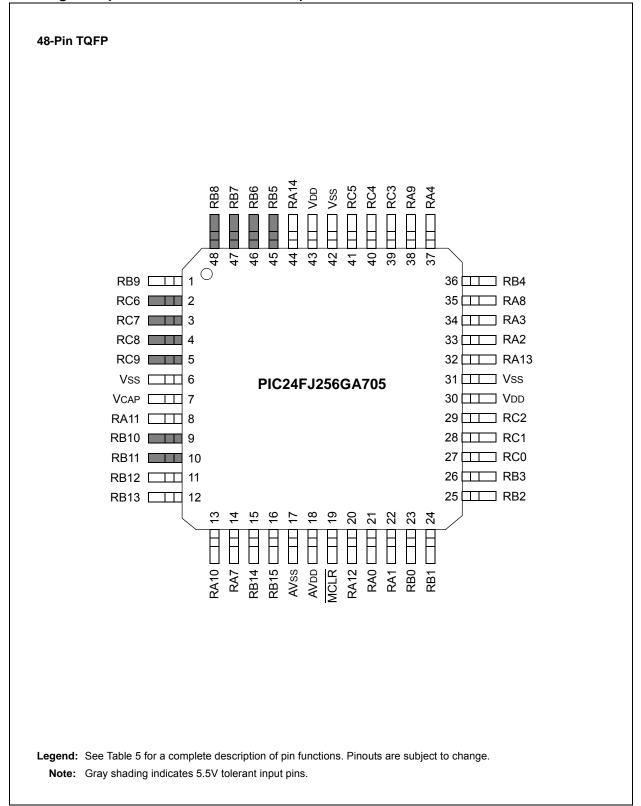


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga702t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA705 Devices)

Pin	F	in Number/G	rid Locator			Innut	
Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, UQFN	44-Pin TQFP	48-Pin QFN/TQFP	I/O	Input Buffer	Description
PGC1	5	2	22	24	I	ST	ICSP™ Programming Clock
PGC2	22	19	9	10	Ι	ST	
PGC3	15	12	42	46	Ι	ST	
PGD1	4	1	21	23	I/O	DIG/ST	ICSP Programming Data
PGD2	21	18	8	9	I/O	DIG/ST	
PGD3	14	11	41	45	I/O	DIG/ST	
PMA0	—	—	3	3	I/O	DIG/ST/ TTL	Parallel Master Port Address<0>/ Address Latch Low
PMA1	—	—	2	2	I/O	DIG/ST/ TTL	Parallel Master Port Address<1>/ Address Latch High
PMA2	_	—	12	13	I/O	DIG/ST/ TTL	Parallel Master Port Address<2>
PMA3	_	_	38	41	I/O	DIG/ST/ TTL	Parallel Master Port Address<3>
PMA4	—	_	37	40	I/O	DIG/ST/ TTL	Parallel Master Port Address<4>
PMA5	_	_	4	4	I/O	DIG/ST/ TTL	Parallel Master Port Address<5>
PMA6	_	_	5	5	I/O	DIG/ST/ TTL	Parallel Master Port Address<6>
PMA7	—	—	13	14	I/O	DIG/ST/ TTL	Parallel Master Port Address<7>
PMA8	—	—	32	35	I/O	DIG/ST/ TTL	Parallel Master Port Address<8>
PMA9	_	—	35	38	I/O	DIG/ST/ TTL	Parallel Master Port Address<9>
PMA14/PMCS/ PMCS1	_	—	15	16	I/O	DIG/ST/ TTL	Parallel Master Port Address<14>/ Slave Chip Select/Chip Select 1 Strobe

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

© 2016 Microchip Technology Inc.

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED)		I ² C (CONTINUED)	0498	0000
SPI1BUFL	0400	0000	I2C1BRG	0498	0000
SPI1BUFH	0402	0000	I2C1CONL	049A	1000
SPI1BRGL	0404	xxxx	I2C1CONH	049C	0000
SPI1IMSKL	0408	0000	I2C1STAT	049E	0000
SPI1IMSKH	ISKH 040A 0000		I2C1ADD	04A0	0000
SPI1URDTL	040C	0000	I2C1MSK	04A2	0000
SPI1URDTH	040E	0000	I2C2RCV	04A4	0000
SPI2CON1L	0410	0x00	I2C2TRN	04A6	00FF
SPI2CON1H	0412	0000	I2C2BRG	04A8	0000
SPI2CON2L	0414	0000	I2C2CONL	04AA	1000
SPI2STATL	0418	0028	I2C2CONH	04AC	0000
SPI2STATH	041A	0000	I2C2STAT	04AE	0000
SPI2BUFL	041C	0000	I2C2ADD	04B0	0000
SPI2BUFH	041E	0000	I2C2MSK	04B2	0000
SPI2BRGL	0420	xxxx	DMA		1
SPI2IMSKL	0424	0000	DMACON	04C4	0000
SPI2IMSKH	0426	0000	DMABUF	04C6	0000
SPI2URDTL	0428	0000	DMAL	04C8	0000
SPI2URDTH	042A	0000	DMAH	04CA	0000
SPI3CON1L	042C	0x00	DMACH0	04CC	0000
SPI3CON1H	042E	0000	DMAINT0	04CE	0000
SPI3CON2L	0430	0000	DMASRC0	04D0	0000
SPI3STATL	0434	0028	DMADST0	04D2	0000
SPI3STATH	0436	0000	DMACNT0	04D4	0001
SPI3BUFL	0438	0000	DMACH1	04D6	0000
SPI3BUFH	043A	0000	DMAINT1	04D8	0000
SPI3BRGL	043C	xxxx	DMASRC1	04DA	0000
SPI3IMSKL	0440	0000	DMADST1	04DC	0000
SPI3IMSKH	0442	0000	DMACNT1	04DE	0001
SPI3URDTL	0444	0000	DMACH2	04E0	0000
SPI3URDTH	0446	0000	DMAINT2	04E2	0000
CONFIGURABLE	LOGIC CELL (CLC)		DMASRC2	04E4	0000
CLC1CONL	0464	0000	DMADST2	04E6	0000
CLC1CONH	0466	0000	DMACNT2	04E8	0001
CLC1SEL	0468	0000	DMACH3	04EA	0000
CLC1GLSL	046C	0000	DMAINT3	04EC	0000
CLC1GLSH	046E	0000	DMASRC3	04EE	0000
CLC2CONL	0470	0000	DMADST3	04F0	0000
CLC2CONH	0472	0000	DMACNT3	04F2	0001
CLC2SEL	0474	0000	DMACH4	04F4	0000
CLC2GLSL	0478	0000	DMAINT4	04F6	0000
CLC2GLSH	047A	0000	DMASRC4	04F8	0000
l ² C			DMADST4	04FA	0000
I2C1RCV	0494	0000	DMACNT4	04FC	0001
I2C1TRN	0496	00FF	DMACH5	04FE	0000

R/W-0	U-0						
DMAEN	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—			_	PRSSEL
bit 7							bit 0

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B MOV MOV.B MOV	#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY	; Write the 0x55 key ; ; Write the 0xAA key
BSET NOP NOP BTSC BRA	NVMCON, #WR NVMCON, #15 \$-2	; Start the programming sequence ; Required delays ; and wait for it to be ; completed

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

REGISTER 9-8: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ROTE	RIM<0:7>			
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
ROTRIM8	—	—	—	—	—	—	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-7	ROTRIM<0:8	B>: REFO Trim b	oits				
				the RODIVx valu the RODIVx val		period of the RE	FO clock.
	000000001	= 1/512 (0.0019	53125 divisoi	r added to the R	ODIVx value)		
	00000010	= 2/512 (0.0039	0625 divisor	added to the RO	DIVx value)		
	•						
	•						
	100000000	= 256/512 (0.50	00 divisor ad	ded to the RODI	Vx value)		
	•						
	•						
	111111110	- 510/512 (0.00	600375 divis	or added to the F		`	

111111110 = 510/512 (0.99609375 divisor added to the RODIVx value) 111111111 = 511/512 (0.998046875 divisor added to the RODIVx value)

bit 6-0 Unimplemented: Read as '0'

Device		PORTA I/O Pins														
Device	RA15	RA14	RA13	RA12	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PIC24FJXXXGA705	_	Х	Х	Х	Х	Х	Х	Х	Х	—	_	Х	Х	Х	Х	Х
PIC24FJXXXGA704	_	_	_	—	_	Х	Х	Х	Х	_	_	Х	Х	Х	Х	Х
PIC24FJXXXGA702	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
ANSELA bit present		_	_	_			_			_			Х	Х	Х	Х

TABLE 11-3: PORTA PIN AND ANSELx AVAILABILITY

TABLE 11-4: PORTB PIN AND ANSELx AVAILABILITY

Device		PORTB I/O Pins													_	
Device	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PIC24FJXXXGA705	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA704	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA702	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB bit present	Х	Х	Х	Х	_	_	Х					_	Х	Х	Х	Х

TABLE 11-5: PORTC PIN AND ANSELX AVAILABILITY

Device		PORTC I/O Pins														
Device	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PIC24FJXXXGA705	—	_	—		—		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA704		_	_	_		_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA702		_	_	_		_	_	_	_	_	_	_	_	_	_	—
ANSELC bit present		_	_	_		_						_	Х	Х	Х	Х

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

REGISTER 11-34: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

- bit 13-8**RP5R<5:0>:** RP5 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP5 (see Table 11-7 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP4 (see Table 11-7 for peripheral function numbers).

REGISTER 11-35: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
Legend:							
							Sit 0
bit 7				1			bit 0
_	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-7 for peripheral function numbers).

Legend:							
bit 7							bit 0
_		RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15				•			bit 8
_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-38: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

'1' = Bit is set

-n = Value at POR

bit 13-8RP13R<5:0>: RP13 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP13 (see Table 11-7 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 5-0 **RP12R<5:0>:** RP12 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP12 (see Table 11-7 for peripheral function numbers).

REGISTER 11-39: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0
Legend:							

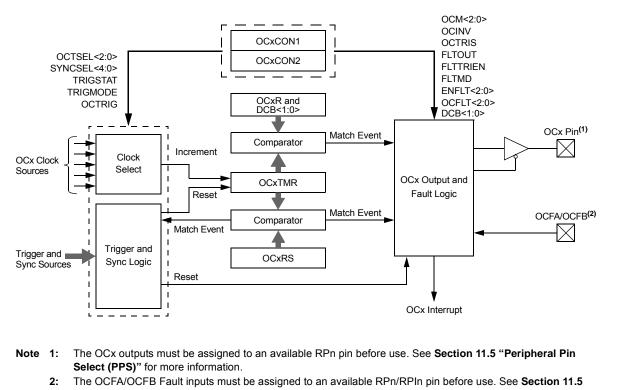
_ogona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP14 (see Table 11-7 for peripheral function numbers).


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							

REGISTER 11-46: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP28 (see Table 11-7 for peripheral function numbers).

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

"Peripheral Pin Select (PPS)" for more information.

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

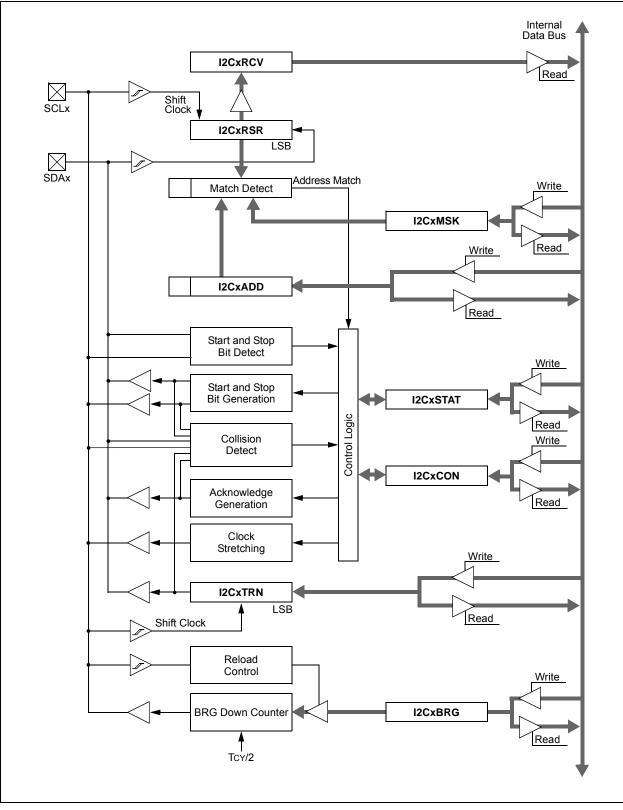
- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger mode operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

REGISTER 16-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_		DT<5:0>						
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-6 Unimplemented: Read as '0'

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits⁽¹⁾ 111111 = Inserts 63 dead-time delay periods between complementary output signals 11110 = Inserts 62 dead-time delay periods between complementary output signals ... 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled


Note 1: This register is implemented in the MCCP1 module only.

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	—	_	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			W	LENGTH<4:0>	(1,2)	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	=	ted: Read as '		(1.0)			
bit 4-0		1:0>: Variable V	Nord Length b	its ^(1,2)			
	11111 = 32-b						
	11110 = 31-b 11101 = 30-b						
	11100 = 29- b						
	11011 = 28- b						
	11010 = 27- b						
	11001 = 26- b	oit data					
	11000 = 25- b						
	10111 = 24 -b						
	10110 = 23-b						
	10101 = 22-b 10100 = 21-b						
	10011 = 20-b						
	10010 = 19 -b						
	10001 = 18- b	oit data					
	10000 = 17 -b						
	01111 = 16 -b						
	01110 = 15-b 01101 = 14-b						
	01100 = 13-b						
	01011 = 12 -b						
	01010 = 11 -b						
	01001 = 10 -b	oit data					
	01000 = 9-bit						
	00111 = 8-bit						
	00110 = 7-bit 00101 = 6-bit						
	00101 = 6-bit 00100 = 5-bit						
	000100 = 3-bi						
	00010 = 3 -bit						
	00001 = 2-bit						
				CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

FIGURE 18-1: I2Cx BLOCK DIAGRAM

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

				-			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC
CEN	COE	CPOL	—	—	—	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	—	CREF	—	—	CCH1	CCH0
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	HSC = Hardv	vare Settable	/Clearable bit	
R = Readabl	e bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 bit 14	1 = Compara 0 = Compara COE: Compa 1 = Compara	arator Enable bit ator is enabled ator is disabled arator Output En- ator output is pre ator output is inte	sent on the C>	OUT pin			
bit 13	•	parator Output P	5	oit			
	1 = Compara	ator output is inv ator output is not	erted				
bit 12-10	Unimplemer	nted: Read as '0	,				
bit 9	CEVT: Comp	arator Event bit					
	are disal	ator event that is bled until the bit ator event has no	is cleared	POL<1:0> has c	occurred; sub	sequent triggers	and interrupts
bit 8	COUT: Comp	parator Output bi	t				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$ $0 = \text{VIN} + < \text{V}$	/in- /in-					
	$\frac{\text{When CPOL}}{1 = \text{VIN} + < \text{V}}$						
	0 = VIN + > V						
bit 7-6	11 = Trigger/ 10 = Trigger/ High-to <u>If CPOI</u> Low-to- 01 = Trigger/ <u>If CPOI</u> Low-to- <u>If CPOI</u> Low-to- <u>If CPOI</u>	Trigger/Event/ /event/interrupt is /event/interrupt is _ = 0 (non-inverter -low transition or _ = 1 (inverted pot high transition of /event/interrupt is _ = 0 (non-inverter high transition of _ = 1 (inverted pot -low transition or	s generated on s generated on <u>ed polarity):</u> nly. <u>plarity):</u> nly. s generated on <u>ed polarity):</u> nly. <u>plarity):</u>	any change of transition of th	e comparator	output:	CEVT = 0)
	00 = Trigger/	/event/interrupt g	eneration is di	sabled			
bit 5	Unimplemer	nted: Read as '0	,				

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

NOTES:

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	ARACTE	RISTICS	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min	Тур	Max Unit		Conditions			
Operati	Operating Voltage									
DC10	Vdd	Supply Voltage	2.0	—	3.6	V	BOR is disabled			
			VBOR	_	3.6	V	BOR is enabled			
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	—		V	VBOR is used only if BOR is enabled (BOREN = 1)			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_		V	(Note 2)			
DC17A	SVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	1V/20 ms	_	1V/10 µS	Sec	(Note 2, Note 4)			
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)			

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

TABLE 32-11:	INTERNAL VOLTAG	E REGULATOR SPECIFICATION	١S
--------------	------------------------	---------------------------	----

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
DVR	TVREG	Voltage Regulator Start-up Time		10	-	μS	VREGS = 0 with any POR or BOR	
DVR10	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V		
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	-	ms		
DVR20	Vrgout	Regulator Output Voltage	1.6	1.8	2.0	V	Vdd > 1.9V	
DVR21	CEFC	External Filter Capacitor Value	10	—	—	μF	Series resistance < 3Ω recommended; < 5Ω required	
DVR30	Vlvr	Low-Voltage Regulator Output Voltage		1.2	_	V	$RETEN = 1, \overline{LPCFG} = 0$	

TABLE 32-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS Г

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions	
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0100 ⁽¹⁾	3.45	_	3.73	V		
		Transition	HLVDL<3:0> = 0101	3.25		3.58	V		
			HLVDL<3:0> = 0110	2.95		3.25	V		
			HLVDL<3:0> = 0111	2.75	—	3.04	V		
			HLVDL<3:0> = 1000	2.65		2.92	V		
			HLVDL<3:0> = 1001	2.45	—	2.70	V		
			HLVDL<3:0> = 1010	2.35		2.60	V		
			HLVDL<3:0> = 1011	2.25	—	2.49	V		
			HLVDL<3:0> = 1100	2.15	—	2.39	V		
			HLVDL<3:0> = 1101	2.08	—	2.28	V		
			HLVDL<3:0> = 1110	2.00		2.15	V		
DC101	VTHL	HLVD Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111	_	1.20	—	V		
DC105	TONLVD	HLVD Module Enable 1	īme	_	5		μS	From POR or HLVDEN = 1	

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0011', are not implemented.

AC CH	ARACTER	ISTICS	Standard Operating te			: 2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial		
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions	
			Devid	e Supp	ly			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2		Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V		
			Refere	nce Inp	uts			
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	VREF	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V		
		•	Anal	og Input	ts			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V		
AD12	Vinl	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/3	V		
AD13		Leakage Current	—	±1.0	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$	
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		2.5K	Ω	10-bit	
		·	A/D /	Accurac	y		·	
AD20B	Nr	Resolution	—	12	—	bits		
AD21B	INL	Integral Nonlinearity	—	±1	< ±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD22B	DNL	Differential Nonlinearity	—	—	< ±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD23B	Gerr	Gain Error	—	±1	±4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25B		Monotonicity ⁽¹⁾	_		_		Guaranteed	

TABLE 32-24: A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.