

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga705-i-pt

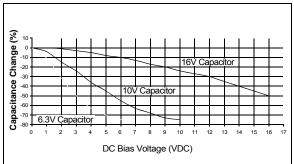
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGCx and PGDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGCx/PGDx) programmed into the device match the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

File Name	Address	All Resets	File Name	Address	All Resets			
INPUT CAPTURE	-		MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED					
IC1CON1	0200	0000	CCP1RAH	0286	0000			
IC1CON2	0202	000D	CCP1RBL	0288	0000			
IC1BUF	0204	0000	CCP1RBH	028A	0000			
IC1TMR	0206	0000	CCP1BUFL	028C	0000			
IC2CON1	0208	0000	CCP1BUFH	028E	0000			
IC2CON2	020A	000D	CCP2CON1L	0290	0000			
IC2BUF	020C	0000	CCP2CON1H	0292	0000			
IC2TMR	020E	0000	CCP2CON2L	0294	0000			
IC3CON1	0210	0000	CCP2CON2H	0296	0100			
IC3CON2	0212	000D	CCP2CON3L	0298	0000			
IC3BUF	0214	0000	CCP2CON3H	029A	0000			
IC3TMR	0216	0000	CCP2STATL	029C	00x0			
OUTPUT COMPAR			CCP2STATH	029E	0000			
OC1CON1	0230	0000	CCP2TMRL	02A0	0000			
OC1CON2	0232	000C	CCP2TMRH	02A2	0000			
OC1RS	0234	xxxx	CCP2PRL	02A4	FFFF			
OC1R	0236	xxxx	CCP2PRH	02A6	FFFF			
OC1TMR	0238	xxxx	CCP2RAL	02A8	0000			
OC2CON1	023A	0000	CCP2RAH	02AA	0000			
OC2CON2	023C	000C	CCP2RBL	02AC	0000			
OC2RS	023E	xxxx	CCP2RBH	02AE	0000			
OC2R	0240	xxxx	CCP2BUFL	02B0	0000			
OC2TMR	0242	xxxx	CCP2BUFH	02B2	0000			
OC3CON1	0244	0000	CCP3CON1L	02B4	0000			
OC3CON2	0246	000C	CCP3CON1H	02B6	0000			
OC3RS	0248	xxxx	CCP3CON2L	02B8	0000			
OC3R	024A	xxxx	CCP3CON2H	02BA	0100			
OC3TMR	024C	xxxx	CCP3CON3L	02BC	0000			
MULTIPLE OUTPU	T CAPTURE/COMPARE		CCP3CON3H	02BE	0000			
CCP1CON1L	026C	0000	CCP3STATL	02C0	00x0			
CCP1CON1H	026E	0000	CCP3STATH	02C2	0000			
CCP1CON2L	0270	0000	CCP3TMRL	02C4	0000			
CCP1CON2H	0272	0100	CCP3TMRH	02C6	0000			
CCP1CON3L	0274	0000	CCP3PRL	02C8	FFFF			
CCP1CON3H	0276	0000	CCP3PRH	02CA	FFFF			
CCP1STATL	0278	00x0	CCP3RAL	02CC	0000			
CCP1STATH	027A	0000	CCP3RAH	02CE	0000			
CCP1TMRL	027C	0000	CCP3RBL	02D0	0000			
CCP1TMRH	027E	0000	CCP3RBH	02D2	0000			
CCP1PRL	0280	FFFF	CCP3BUFL	02D4	0000			
CCP1PRH	0282	FFFF	CCP3BUFH	02D6	0000			
CCP1RAL	0284	0000			1 2000			

TABLE 4-6: SFR MAP: 0200h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment	
x ⁽¹⁾	х ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾	
		2000h to 7FFFh	002000h to 007FFFh		
001h	001h		008000h to 00FFFEh		
002h	002h		010000h to 017FFEh		
003h •	003h •		018000h to 0187FEh	EPMP Memory Space	
•	•	8000h to FFFFh	•		
•	•		•		
•			•		
1FFh	1FFh		FF8000h to FFFFFEh		
000h	000h		Invalid Address	Address Error Trap ⁽³⁾	

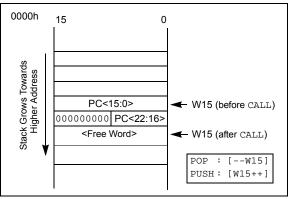
TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.
 2: This Data Space can also be accessed by Direct Addressing.

3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-6: CALL STACK FRAME

R/W-0	U-0						
DMAEN	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—			_	PRSSEL
bit 7							bit 0

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

Legend:

Legend:					
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

TABLE 10-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	_	_	T3MD	T2MD	T1MD		_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADCMD	0000
PMD2	_		_	-	_	IC3MD	IC2MD	IC1MD	_	_	_		_	OC3MD	OC2MD	OC1MD	0000
PMD3	_		_	-	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_		_	_	I2C2MD	—	0000
PMD4	_		_	-	_	_	_	_	_	_	_		REFOMD	CTMUMD	LVDMD	—	0000
PMD5	_		_	-	_	_	_	_	_	_	_		CCP4MD	CCP3MD	CCP2MD	CCP1MD	0000
PMD6	_		_	-	_	_	_	_	_	_	_		_	-	_	SPI3MD	0000
PMD7	_		_	-	_	_	_	_	_	_	DMA1MD	DMA0MD	_	-	_	—	0000
PMD8	—	_	—	_	_	_	-	_	—	—	—	—	CLC2MD	CLC1MD	—	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decide if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 32.0 "Electrical Characteristics"** for more details.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description
PORTB<11:10,8:5>	5.5V	Tolerates input levels above VDD; useful
PORTC<9:6>	5.5V	for most standard logic.
PORTA<14:7,4:0>		
PORTB<15:12,9,4:0>	VDD	Only VDD input levels are tolerated.
PORTC<5:0>		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown	

REGISTER 11-34: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

- bit 13-8**RP5R<5:0>:** RP5 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP5 (see Table 11-7 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP4 (see Table 11-7 for peripheral function numbers).

REGISTER 11-35: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
Legend:								
							Sit 0	
bit 7				1			bit 0	
_	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-7 for peripheral function numbers).

13.0 TIMER2/3

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 module is a 32-bit timer, which can also be configured as independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 can operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D event trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON is shown in generic form in Register 13-1; T3CON is shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 is the least significant word; Timer3 is the most significant word of the 32-bit timer.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bits are used for setup and control. Timer2 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags. To configure Timer2/3 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
- Load the timer period value. PR3 will contain the most significant word (msw) of the value, while PR2 contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. Note that while Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2>. TMR3 always contains the most significant word of the count, while TMR2 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit (T2CON<3>).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 11111 = Not used
 - 11110 = Not used 11101 = Not used 11100 = CTMU trigger⁽¹⁾ 11011 = A/D interrupt⁽¹⁾
 - 11010 = CMP3 trigger⁽¹⁾
 - 11001 = CMP2 trigger⁽¹⁾
 - 11000 = CMP1 trigger⁽¹⁾
 - 10111 = Not used
 - 10110 = MCCP4 IC/OC interrupt
 - 10101 = MCCP3 IC/OC interrupt
 - 10100 = MCCP2 IC/OC interrupt
 - 10011 = MCCP1 IC/OC interrupt
 - 10010 = IC3 interrupt⁽²⁾
 - 10001 = IC2 interrupt⁽²⁾
 - 10000 = IC1 interrupt⁽²⁾
 - 01111 = Not used
 - 01110 = Not used
 - 01101 = Timer3 match event
 - 01100 = Timer2 match event
 - 01011 = Timer1 match event
 - 01010 = Not used
 - 01001 = Not used
 - 01000 = Not used
 - 00111 = MCCP4 Sync/Trigger out
 - 00110 = MCCP3 Sync/Trigger out
 - 00101 = MCCP2 Sync/Trigger out
 - 00100 = MCCP1 Sync/Trigger out
 - 00011 = OC3 Sync/Trigger out
 - 00010 = OC2 Sync/Trigger out
 - 00001 = OC1 Sync/Trigger out
 - 00000 **= Off**
- Note 1: Use these inputs as Trigger sources only and never as Sync sources.
 - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on $OCx^{(2)}$
- 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
- 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
- 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
- 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
- 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
- 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
- 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - 3: The Comparator 1 output controls the OC1-OC3 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

16.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 16-1).

T32 (CCPxCON1L<5>)	Operating Mode				
0	Dual Timer Mode (16-bit)				
1	Timer Mode (32-bit)				

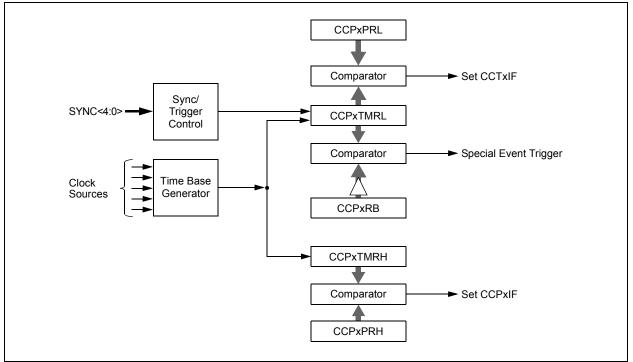
TABLE 16-1: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Timer Period High register, CCPxPRH, generates the MCCPx compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments

FIGURE 16-3: DUAL 16-BIT TIMER MODE

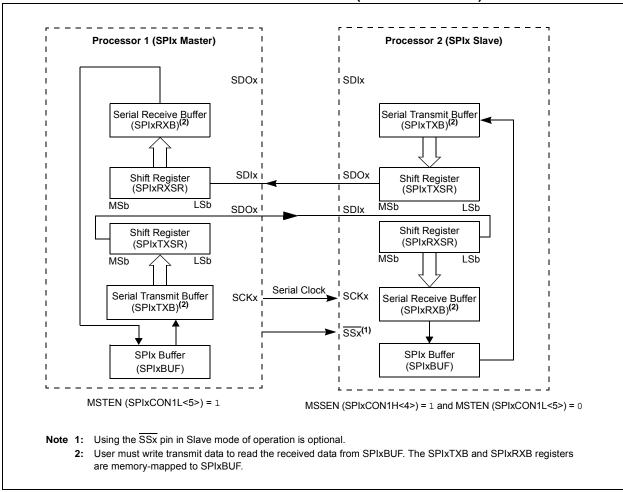

by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

16.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the Timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. The SYNC<4:0> bits can have any value except '11111'.

In Trigger mode operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On PIC24FJ256GA705 family devices, Trigger mode operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).



17.4 SPI Control Registers

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SPIEN		SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾				
bit 15			I	1	1 1		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF				
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown				
bit 15	SPIEN: SPIX (On bit									
	1 = Enables n										
	 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications 										
bit 14	Unimplement	ed: Read as ')'								
bit 13	SPISIDL: SPI	x Stop in Idle N	lode bit								
	1 = Halts in Cl	PU Idle mode									
	0 = Continues to operate in CPU Idle mode										
bit 12	DISSDO: Disable SDOx Output Port bit										
	1 = SDOx pin is not used by the module; pin is controlled by the port function										
	0 = SDOx pin			4)							
bit 11-10	MODE<32,16	Serial Word	Length bits(',	-,							
	<u>AUDEN = 0:</u> MODE32	2 MODE16	COMMUN								
	1	x	32-Bit								
	0	1	16-Bit								
	0	0	8-Bit								
	AUDEN = 1:										
	MODE32	2 MODE16	COMMUN								
	1	1			2-Bit Channel/6						
		1 0 32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame 0 1 16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame									
	0	1									
bit 9	0 0 16-Bit Data, 16-Bit FIFO, 16-Bit Channel/32-Bit Frame SMP: SPIx Data Input Sample Phase bit										
bit 9	Master Mode:		ie i nase bit								
	1 = Input data	is sampled at	the end of dat	ta output time							
		•		data output time	9						
	Slave Mode:	•									
		lways sampled	l at the middle	e of data output	time, regardless	of the SMP	setting.				
Note 1: W	Vhen AUDEN = 1	, this module f	unctions as if	CKE = 0, regard	dless of its actua	al value.					
2 : V	hen FRMEN = 1	, SSEN is not	used.								
3: N	ICLKEN can only	v be written wh	en the SPIEN	bit = 0.							
4: T	his channel is no	t meaningful fo	or DSP/PCM r	node as I RC fo	llows the FRMS	YPW bit					

4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV<	15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV	<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

Note 1: A write to this register is only allowed when WRLOCK = 1.

REGISTER 29-6: FWDT CONFIGURATION REGISTER (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16
 - 0011 = 1:8 0010 = 1:4
 - 0001 = 1:2
 - 0000 = 1:1

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	Cycles 1	None
BRA	BRA	C,Expr		1		None
	BRA	GE, Expr	-	1 1 b by Wns 1 b by lit5 1 1 1	. ,	None
	BRA	GEU, Expr			. ,	None
	BRA	GT,Expr			. ,	None
	BRA	GTU, Expr		Bit Clear Ws1Branch if Carry1Branch if Greater than or Equal1Branch if Unsigned Greater than or Equal1Branch if Greater than1Branch if Unsigned Greater than1Branch if Unsigned Greater than1Branch if Less than or Equal1	. ,	None
	BRA	LE, Expr	Branch if Carry1Branch if Greater than or Equal1Branch if Unsigned Greater than or Equal1Branch if Greater than1Branch if Unsigned Greater than1Branch if Less than or Equal1Branch if Unsigned Less than or Equal1		. ,	None
	BRA	LEU, Expr			. ,	None
	BRA	LT, Expr	Branch if Less than	1	. ,	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	. ,	None
	BRA	N,Expr	Branch if Negative	1	. ,	None
	BRA	NC,Expr	Branch if Not Carry	1	. ,	None
	BRA	· · · · ·	Branch if Not Negative	1	. ,	None
		NN, Expr NOV, Expr	Branch if Not Overflow	1		None
	BRA	NGV, Expr	Branch if Not Zero	1		None
	BRA		Branch if Overflow	1		None
	BRA	OV,Expr		1		
	BRA	Expr	Branch Unconditionally			None
	BRA	Z,Expr	Branch if Zero	1		None
	BRA	Wn	Computed Branch	1		None
BSET	BSET	f,#bit4	Bit Set f	1		None
Davi	BSET	Ws,#bit4	Bit Set Ws	1		None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1 1 (2) 2 1 (2) 2 1 (2) 2 1 (2) </td <td>None</td>	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1		None
BTG	BTG	f,#bit4	Bit Toggle f	1		None
	BTG	Ws,#bit4	Bit Toggle Ws	1		None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	(2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1		None

TABLE 31-2: INSTRUCTION SET OVERVIEW

NOTES:

TABLE 32-13: COMPARATOR DC SPECIFICATIONS

Operating Conditions: $2.0V < VDD < 3.6V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated)										
Param No.	Symbol Characteristic			Тур	Max	Units	Comments			
D300	VIOFF	Input Offset Voltage	_	12	50	mV	(Note 1)			
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V	(Note 1)			
D302	CMRR	Common-Mode Rejection Ratio	55	_		dB	(Note 1)			
D306	IQCMP	AVDD Quiescent Current per Comparator	_	27	—	μA	Comparator is enabled			
D307	TRESP	Response Time	_	300		ns	(Note 2)			
D308	TMC2OV	Comparator Mode Change to Valid Output	_	_	10	μs				
D309	IDD	Operating Supply Current		30		μA	AVDD = 3.3V			

Note 1: Parameters are characterized but not tested.

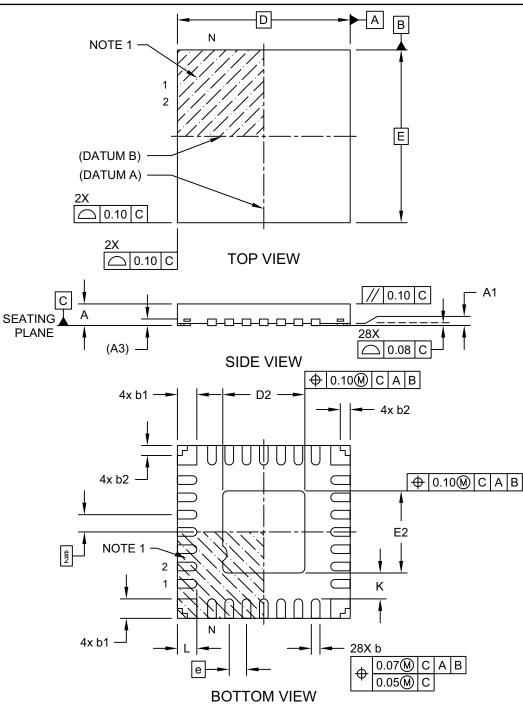
2: Measured with one input at VDD/2 and the other transitioning from Vss to VDD, 40 mV step, 15 mV overdrive.

TABLE 32-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments			
VR310	TSET	Settling Time		_	10	μs	(Note 1)			
VRD311	CVRAA	Absolute Accuracy	-100	_	+100	mV				
VRD312	CVRur	Unit Resistor Value (R)	_	4.5	_	kΩ				

Note 1: Measures the interval while CVR<4:0> transitions from '11111' to '00000'.

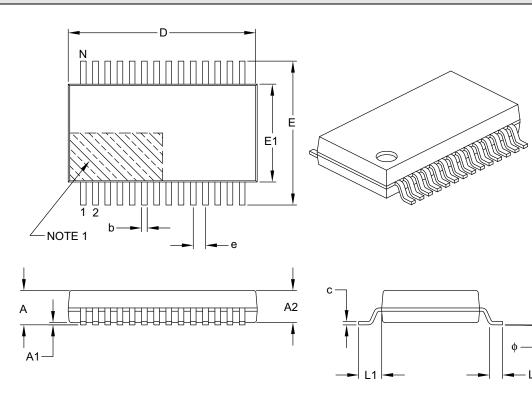
TABLE 32-15: CTMU CURRENT SOURCE SPECIFICATIONS


DC CH	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Sym Characteristic Min Tyn ¹ Max Units Comments		Comments	Conditions				
DCT10	ΙΟυτ1	CTMU Current Source, Base Range	—	550	—	nA	CTMUCON1L<1:0> = 00 ⁽²⁾	
DCT11	IOUT2	CTMU Current Source, 10x Range	_	5.5	—	μΑ	CTMUCON1L<1:0> = 01	
		CTMU Current Source, 100x Range	_	55	—	μA	CTMUCON1L<1:0> = 10	2.5V < VDD < VDDMAX
DCT13	IOUT4	CTMU Current Source, 1000x Range	—	- 550 — μA CTMUCON1L<1:0> = 11 ⁽²⁾ , CTMUCON1H<0> = 0				
DCT14	IOUT5	CTMU Current Source, High Range	—	2.2	—	mA	CTMUCON1L<1:0> = 01, CTMUCON1H<0> = 1	
DCT21	VDELTA1	Temperature Diode Voltage Change per Degree Celsius	—	-1.8	—	mV/°C	Current = 5.5 μA	
DCT22	VDELTA2	Temperature Diode Voltage Change per Degree Celsius	—	-1.55	—	mV/°C	Current = 55 µA	
DCT23	VD1	Forward Voltage	—	710		mV	At 0°C, 5.5 μΑ	
DCT24	VD2	Forward Voltage	—	760		mV	At 0°C, 55 μΑ	

Note 1: Nominal value at center point of current trim range (CTMUCON1L<7:2> = 000000).

2: Do not use this current range with the internal temperature sensing diode.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-333-M6 Rev B Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	Dimension Limits			MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B