVTEN bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ256GA705 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

	IRQ		Interrupt Bit Location			
Interrupt Source	#	IVI Address	Flag	Enable	Priority	
I2C1BC – I2C1 Bus Collision	84	0000BCh	IFS5<4>	IEC5<4>	I2C1BCInterrupt	
I2C2BC – I2C2 Bus Collision	85	0000BEh	IFS5<5>	IEC5<5>	I2C2BCInterrupt	
	86	—		_	—	
_	87	—		—	—	
	88	—	_	_	—	
_	89	—		—	—	
SPI3 – SPI3 General	90	0000C8h	IFS5<10>	IEC5<10>	SPI3Interrupt	
SPI3TX – SPI3 Transfer Done	91	0000CAh	IFS5<11>	IEC5<11>	SPI3TXInterrupt	
_	92	92		—	—	
—	93	93	_	—	—	
CCP3 – Capture/Compare 3	94	0000D0h	IFS5<14>	IEC5<14>	CCP3Interrupt	
CCP4 – Capture/Compare 4	95	0000D2h	IFS5<15>	IEC5<15>	CCP4Interrupt	
CLC1 – Configurable Logic Cell 1	96	0000D4h	IFS6<0>	IEC6<0>	CLC1Interrupt	
CLC2 – Configurable Logic Cell 2	97	0000D6h	IFS6<1>	IEC6<1>	CLC2Interrupt	
_	98	—		—	—	
—	99	—	—	—	—	
—	100	—		—	—	
CCT1 – Capture/Compare Timer1	101	0000DEh	IFS6<5>	IEC6<5>	CCT1Interrupt	
CCT2 – Capture/Compare Timer2	102	0000E0h	IFS6<6>	IEC6<6>	CCT2Interrupt	
—	103	—	—	—	—	
—	104	—		—	—	
—	105	—		—	—	
FST – FRC Self-Tuning Interrupt	106	0000E8h	IFS6<10>	IEC6<10>	FSTInterrupt	
_	107	—		—	—	
ECCIE – ECC Single Bit Error	108	0000ECh	IFS6<12>	IEC6<12>	ECCIEInterrupt	
_	109	—	_	—	—	
RTCCTS – Real-Time Clock Timestamp	110	0000F0h	IFS6<14>	IEC6<14>	RTCCTSInterrupt	
_	111	—	_	—	—	
	112	—		—	—	
—	113	—		—	—	
_	114	—		—	—	
_	115		_	—	_	
	116	—	_	—	—	
JTAG – JTAG	117	0000FEh	IFS7<5>	IEC7<5>	JTAGInterrupt	

TABLE 8-2: INTERRUPT VECTOR DETAILS (CONTINUED)

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CPUIRQ: Inte	errupt Request	from Interrupt	Controller CP	U bit		
	1 = An interru	upt request has	occurred but	has not yet be	en Acknowledg	ed by the CPU	; this happens
	when the	CPU priority is	s higher than t	he interrupt pri	iority		
	0 = No interru	upt request is u	inacknowledg	ed			
bit 14	Unimplement	ted: Read as '	0'				
bit 13	VHOLD: Vect	or Number Ca	oture Configur	ation bit			
	1 = The VEC	NUMx bits con	tain the value	of the highest	priority pending	interrupt	last interrupt
	that has o	occurred with h	iigher priority f	han the CPU.	even if other inf	errupt (i.e., the	ndina)
bit 12	Unimplement	ted: Read as '	0'				
bit 11-8	II R<3:0>: Ne	w CPU Interru	ot Priority Lev	el bits			
	1111 = CPU I	Interrupt Priorit	v Level is 15				
	•		,				
	•						
		Intorrunt Driorit	v Lovelie 1				
	0001 = CPU	Interrupt Priorit	v Level is 0				
bit 7-0	VECNUM<7:0	0>: Vector Num	ber of Pendir	a Interrupt bits	3		
	11111111 = 2	255, Reserved	; do not use	5			
	•						
	•						
	•	9 IC1 – Input (Canture 1				
	00001000 = 8	8, INT0 – Exter	nal Interrupt ()			
	00000111 =	7, Reserved; d	o not use				
	00000110 = 6	6, Generic soft	error trap				
	00000101 =	5, Keserved; d 4 Math error tr	o not use				
	00000011 = 3	3, Stack error t	rap				
	00000010 = 2	2, Generic hard	d trap				
	0000001 =	1, Address erro	or trap				
	00000000 = 0	0, Oscillator fai	l trap				

REGISTER 8-6: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				DIV<14:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
			DI\	/<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable bit	t	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' :		'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown		
bit 15	Unimpleme	nted: Read as '0'						
bit 14-0	DIV<14:0>:	Reference Clock [Divider bits					
	Specifies the	1/2 period of the	reference c	lock in the source	ce clocks			
		if ref_CIK_OUtput =	[Reference	e Source " 2] " D by divided by 65	IV<14:0>). 534 (32 767 *	2)		
	1111111111	1111110 = Oscillat	or frequenc	v divided by 65,	532 (32,766 *	2)		
	•			, , , , , , , , , , , , , , , , , , ,	001 (01,100	_,		
	•							
	•							
	000000000	000011 = Oscillat	or frequenc	y divided by 6 (3	3 * 2)			
	000000000	000010 = Oscillat	or frequenc	y divided by 4 (2	2 * 2)			
		000001 = Oscillat 000000 = Oscillat	or frequence or frequence	cy divided by 2 (2 cy is unchanged	(no divider)			

REGISTER 9-4: OSCDIV: OSCILLATOR DIVISOR REGISTER

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- 4. Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV $\#0x78$, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- · A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 LOW-VOLTAGE RETENTION REGULATOR

PIC24FJ256GA705 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

Retention Sleep uses less power than standard Sleep mode, but takes more time to recover and begin execution. An additional 10-15 μ S (typical) is required to charge VCAP from 1.2V to 1.8V and start to execute instructions when exiting Retention Sleep.

The VREGS bit allows control of speed to exit from the Sleep modes (regular and Retention) at the cost of more power. The regulator band gaps are enabled, which increases the current but reduces time to recover from Sleep by ~10 μ s.

The low-voltage retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2.5 EXITING FROM LOW-VOLTAGE RETENTION SLEEP

All of the methods for exiting from standard Sleep also apply to Retention Sleep (MCLR, INT0, etc.). However, in order to allow the regulator to switch from 1.8V (operating) to Retention mode (1.2V), there is a hardware 'lockout timer' from the execution of Retention Sleep until Retention Sleep can be exited.

During the 'lockout time', the only method to exit Retention Sleep is a POR or MCLR. Interrupts that are asserted (such as INT0) during the 'lockout time' are masked. The lockout timer then sets a minimum interval from when the part enters Retention Sleep until it can exit from Retention Sleep. Interrupts are not 'held pending' during lockout; they are masked and in order to exit after the lockout expires, the exiting source must assert after the lockout time.

The lockout timer is derived from the LPRC clock, which has a wide (untrimmed) frequency tolerance.

The lockout time will be one of the following two cases:

- If the LPRC was not running at the time of Retention Sleep, the lockout time is 2 LPRC periods + LPRC wake-up time
- If the LPRC was running at the time of Retention Sleep, the lockout time is 1 LPRC period

Refer to Table 32-20 and Table 32-21 in the AC Electrical Specifications for the LPRC timing.

10.2.6 SUMMARY OF LOW-POWER SLEEP MODES

The RETEN bit and the VREGS bit (RCON<12,8>) allow for four different Sleep modes, which will vary by wake-up time and power consumption. Refer to Table 10-1 for a summary of these modes. Specific information about the current consumption and wake times can be found in **Section 32.0 "Electrical Characteristics"**.

TABLE 10-1: LOW-POWER SLEEP MODES

RETEN	VREGS	MODE	Relative Power (1 = Lowest)
0	0	Sleep	3
0	1	Fast Wake-up	4
1	0	Retention Sleep	1
1	1	Fast Retention	2

11.5.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-32 through Register 11-46). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-7).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

IABLE 11-7:	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)	1

Output Function Number	Function	Output Name
0	None (Pin Disabled)	
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OCM2A	CCP2A Output Compare
17	OCM2B	CCP2B Output Compare
18	OCM3A	CCP3A Output Compare
19	OCM3B	CCP3B Output Compare
20	OCM4A	CCP4A Output Compare
21	OCM4B	CCP4B Output Compare
22	Reserved	_
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	PWRGT	RTCC Power Control
28	REFO	Reference Clock Output
29	CLC10UT	CLC1 Output
30	CLC2OUT	CLC2 Output
31	RTCC	RTCC Clock Output

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0

REGISTER 11-36: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: RP9 Output Pin Mapping bits

- Peripheral Output Number n is assigned to pin, RP9 (see Table 11-7 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP8R<5:0>: RP8 Output Pin Mapping bits
 - Peripheral Output Number n is assigned to pin, RP8 (see Table 11-7 for peripheral function numbers).

REGISTER 11-37: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP10 (see Table 11-7 for peripheral function numbers).

16.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 16-6 depicts a simplified block diagram of the Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 16-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode		
0000	0	Edge Detect (16-bit capture)		
0000	1	Edge Detect (32-bit capture)		
0001	0	Every Rising (16-bit capture)		
0001	1	Every Rising (32-bit capture)		
0010	0	Every Falling (16-bit capture)		
0010	1	Every Falling (32-bit capture)		
0011	0	Every Rise/Fall (16-bit capture)		
0011	1	Every Rise/Fall (32-bit capture)		
0100	0	Every 4th Rising (16-bit capture)		
0100	1	Every 4th Rising (32-bit capture)		
0101	0	Every 16th Rising (16-bit capture)		
0101	1	Every 16th Rising (32-bit capture)		

TABLE 16-3: INPUT CAPTURE MODES

U-0	U-0	U-0	U-0	U-0	W-0	U-0	U-0
—	—	—	—	—	ICGARM	—	—
bit 15 bit 8							
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0
Legend:		C = Clearable	bit	W = Writable	bit		
R = Readable	e bit	W1 = Write '1'	Only bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as 'o)'				
bit 10	ICGARM: Inp	ut Capture Gat	e Arm bit				
	A write of '1' ICGSM<1:0>	to this location = 01 or 10; rea	will arm the l id as '0'.	Input Capture >	x module for a	one-shot gatir	ng event when
bit 9-8	Unimplemen	ted: Read as 'd)'				
bit 7	CCPTRIG: CO	CPx Trigger Sta	itus bit				
	1 = Timer has	s been triggere	d and is runnir	ng			
	0 = Timer has	s not been trigg	ered and is he	eld in Reset			
bit 6	TRSET: CCP	x Trigger Set R	equest bit				
	Writes '1' to th	his location to tr	igger the time	r when TRIGEN	N = 1 (location a	always reads a	is '0').
bit 5	TRCLR: CCP	x Trigger Clear	Request bit				
	vvrites 1 to tr	his location to c	ancel the time	r trigger when	1 RIGEN = 1 (10)	cation always	reads as ^r 0 ^r).
DIT 4		x Auto-Shutdov	vn Event Statu	S/Control bit		-1-1-	
	1 = A shutdov0 = CCPx ou	tputs operate n	ormally	x outputs are in		state	
bit 3	SCEVT: Singl	e Edge Compa	re Event Statu	is bit			
	1 = A single e	edge compare e	event has occu	urred			
	0 = A single e	edge compare e	event has not o	occurred			
bit 2	ICDIS: Input (Capture x Disat	ble bit				
	1 = Event on	Input Capture	x pin (ICMx) de	oes not genera rato a capturo (te a capture eve	ent	
hit 1			Cuarflow Stat	rate a capture e	eveni		
DICT	1 = The Input C	t Canture v EIE		werflowed			
	0 = The Input	t Capture x FIF	O buffer has n	ot overflowed			
bit 0	ICBNE: Input	Capture x Buff	er Status bit				
	1 = Input Ca	apture x buffer l	nas data availa	able			
	0 = Input Ca	apture x buffer i	s empty				

REGISTER 16-7: CCPxSTATL: CCPx STATUS REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—		—	—	—			
bit 15							bit 8		
11.0		DAM 0		DAM 0		DAMO			
0-0	R/W-U	R/W-U	R/W-U BOEN	R/W-U	R/W-U				
bit 7	TOL	SCIL	BOLIN	SDAIL ?	SDCDL		bit 0		
Sit 1							bit o		
Legend:									
R = Readable	e bit	W = Writable b	pit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-7	Unimplemen	ted: Read as '0	, <u> </u>	.2					
bit 6	PCIE: Stop C	ondition Interrup	ot Enable bit (I ² C Slave mode	e only)				
	1 = Enables 1 0 = Stop dete	ection interrupts	are disabled	condition					
bit 5	SCIE: Start C	ondition Interru	pt Enable bit (I ² C Slave mode	e only)				
	1 = Enables i	nterrupt on dete	ction of Start	or Restart condi	itions				
hit 4		r Overwrite Eng	are disabled blo bit $(l^2 C S l)$	ave mede enly)					
DIL 4	1 = 12CxRC	/ is updated and	l an ACK is de	enerated for a re	ceived address	s/data byte. igno	oring the state		
	of the I20	COV bit only if F	RBF bit = 0			, , , , , , , , , , , , , , , , , , ,	9 • • • • • •		
h:1 0	0 = 12CxRC	/ is only updated	d when I2CO	/ is clear					
DIL 3		of 300 ns hold t		after the falling	edge of SCI v				
	0 = Minimum	of 100 ns hold t	time on SDAx	after the falling	edge of SCLx				
bit 2	SBCDE: Slav	ve Mode Bus Co	Ilision Detect	Enable bit (I ² C	Slave mode or	nly)			
	If, on the risir	ng edge of SCL	x, SDAx is sa	mpled low when	n the module is	s outputting a h	high state, the		
	sequences.	t and the bus go	bes idle. This	Detection mode	e is only valid d	uning data and	ACK transmit		
	1 = Enables	slave bus collisio	on interrupts						
	0 = Slave bus	s collision interru	upts are disab	led					
bit 1	AHEN: Addre	ess Hold Enable	bit (I ² C Slave	e mode only)	hing readined	addraga bytay			
	⊥ – Followilių (I2CxCO	NL<12>) will be	cleared and	SCLx will be hel	d low	auuress byte,	SULKEL DI		
	0 = Address	holding is disab	led						
bit 0	DHEN: Data	Hold Enable bit	(I ² C Slave mo	ode only)					
	⊥ = ⊢ollowing bit (I2Cx	CONL<12>) and	SCLX is held	lor a received da	ala byle; slave	naruware clears			
	0 = Data hole	ding is disabled							

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0		
bit 15						•	bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—		_	—	WDAY2	WDAY1	WDAY0		
bit 7						•	bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	כ'						
bit 13-12	DAYTEN<1:0	>: Binary Code	ed Decimal Val	ue of Days '10'	Digit bits				
	Contains a va	lue from 0 to 3							
bit 11-8	DAYONE<3:0	>: Binary Code	ed Decimal Val	ue of Days '1' I	Digit bits				
	Contains a value from 0 to 9.								
bit 7-3	Unimplemen	ted: Read as '	o'						
bit 2-0	WDAY<2:0>:	Binary Coded	Decimal Value	of Weekdays ':	1' Digit bits				
	Contains a value from 0 to 6								

REGISTER 21-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW)⁽¹⁾

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

PIC24FJ256GA705 FAMILY

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC ⁽¹	I) EXTSAM	PUMPEN ⁽²⁾	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	7 ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ADRC: A/D C	Conversion Cloc	k Source bit ⁽¹⁾)			
	1 = Dedicated	d ADC RC clock	generator (4	MHz nominal).			
	0 = Clock der	rived from syste	m clock				
bit 14	EXTSAM: Ex	tended Samplin	ig Time bit				
	1 = A/D is stil 0 = A/D is fini	I sampling after ished sampling	SAMP = 0				
bit 13	PUMPEN: Cr	narge Pump Ena	able bit ⁽²⁾				
	1 = Charge p	ump for switche	s is enabled				
	0 = Charge p	ump for switche	s is disabled				
bit 12-8	SAMC<4:0>:	Auto-Sample T	ime Select bit	s			
	11111 = 31 1	F ad					
	•••						
	00001 = 1 IA	ND					
hit 7 0			- Clock Soloot	hito			
DIL 7-0	ADC3<7:0>:			DILS			
	•••	250 • ICY - IAL)				
	00000001 =	2 • TCY = TAD					
	00000000 =	Tcy = Tad					
Note 1	Selecting the inte	ernal ADC RC cl	ock requires t	hat ADCSx be	1 or greater. Se	etting ADCSx =	0 when
	ADRC = 1 will vic	plate the TAD (m	in) specificatio	n.			

REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3

2: The user should enable the charge pump if AVDD is < 2.7 V. Longer sample times are required due to the increase of the internal resistance of the MUX if the charge pump is disabled.

REGISTER 24-8:	AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)
----------------	--

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—		CHH<13:8> ⁽¹⁾							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CHF	1<7:0>						
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable bit	:	U = Unimplen	nented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown			
bit 15-14	Unimpleme	nted: Read as '0'								
bit 13-0	CHH<13:0>	: A/D Compare Hit	bits ⁽¹⁾							
	If CM<1:0> =	= 11:								
	1 = A/D Res	ult Buffer n has be	en written w	ith data or a ma	atch has occui	red				
	0 = A/D Res	ult Buffer n has no	t been writte	en with data						
	For All Other Values of CM<1:0>:									
	1 = A match has occurred on A/D Result Channel n									
	0 = No match has occurred on A/D Result Channel n									

Note 1: The CHH<13:10> bits are not implemented on 28-pin devices.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f,WREG	WREG = f	1	1	N, Z
	COM	Ws.Wd	$Wd = \overline{Ws}$	1	1	N.Z
CP	CP	f	Compare f with WREG	1	1	C. DC. N. OV. Z
01	CP	- Wb.#lit5	Compare Wb with lit5	1	1	C DC N OV Z
	CP	Wb.Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CPO	CPO	f	Compare f with 0x0000	1	1	C DC N OV Z
010	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C. DC. N. OV. Z
	CPB	Wb.#lit5	Compare Wb with lit5, with Borrow	1	1	C. DC. N. OV. Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trade Architecture — Flash Memory F Program Memor Product Group Pin Count — Tape and Reel F Temperature Ra Package — Pattern —	PIC 24 FJ 256 GA7 05 T - 1/PT - XXX emarkamily y Size (Kbytes) lag (if applicable)	Exam a) P P Ir b) P P Ir	ples: IC24FJ256GA705-I/PT: IC24F General Purpose Device, 48-Pin, ndustrial Temp., TQFP Package. IC24FJ256GA702-I/ML: IC24F General Purpose Device, 28-Pin, ndustrial Temp., QFN Package
Architecture	24 = 16-Bit Modified Harvard without DSP		
Flash Memory Family	FJ = Flash Program Memory		
Pin Count	02 = 28-pin (QFN, UQFN, SOIC, SSOP, SPDIP) 04 = 44-pin (TQFP) 05 = 48-pin (UQFN, TQFP)		
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package	ML = 28-Lead (6x6 mm) QFN (Plastic Quad Flat) M6 = 28-Lead (4x4x0.6 mm) UQFN (Ultra Thin Quad Flatpack) SO = 28-Lead (7.50 mm) SOIC (Plastic Small Outline) SS = 28-Lead (5.30 mm) SSOP (Plastic Shrink Small Outline) SP = 28-Lead (300 mil) SPDIP (Skinny Plastic Dual In-Line) PT = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) SE = 48-Lead (7x7 mm) UQFN (Plastic Quad Flat) PT = 48-Lead (7x7x1 mm) TQFP (Thin Quad Flatpack)		
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample		