

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga704t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	F	Pin Number/Grid Locator							
Pin Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, UQFN	44-Pin TQFP	48-Pin QFN/TQFP	I/O	Input Buffer	Description		
AN0	2	27	19	21	Ι	ANA	A/D Analog Inputs		
AN1	3	28	20	22	I	ANA			
AN2	4	1	21	23	I	ANA			
AN3	5	2	22	24	I	ANA			
AN4	6	3	23	25	I	ANA			
AN5	7	4	24	26	I	ANA			
AN6	25	22	14	15	Ι	ANA]		
AN7	24	21	11	12	I	ANA			
AN8	23	20	10	11	I	ANA			
AN9	26	23	15	16	I	ANA			
AN10	_	_	25	27	I	ANA			
AN11	_		26	28	I	ANA]		
AN12	_	—	27	29	I	ANA			
AN13	_	_	36	39	I	ANA			
AVdd	28	25	17	18	Р	_	Positive Supply for Analog modules		
AVss	27	24	16	17	Р	_	Ground Reference for Analog modules		
C1INA	7	4	24	26	I	ANA	Comparator 1 Input A		
C1INB	6	3	23	25	Ι	ANA	Comparator 1 Input B		
C1INC	18, 24	15, 21	1, 11	1, 12	I	ANA	Comparator 1 Input C		
C1IND	9	6	30	33	I	ANA	Comparator 1 Input D		
C2INA	5	2	22	24	Ι	ANA	Comparator 2 Input A		
C2INB	4	1	21	23	I	ANA	Comparator 2 Input B		
C2INC	18	15	1	1	Ι	ANA	Comparator 2 Input C		
C2IND	10	7	31	34	I	ANA	Comparator 2 Input D		
C3INA	26	23	15	16	Ι	ANA	Comparator 3 Input A		
C3INB	25	22	14	15	I	ANA	Comparator 3 Input B		
C3INC	2, 18	15, 27	1, 19	1, 21	I	ANA	Comparator 3 Input C		
C3IND	3	28	20	22	I	ANA	Comparator 3 Input D		
CLKI	9	6	30	33	—	—	Main Clock Input Connection		
CLKO	10	7	31	34	0	DIG	System Clock Output		
CTCMP	4	1	21	23	0	ANA	CTMU Comparator 2 Input (Pulse mode)		

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

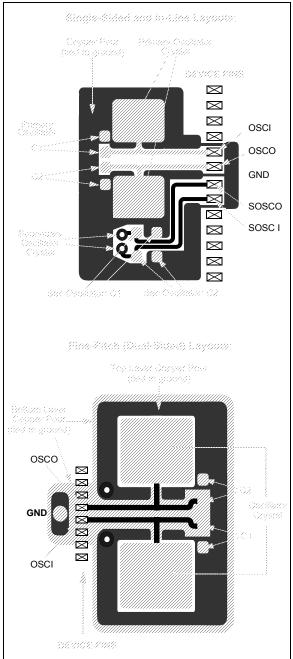
2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15	1		I	4			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	—	_	HALFEN
bit 7							bit
Legend:							
R = Readable	, bit	W = Writable	hit	U = Unimplem	ontod hit roa	d as '0'	
		'1' = Bit is set		'0' = Bit is clea			0000
-n = Value at	PUR				areu	x = Bit is unkr	IOWII
bit 15	1 = The cont DMASRO	Cn in Null Write ent of the DMA	A buffer has r mode	bit (1) not been writter n written to the k		·	
bit 14-8		: DMA Channe		ction bits			
		for a complete		(1 2)			
bit 7	1 = The DMA data RAM	∕l space	ttempted to ac	cess an addres	-	DMAH or the up	per limit of th
bit 6		Low Address I		-			
	1 = The DMA the SFR	A channel has a range (07FFh)	attempted to a	ccess the DMA low address lin		lower than DM	AL, but abov
bit 5		A Complete Op			int interrupt		
	$\frac{\text{If CHEN} = 1:}{1 = \text{The prev}}$ $0 = \text{The current}$ $\frac{\text{If CHEN} = 0:}{1 = \text{The prev}}$	ious DMA sess ent DMA sessic ious DMA sess	ion has ended n has not yet ion has ended	with completion	n		
bit 4		A 50% Waterma					
	1 = DMACN	Γn has reached Γn has not reac	the halfway p	oint to 0000h			
bit 3		MA Channel Ov		• •			
	1 = The DMA		gered while it is	s still completing	the operation	based on the p	revious trigge
bit 2-1	Unimplemen	ted: Read as ')'				
bit 0	-	Ifway Completion		bit			
	1 = Interrupts	s are invoked w	hen DMACNT	n has reached i pletion of the tra		nt and at comp	etion
Note 1: Se	etting these flag	s in software de	oes not genera	ate an interrupt.			
	sting for addres //AL) is NOT do			or DMADSTn is	s either greate	r than DMAH o	r less than

DMAL) is NOT done before the actual access.

RCON: RESET CONTROL REGISTER

REGISTER 7-1:

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR ⁽¹⁾) IOPUWR ⁽¹⁾	SBOREN ⁽⁵⁾	RETEN ⁽²⁾	_	_	CM ⁽¹⁾	VREGS ⁽³⁾
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR ⁽¹⁾	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7	own	OWDIEN	WDTO	OLLLI	IDEE	Bort	bit C
							_
Legend:							
R = Readal		W = Writable b	it	U = Unimpleme			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkı	nown
bit 15	TRAPR: Trap	o Reset Flag bit ⁽¹	1)				
		onflict Reset has onflict Reset has		1			
bit 14	•			· V Register Acces	s Reset Flag	hit(1)	
		• .		al address mode	•		is used as ar
	Address	Pointer and cau	sed a Reset			Ū.	
	-	-		gister Reset has	not occurred		
bit 13		oftware Control C	Over the BOR	Function bit ⁽⁵⁾			
	1 = BOR is e 0 = BOR is di						
bit 12	RETEN: Rete	ention Mode Ena	ble bit ⁽²⁾				
				e is in Sleep mod Itage levels are p		lator supplies t	o the core)
bit 11-10	Unimplemen	ted: Read as '0	,				
bit 9	CM: Configur	ation Word Misn	natch Reset F	=lag bit ⁽¹⁾			
		uration Word Mis uration Word Mis		has occurred has not occurred	1		
bit 8	•	t Wake-up from					
	1 = Fast wak	e-up is disabled e-up is enabled	(lower power				
bit 7		nal Reset (MCLF		,			
on r		Clear (pin) Rese	-	ed			
		Clear (pin) Rese					
bit 6	SWR: Softwa	are RESET (Instru	uction) Flag b	it(1)			
		instruction has to instruction has r					
		-	e set or cleare	ed in software. Se	tting one of t	hese bits in sof	tware does not
	cause a device R		(a) (dis shis d su	
				mmed), the retent e SRAM contents			Id the REIEN
				r mode will add a o or should set this b			
4:	• •	1:0> Configuration	• •	L' (unprogrammed		•	•
		-	onfiguration b	nite must he set to	'01' in order		have an offect

5: The BOREN<1:0> (FPOR<1:0>) Configuration bits must be set to '01' in order for SBOREN to have an effect.

8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

8.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

8.4 Interrupt Control and Status Registers

PIC24FJ256GA705 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through ICP29
- INTTREG

8.4.1 INTCON1-INTCON4

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IPx bits in the first position of IPC0 (IPC0<2:0>).

8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—		—	_	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	R/W-0	R/ VV-U	TUN	-	R/W-0	R/W-0	
—				TUN	\$.0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-6	Unimpleme	nted: Read as '0	,					
bit 5-0	TUN<5:0>:	FRC Oscillator Tu	uning bits					

11.5.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-13 through Register 11-31). Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABLE 11-6	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾

Input Name	Function Name	Register	Function Mapping Bits
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>
Output Compare Trigger 2	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>
Timer2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>
Input Capture 1	ICM1	RPINR5<5:0>	ICM1R<5:0>
Input Capture 2	ICM2	RPINR5<13:8>	ICM2R<5:0>
Input Capture 3	ICM3	RPINR6<5:0>	ICM3R<5:0>
Input Capture 4	ICM4	RPINR6<13:8>	ICM4R<5:0>
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21<5:0>	SS1R<5:0>
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23<5:0>	SS2R<5:0>
Generic Timer External Clock	TxCK	RPINR23<13:8>	TXCKR<5:0>
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29<5:0>	SS3R<5:0>

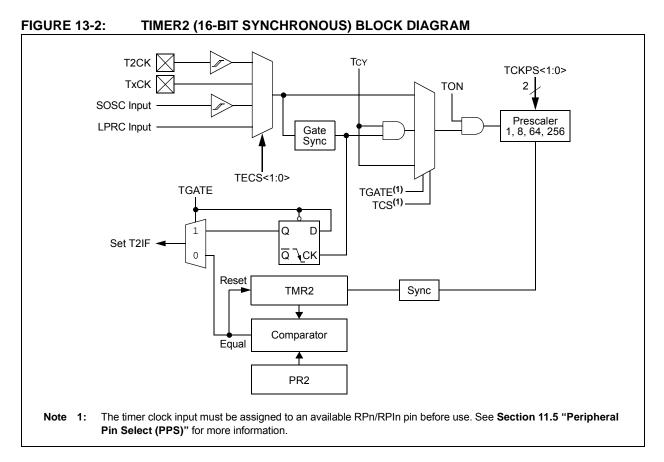
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

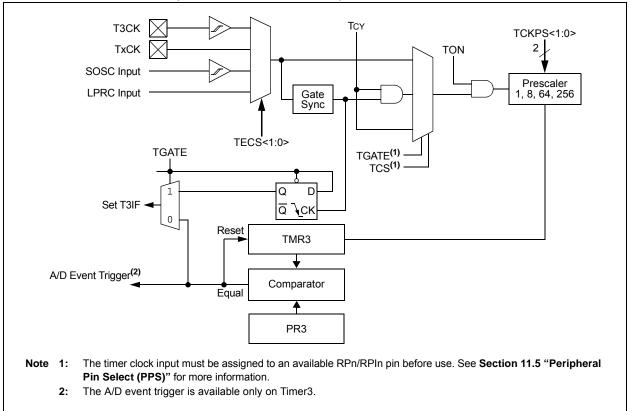
REGISTER 11-19: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-20: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

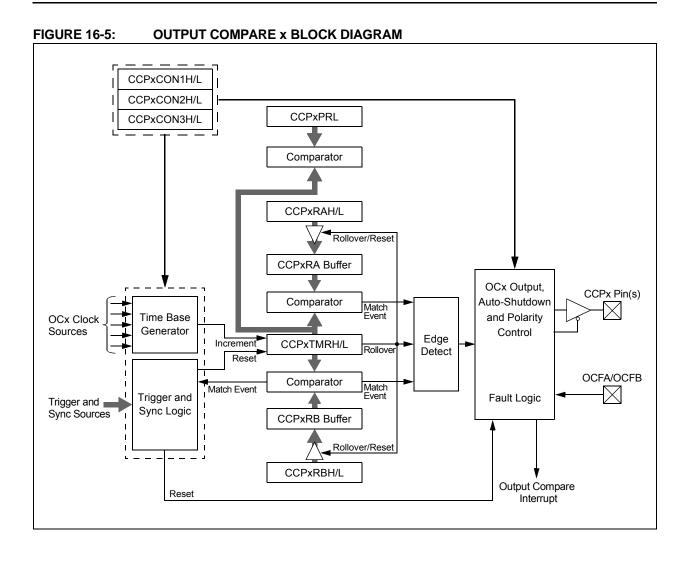
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2


U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	_	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Cascade Two Input Capture Modules Enable bit (32-bit operation)
	 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module
bit 7	ICTRIG: Input Capture x Sync/Trigger Select bit
	 1 = Triggers ICx from the source designated by the SYNCSELx bits 0 = Synchronizes ICx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

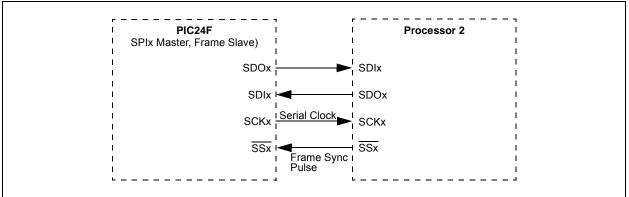
- **Note 1:** Use these inputs as Trigger sources only and never as Sync sources.
 - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0			
bit 7							bit			
Legend:										
R = Readable	> hit	W = Writable	bit	U = Unimplem	ented hit read	1 as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
		1 Dit lo dot				X Dit lo uniti				
bit 15	CCPON: CCF	Px Module Enal	ble bit							
	1 = Module is	s enabled with	an operating m	node specified b	y the MOD<3:	0> control bits				
	0 = Module is	s disabled			-					
bit 14	Unimplemen	ted: Read as '	כי							
bit 13	CCPSIDL: CO	CPx Stop in Idle	e Mode Bit							
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
L:1 4 0		-		de						
bit 12	CCPSLP: CCPx Sleep Mode Enable bit 1 = Module continues to operate in Sleep modes									
	0 = Module does not operate in Sleep modes									
bit 11		ime Base Cloc	-							
	1 = Module time base clock is synchronized to the internal system clocks; timing restrictions apply									
	0 = Module time base clock is not synchronized to the internal system clocks									
bit 10-8	CLKSEL<2:0>: CCPx Time Base Clock Select bits									
	111 = TCKIA pin									
	110 = TCKIB pin 101 = PLL clock									
	100 = 2x peripheral clock									
	010 = SOSC clock									
	001 = Reference clock output									
	000 = System clock For MCCP1:									
	011 = CLC1 output									
	For MCCP2:									
	011 = CLC2 o	output								
bit 7-6		: Time Base Pi	rescale Select	bits						
	11 = 1:64 Prescaler									
	10 = 1:16 Prescaler 01 = 1:4 Prescaler									
	01 = 1.4 Prescaler									
bit 5		me Base Selec	t bit							
				edge output con edge output con						
L:1 /					1	1				
DIL 4	CCSEL: Capture/Compare Mode Select bit									
bit 4	-	ture peripheral		t						

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

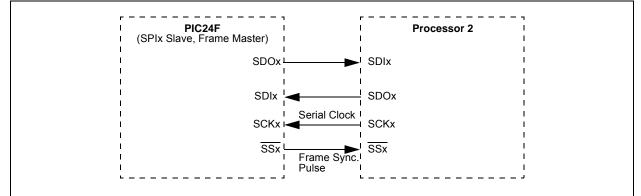
SYNC<4:0>	Synchronization Source
11111	None; Timer with Rollover on CCPxPR Match or FFFh
11110	Reserved
11101	Reserved
11100	CTMU Trigger
11011	A/D Start Conversion
11010	CMP3 Trigger
11001	CMP2 Trigger
11000	CMP1 Trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	Reserved
10010	Reserved
10001	CLC2 Out
10000	CLC1 Out
01111	Reserved
01110	Reserved
01101	Reserved
01100	Reserved
01011	INT2 Pad
01010	INT1 Pad
01001	INT0 Pad
01000	Reserved
00111	Reserved
00110	Reserved
00101	MCCP4 Sync Out
00100	MCCP3 Sync Out
00011	MCCP2 Sync Out
00010	MCCP1 Sync Out
00001	MCCPx Sync Out ⁽¹⁾
00000	MCCPx Timer Sync Out ⁽¹⁾

TABLE 16-5: SYNCHRONIZATION SOURCES


Note 1: CCP1 when connected to CCP1, CCP2 when connected to CCP2, etc.

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM	—	SSDG	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown
bit 14		-		e to resume PW e Enable bit	M activity on c	output pins	
511 14	1 = Waits uni	til the next Time	e Base Reset o	or rollover for sh	utdown to occ	ur	
L:1 40		n event occurs	,				
bit 13	-	ted: Read as '					
bit 12	 SSDG: CCPx Software Shutdown/Gate Control bit 1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting o ASDGM bit still applies) 0 = Normal module operation 						
bit 11-8	Unimplemen	ted: Read as '	0'				
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	Source Enable	e bits		
		Source n is ena	hled (see Tabl	a 16-6 for auto-	shutdown/aati	na sources)	

REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS


TABLE 16-6: AUTO-SHUTDOWN SOURCES

ASDC .7.0	Auto-Shutdown Source						
ASDG<7:0>	MCCP1	MCCP2	МССР3	MCCP4			
1xxx xxxx	OCFB						
x1xx xxxx	OCFA						
xx1x xxxx	CLC1 CLC2 Not Used						
xxx1 xxxx		Not Used					
xxxx 1xxx	Not Used						
xxxx x1xx	CMP3 Out						
xxxx xx1x	CMP2 Out						
xxxx xxx1	CMP1 Out						

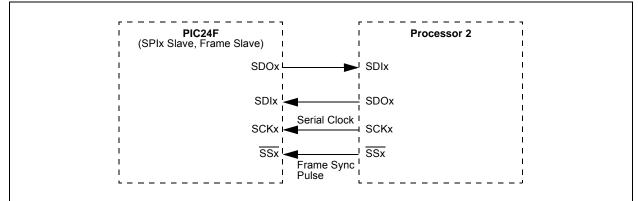


FIGURE 17-5: SPIX MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 17-7: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

 $Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$ Where: FPB is the Peripheral Bus Clock Frequency.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN ⁽¹⁾) _	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0			
bit 15							bit			
	DAVA		D 444.0	D 444 0	DAMO		DANCO			
R/W-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL			
bit 7							bit			
Legend:		HC = Hardwar	e Clearable bi	t						
R = Readal	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own			
bit 15	UARTEN: UA	ARTx Enable bit	1)							
	1 = UARTx is	enabled; all UA	RTx pins are o	controlled by UA	ARTx as define	d by UEN<1:0>				
	0 = UARTx is	disabled; all UAF	RTx pins are co	ntrolled by port	atches, UARTx	power consump	tion is minima			
bit 14	Unimplemen	ted: Read as '0	3							
bit 13		Tx Stop in Idle N								
		ues module ope s module operat			e mode					
bit 12	IREN: IrDA [®]	Encoder and De	coder Enable	bit ⁽²⁾						
		oder and decode								
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bit							
		in is in Simplex r in is in Flow Cor								
bit 10	Unimplemen	ted: Read as '0	,							
bit 9-8	UEN<1:0>: ∪	JARTx Enable bi	ts							
	10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS ar JxRX and UxRT nd UxRX pins a thes	nd UxRTS pins S pins are ena	are enabled and used;	nd used UxCTS pin is o	controlled by por	rt latches			
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	Sleep Mode Er	nable bit					
	in hardwa	continues to sam are on the follow			generated on	the falling edge,	, bit is cleare			
		-up is enabled								
bit 6		ARTx Loopback	wode Select b	lt						
		1 = Enables Loopback mode 0 = Loopback mode is disabled								
bit 5	•	o-Baud Enable b								
	1 = Enables cleared ir	baud rate meas n hardware upor	urement on th		er – requires re	eception of a Sy	nc field (55h			
	0 Duuu luu	o modouromoni								
bit 4				•						
bit 4		RTx Receive Po		•						

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	_	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	_	—		—	_
bit 15							bit 8
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1
	_	JTAGEN	—	—	_	ICS1	ICS0
bit 7							bit 0
Legend:		PO = Progran	n Once bit	r = Reserved bit			
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
<u>.</u>							

REGISTER 29-8: FICD CONFIGURATION REGISTER

bit 5	JTAGEN: JTAG Port Enable bit

1 = JTAG port is enabled

Unimplemented: Read as '1'

Unimplemented: Read as '1'

Reserved: Maintain as '1'

- 0 = JTAG port is disabled
- bit 4-2 Unimplemented: Read as '1'

bit 23-8

bit 7

bit 6

- bit 1-0 ICS<1:0>: ICD Communication Channel Select bits
 - 11 = Communicates on PGC1/PGD1
 - 10 = Communicates on PGC2/PGD2
 - 01 = Communicates on PGC3/PGD3
 - 00 = Reserved; do not use

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

G

Guidelines for Getting Started with 16-Bit MCUs	29
н	
High/Low-Voltage Detect (HLVD) High/Low-Voltage Detect. See HLVD.	327

L

	Ports	125
1/01	Analog Port Pins Configuration (ANSx)	
	Configuring Analog/Digital Function of I/O Pins	
	Control Registers	129
	Input Voltage Levels for Port/Pin Tolerated	400
	Description Input	
	Open-Drain Configuration	
	Parallel (PIO)	
	Peripheral Pin Select	
	PORTA Pin and ANSELx Availability	
	PORTB Pin and ANSELx Availability	
	PORTC Pin and ANSELx Availability	127
	Write/Read Timing	126
l ² C	5	
	Clock Rates	223
	Communicating as Master in Single	
	Master Environment	221
	Reserved Addresses	
	Setting Baud Rate as Bus Master	
100	Slave Address Masking	
	P Pins	
	ircuit Debugger	344
Inpu	it Capture	
	32-Bit Cascaded Mode	168
	Operations	
	Synchronous and Trigger Modes	167
Inpu	It Capture with Dedicated Timers	167
Inst	ruction Set	
	Overview	351
	Summary	
	Symbols Used in Opcode Descriptions	
Inte	rfacing Program and Data Memory Spaces	
Inte	r-Integrated Circuit. See I ² C.	
	rnet Address	407
	rrupt Controller	
me	Alternate Interrupt Vector Table (AIVT)	
	Control and Status Registers	
	IECO-IEC7	
	IFS0-IFS7	
	INTCON1	
	INTCON2	
	INTCON4	90
	INTTREG	90
	IPC0-IPC29	
	Interrupt Vector Details	87
	Interrupt Vector Table (IVT)	85
	Reset Sequence	
	•	
	Resources	
Inte	Resources	
	rrupt-on-Change (IOC)	
	rrupt-on-Change (IOC)	128
	rrupt-on-Change (IOC) rrupts Trap Vectors	128 86
	rrupt-on-Change (IOC)	128 86
	rrupt-on-Change (IOC) rrupts Trap Vectors	128 86
Inte	rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables	128 86 86
Inte	rrupt-on-Change (IOC) rrupts Trap Vectors	128 86 86
Inte J JTA K	rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables	128 86 86 344

L

Low-Voltage/Retention Regulator	341
Μ	
Memory Organization	41
Program Memory Space	41
Microchip Internet Web Site	407
MPLAB ASM30 Assembler, Linker, Librarian	346
MPLAB Integrated Development	
Environment Software	
MPLAB PM3 Device Programmer	347
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	346
Ν	
Near Data Space	46
0	
On-Chip Voltage Regulator	341
POR	341
Standby Mode	341
Oscillator Configuration	97
Clock Switching	106
Sequence	106
Configuration Bit Values for Clock Selection	99
Control Registers	99
Initial Configuration on POR	98
Modes	108
Output Compare with Dedicated Timers	
Operating Modes	
32-Bit Cascaded Mode	
Synchronous and Trigger Modes	
Operations	174
_	

Ρ

Packaging	
Details	377
Marking	375
Peripheral Enable Bits	115
Peripheral Module Disable Bits	115
Peripheral Pin Select (PPS)	136
Available Peripherals and Pins	136
Configuration Control	
Considerations for Selection	140
Control Registers	141
Input Mapping	137
Mapping Exceptions	139
Output Mapping	138
Peripheral Priority	136
Selectable Input Sources	137
Selectable Output Sources	
PIC24FJ256GA705 Family Pinout Descriptions	20
Pin Descriptions	
28-Pin QFN, UQFN Devices	3
28-Pin SOIC, SSOP, SPDIP Devices	4
44-Pin TQFP Devices	6
48-Pin TQFP Devices	10
48-Pin UQFN Devices	
Power-Saving Features	113
Clock Frequency, Clock Switching	113
Doze Mode	
Instruction-Based Modes	113
Idle	114
Sleep	113
Low-Voltage Retention Regulator	114
Selective Peripheral Module Control	115