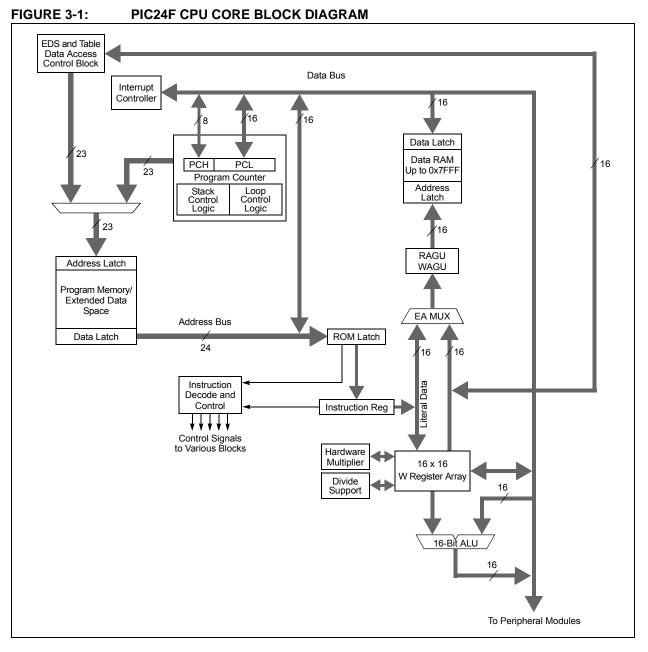


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

-XF

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga702-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: CPU CORE REGISTER

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	REPEAT Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

4.2.5.1 Data Read from EDS

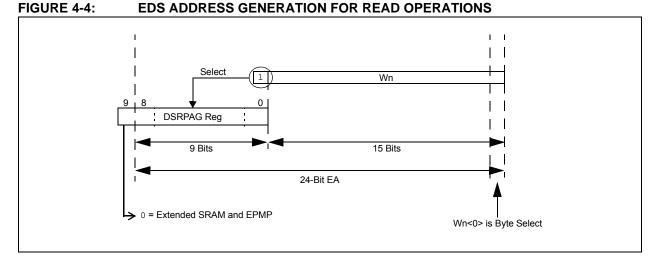

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register which is assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-4 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit (MSb) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY ; Set the EDS page from where the data to be read mov #0x0002, w0 w0, DSRPAG ;page 2 is selected for read mov #0x0800, w1 ;select the location (0x800) to be read mov bset wl, #15 ;set the MSB of the base address, enable EDS mode ;Read a byte from the selected location mov.b [w1++], w2 ;read Low byte mov.b [w1++], w3 ;read High byte ;Read a word from the selected location mov [w1], w2 ; ;Read Double - word from the selected location mov.d [w1], w2 ;two word read, stored in w2 and w3

TABLE 8-2:	INTERRUPT VECTOR DETAILS (CONTINUED)
-------------------	--------------------------------------

	IRQ		Interrupt Bit Location			
Interrupt Source	#	IVT Address	Flag	Enable	Priority	
PMP – Parallel Master Port	45	00006Eh	IFS2<13>	IEC2<13>	PMPInterrupt	
DMA4 – Direct Memory Access 4	46	000070h	IFS2<14>	IEC2<14>	DMA4Interrupt	
	47	—	_	_	_	
	48	_	_	_	_	
SI2C2 – I2C2 Slave Events	49	000076h	IFS3<1>	IEC3<1>	SI2C2Interrupt	
MI2C2 – I2C2 Master Events	50	000078h	IFS3<2>	IEC3<2>	MI2C2Interrupt	
_	51	_		_		
	52	_		_		
INT3 – External Interrupt 3	53	00007Eh	IFS3<5>	IEC3<5>	INT3Interrupt	
INT4 – External Interrupt 4	54	000080h	IFS3<6>	IEC3<6>	INT4Interrupt	
	55	_		_	_	
	56	_	_	_	_	
	57	_		_	_	
SPI1RX – SPI1 Receive Done	58	000088h	IFS3<10>	IEC3<10>	SPI1RXInterrupt	
SPI2RX – SPI2 Receive Done	59	00008Ah	IFS3<11>	IEC3<11>	SPI2RXInterrupt	
SPI3RX – SPI3 Receive Done	60	00008Ch	IFS3<12>	IEC3<12>	SPI3RXInterrupt	
DMA5 – Direct Memory Access 5	61	00008Eh	IFS3<13>	IEC3<13>	DMA5Interrupt	
RTCC – Real-Time Clock and Calendar	62	000090h	IFS3<14>	IEC3<14>	RTCCInterrupt	
CCP1 – Capture/Compare 1	63	000092h	IFS3<15>	IEC3<15>	CCP1Interrupt	
CCP2 – Capture/Compare 2	64	000094h	IFS4<0>	IEC4<0>	CCP2Interrupt	
U1E – UART1 Error	65	000096h	IFS4<1>	IEC4<1>	U1EInterrupt	
U2E – UART2 Error	66	000098h	IFS4<2>	IEC4<2>	U2EInterrupt	
CRC – Cyclic Redundancy Check	67	00009Ah	IFS4<3>	IEC4<3>	CRCInterrupt	
	68	_	_	_	_	
_	69	_		_	_	
	70	_		_	_	
_	71	_	_	_	_	
HLVD – High/Low-Voltage Detect	72	0000A4h	IFS4<8>	IEC4<8>	HLVDInterrupt	
	73	—	_	_	_	
	74	—	_	_	_	
_	75	_	_	_	_	
	76	—	_	_	_	
CTMU – Interrupt	77	0000AEh	IFS4<13>	IEC4<13>	CTMUInterrupt	
	78	_	_	_	_	
	79	—	_	—	_	
	80	_	_	_	—	
	81	l _	_	_	—	
	82	—	—	—	_	
	83	_	_	_	_	

U-0	R-x ⁽²⁾	R-x ⁽²⁾	R-x ⁽²⁾	U-0	R/W-x ⁽²⁾	R/W-x ⁽²⁾	R/W-x ⁽²⁾
_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0
oit 15							bit 8
R/W-0	R/W-0	R-0 ⁽⁴⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	(2)	LOCK		CF	POSCEN	SOSCEN	OSWEN
bit 7	IOLOOK	LOOK		0	TOODEN	OCCULIN	bit C
Legend:		CO = Clearal	ole Only bit				
R = Readal		W = Writable		•	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	٥'				
bit 14-12			o ator Selection b	nits(2)			
511 14-12			ency Divider (O				
	110 = Reserv						
		ower RC Oscill					
		dary Oscillator					
		y Oscillator wit y Oscillator (X ⁻		(XTPLL, ECPL	L)		
			th PLL module	(FRCPLL)			
		C Oscillator (F					
bit 11		ted: Read as '		(a)			
bit 10-8			Selection bits				
			ency Divider (O	SCFDIV)			
	110 = Reserv	/ed ower RC Oscill	ator (LPPC)				
		dary Oscillator	· · ·				
	011 = Primar	y Oscillator wit	h PLL module	(XTPLL, ECPL	L)		
		y Oscillator (X					
		C Oscillator wi C Oscillator (F	th PLL module	(FRCPLL)			
bit 7		·	Lock Enable b	bit			
	If FSCM is Er	nabled (FCKSN	/<1:0> = 00):				
		d PLL selection		od and may ba	modified by ap	tting the OSME	N bit
		sabled (FCKSI		eu anu may be	mounieu by se	tting the OSWE	
				and may be m	odified by setti	ng the OSWEN	bit.
bit 6	IOLOCK: I/O	Lock Enable b	it ⁽³⁾	-		-	
	1 = I/O lock is						
	0 = I/O lock is		4)				
bit 5		ock Status bit ⁽		1.1.1			
				start-up timer is timer is runnir	satisfied ng or PLL is dis	abled	
	OSCCON is prote Switching Opera			nt inadvertent c	lock switches.	See Section 9.	4 "Clock
	Reset values for t			the FNOSCx C	onfiguration bits	S.	
3:	The state of the loaddition, if the IO	OLOCK bit car	only be chang	jed once an un	locking sequen	ce has been ex	
	This hit also reset	-					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

4: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

REGISTER 11-8: IOCPx: INTERRUPT-ON-CHANGE POSITIVE EDGE x REGISTER^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCF	Px<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOC	Px<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 **IOCPx<15:0>:** Interrupt-on-Change Positive Edge x Enable bits

- 1 = Interrupt-on-Change is enabled on the IOCx pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-Change is disabled on the IOCx pin for a positive going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
 - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.
 - 3: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-9: IOCNX: INTERRUPT-ON-CHANGE NEGATIVE EDGE x REGISTER^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCN>	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOCN	x<7:0>			
bit 7							bit 0
bit 7							bit
I a manual.							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **IOCNx<15:0>:** Interrupt-on-Change Negative Edge x Enable bits

- 1 = Interrupt-on-Change is enabled on the IOCx pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-Change is disabled on the IOCx pin for a negative going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
 - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.
 - 3: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							

REGISTER 11-46: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

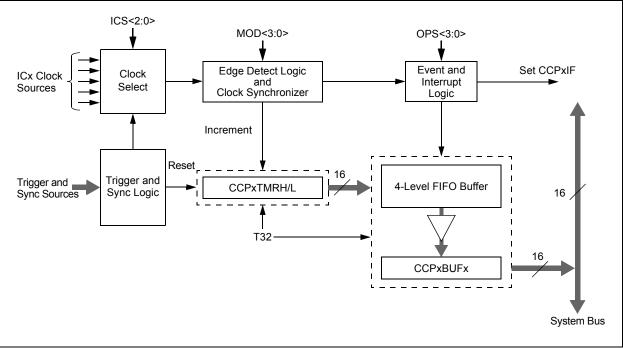
bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP28 (see Table 11-7 for peripheral function numbers).

REGISTER 13-1: TxCON: TIMER2 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽³⁾
 - 1 = Timerx and Timery form a single 32-bit timer
 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit⁽²⁾ 1 = Timer source is selected by TECS<1:0>
 - 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
 - 3: In 32-bit mode, the T3CON control bits do not affect 32-bit timer operation.

16.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 16-6 depicts a simplified block diagram of the Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 16-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode		
0000	0	Edge Detect (16-bit capture)		
0000	1	Edge Detect (32-bit capture)		
0001	0	Every Rising (16-bit capture)		
0001	1	Every Rising (32-bit capture)		
0010	0	Every Falling (16-bit capture)		
0010	1	Every Falling (32-bit capture)		
0011	0	Every Rise/Fall (16-bit capture)		
0011	1	Every Rise/Fall (32-bit capture)		
0100	0	Every 4th Rising (16-bit capture)		
0100	1	Every 4th Rising (32-bit capture)		
0101	0	Every 16th Rising (16-bit capture)		
0101	1	Every 16th Rising (32-bit capture)		

TABLE 16-3: INPUT CAPTURE MODES

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1			
OENSYNC		OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN			
bit 15			1				bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ICGSM1	ICGSM0		AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0			
bit 7			I				bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	1 = Update b	y output enable	Synchronizatior e bits occurs or e bits occurs im	n the next Time	Base Reset o	r rollover				
bit 14	Unimplemented: Read as '0'									
bit 13-8	OCxEN: Output Enable/Steering Control bits									
	0 = OCMx pi		lled by the CCI	odule and prod Px module; the						
bit 7-6	ICGSM<1:0>:	: Input Capture	Gating Source	Mode Control	bits					
	01 = One-Sho 00 = Level-Se	ot mode: Fallin ot mode: Rising ensitive mode:	g edge from ga	ting source dis ting source ena om gating sour	bles future ca	pture events (IC	CDIS = 0)			
bit 5	Unimplemen	ted: Read as '	0'							
bit 4-3	AUXOUT<1:0	>: Auxiliary O	utput Signal on	Event Selectio	n bits					
	10 = Signal o	utput is defined se rollover eve	d by module op	t; no signal in T erating mode (s		•)				
bit 2-0	ICS<2:0>: Input Capture Source Select bits									
	010 = Compa 001 = Compa	ved output	x) I/O pin							

REGISTER 16-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	—	_	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			W	LENGTH<4:0>	(1,2)	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	=	ted: Read as '		(1.0)			
bit 4-0		1:0>: Variable V	Nord Length b	its ^(1,2)			
	11111 = 32-b						
	11110 = 31-b 11101 = 30-b						
	11100 = 29- b						
	11011 = 28- b						
	11010 = 27- b						
	11001 = 26- b	oit data					
	11000 = 25- b						
	10111 = 24 -b						
	10110 = 23-b						
	10101 = 22-b 10100 = 21-b						
	10011 = 20-b						
	10010 = 19 -b						
	10001 = 18- b	oit data					
	10000 = 17 -b						
	01111 = 16 -b						
	01110 = 15-b 01101 = 14-b						
	01100 = 13-b						
	01011 = 12 -b						
	01010 = 11 -b						
	01001 = 10 -b	oit data					
	01000 = 9-bit						
	00111 = 8-bit						
	00110 = 7-bit 00101 = 6-bit						
	00101 = 6-bit 00100 = 5-bit						
	000100 = 3-bi						
	00010 = 3 -bit						
	00001 = 2-bit						
				CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

REGISTER 17-6: SPIxBUFL: SPIx BUFFER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DAT	A<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DAT	Ā<7:0>					
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown			

bit 15-0 DATA<15:0>: SPIx FIFO Data bits

When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses DATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses DATA<7:0>.

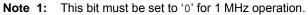
REGISTER 17-7: SPIxBUFH: SPIx BUFFER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	\<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	\<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

bit 15-0 DATA<31:16>: SPIx FIFO Data bits

'1' = Bit is set

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx uses DATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses DATA<23:16>.


'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	—		—		—	_	
bit 15		•					bit 8	
	DAVA	DANA	DAMO	DAM/ 0	DAMO	DANIO	DAMO	
U-0	R/W-0	R/W-0	R/W-0	R/W-0 SDAHT ⁽¹⁾	R/W-0	R/W-0	R/W-0	
	PCIE	SCIE	BOEN	SDAH1.	SBCDE	AHEN	DHEN	
bit 7							bit (
Legend:								
R = Readab	ole bit	W = Writable	oit	U = Unimplem	ented bit, read	as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own	
bit 15-7	Unimplemen	ted: Read as ')'					
bit 6	PCIE: Stop Co	ondition Interru	pt Enable bit (I ² C Slave mode	only)			
		nterrupt on dete		condition				
=	0 = Stop detection interrupts are disabled							
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only) 1 = Enables interrupt on detection of Start or Restart conditions							
		ction interrupts		or Restart condi	uons			
bit 4				ave mode only)				
			•	enerated for a re	ceived address	/data byte, igno	oring the state	
		COV bit only if F						
1.11.0		is only update		/ is clear				
bit 3		x Hold Time Se		ofter the folling	adaa af SCI y			
				after the falling after the falling				
bit 2				Enable bit (I ² C	-	lv)		
				mpled low when			igh state, the	
	BCL bit is set			Detection mode				
	sequences.	lave bus collisi	on intorrunte					
		collision interr		led				
bit 1		ss Hold Enable	•					
				CLx for a mate	hing received	address byte;	SCLREL bi	
	•	NL<12>) will be holding is disat		SCLx will be hel	d low			
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	ode only)				
				for a received da	ata byte; slave l	nardware clears	the SCLREI	
		CONL<12>) and	d SCLx is held	llow				
	0 = Data noic	ling is disabled						

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

20.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only) or 8-bit (Master and Slave modes) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD Controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select, and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP. Key features of the EPMP module are:

- Extended Data Space (EDS) Interface Allows
 Direct Access from the CPU
- Up to 10 Programmable Address Lines
- Up to 2 Chip Select Lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit or 8-Bit Wide Data Bus
- Programmable Strobe Options (per Chip Select):
 - Individual read and write strobes or;
 Read/Write strobe with enable strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer

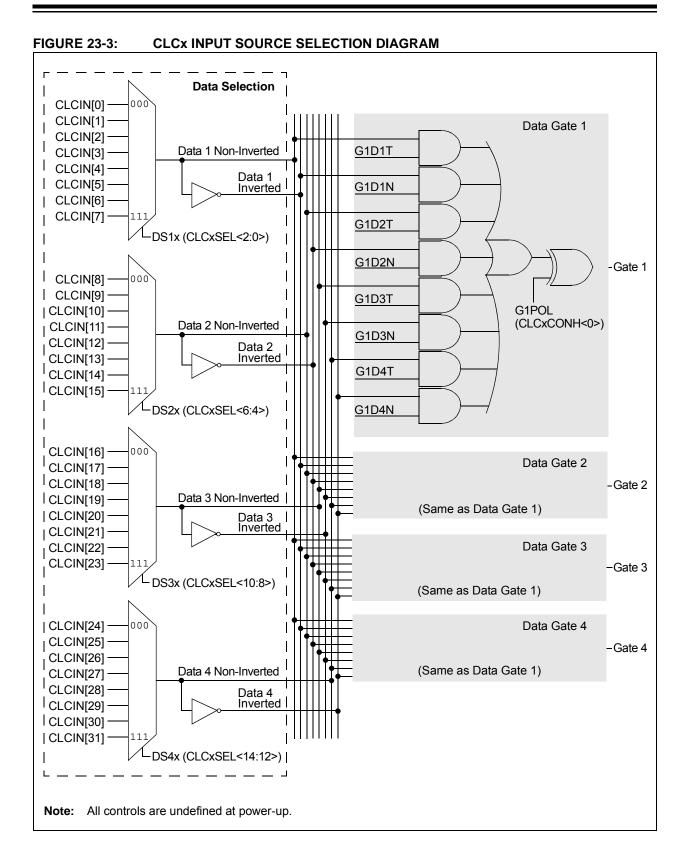
Only the higher pin count packages in the family implement the EPMP. The EPMP feature is not available on 28-pin devices.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
IOCON		—	—	—	—	—	—			
bit 15				·			bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	PMPTTL			
bit 7		•	•	•			bit 0			
Legend:	Legend:									
						(0)				

REGISTER 20-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IOCON: Used for Non-PMP functionality


bit 14-1 Unimplemented: Read as '0'

bit 0

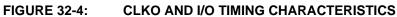
PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

REGISTER 23-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
		DS4<2:0>				DS3<2:0>				
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
—		DS2<2:0>				DS1<2:0>				
bit 7							bit 0			
Legend:										
R = Readab	le hit	W = Writable I	hit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
					alea		0000			
bit 15	Unimpleme	nted: Read as '0)'							
bit 14-12	DS4<2:0>:	Data Selection M	UX 4 Signal S	Selection bits						
		P3 Compare Eve	-							
		P1 Compare Eve								
	101 = Unim									
		100 = CTMU A/D trigger 011 = SPIx Input (SDIx) corresponding to the CLCx module (see Table 23-1)								
			esponding to	the CLCx modu	lie (see Table)	23-1)				
	010 = Comparator 3 output 001 = Module-specific CLCx output (see Table 23-1)									
	000 = CLCINB I/O pin									
bit 11	Unimpleme	Unimplemented: Read as '0'								
bit 10-8	DS3<2:0>:	DS3<2:0>: Data Selection MUX 3 Signal Selection bits								
		P3 Compare Eve		• • •						
		P2 Compare Eve		lag (CCP2IF)						
		Channel 1 interr		the CLCy mod	ula (aga Tabla	02 1)				
		Output (SDOx) c								
		parator 2 output	oncoponang			10 20 1)				
	001 = CLCx	output (see Tab	e 23-1)							
	000 = CLCII	•								
bit 7	-	nted: Read as '0								
bit 6-4		Data Selection M	-							
		P2 Compare Eve P1 Compare Eve								
		Channel 0 interr								
	100 = A/D c	onversion done i	nterrupt							
		Tx TX input corre	sponding to t	he CLCx module	e (see Table 2	3-1)				
		parator 1 output coutput (see Tab	0 22 1)							
	000 = CLCI		e 23-1)							
bit 3		nted: Read as '0)'							
bit 2-0	-	Data Selection M		Selection bits						
		3 match event	Ū							
	110 = Time r	2 match event								
	101 = Unim	-								
	100 = REFC) output C/LPRC clock sc	urce							
		C/LPRC Clock SC C clock source								
		em clock (TCY)								
	000 = CLCII	NA I/O pin								


TABLE 32-11:	INTERNAL	VOLTAGE REGUL	ATOR SPECIFICATIONS
--------------	----------	----------------------	---------------------

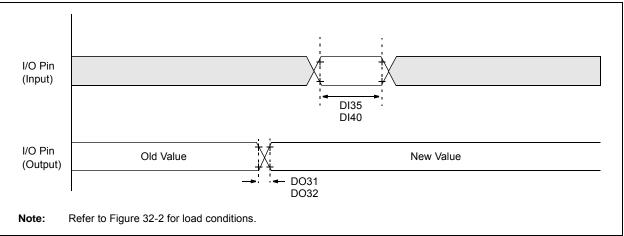
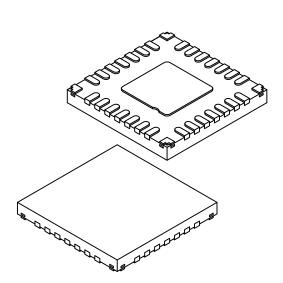

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristics M		Тур	Max	Units	Comments		
DVR	TVREG	Voltage Regulator Start-up Time		10	-	μS	VREGS = 0 with any POR or BOR		
DVR10	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V			
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	-	ms			
DVR20	Vrgout	Regulator Output Voltage	1.6	1.8	2.0	V	Vdd > 1.9V		
DVR21	CEFC	External Filter Capacitor Value	10	—	-	μF	Series resistance < 3Ω recommended; < 5Ω required		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage		1.2	_	V	$RETEN = 1, \overline{LPCFG} = 0$		

TABLE 32-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS Г

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Charac	Characteristic			Max	Units	Conditions	
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0100 ⁽¹⁾	3.45	_	3.73	V		
		Transition	HLVDL<3:0> = 0101	3.25		3.58	V		
			HLVDL<3:0> = 0110	2.95		3.25	V		
			HLVDL<3:0> = 0111	2.75	—	3.04	V		
			HLVDL<3:0> = 1000	2.65		2.92	V		
			HLVDL<3:0> = 1001	2.45	—	2.70	V		
			HLVDL<3:0> = 1010	2.35		2.60	V		
			HLVDL<3:0> = 1011	2.25	—	2.49	V		
			HLVDL<3:0> = 1100	2.15	—	2.39	V		
			HLVDL<3:0> = 1101	2.08	—	2.28	V		
			HLVDL<3:0> = 1110	2.00		2.15	V		
DC101	VTHL	HLVD Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111	_	1.20	—	V		
DC105	TONLVD	HLVD Module Enable 1	īme	_	5		μS	From POR or HLVDEN = 1	

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0011', are not implemented.


TABLE 32-22: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Time	—	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (input)	1	—	—	Тсү	
DI40	Trbp	CNx High or Low Time (input)	1	—	—	Тсү	

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.40 BSC		
Overall Height	Α	-	-	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.152 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	1.80	1.90	2.00
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	1.80	1.90	2.00
Terminal Width	b	0.15	0.20	0.25
Corner Anchor Pad	b1	0.40	0.45	0.50
Corner Pad, Metal Free Zone	b2	0.18	0.23	0.28
Terminal Length	L	0.30	0.45	0.50
Terminal-to-Exposed-Pad	К	-	0.60	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-333-M6 Rev A Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-1023-2