E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga702-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJXXXGA70X: 44-PIN AND 48-PIN DEVICES

Features	PIC24FJ64GA70X	PIC24FJ128GA70X	PIC24FJ256GA70X				
Operating Frequency	DC – 32 MHz						
Program Memory (bytes)	64K	128K	256K				
Program Memory (instruction words, 24 bits)	22,528	45,056	88,064				
Data Memory (bytes)	16K						
Interrupt Sources (soft vectors/NMI traps)	124						
I/O Ports	Ports A, B, C						
Total I/O Pins:							
44-pin	35	35	35				
48-pin	39	39	39				
Remappable Pins:							
44-pin		29 (29 I/Os, 0 input only)					
48-pin		33 (29 I/Os, 4 input only)					
DMA (6-channel)		1					
16-Bit Timers		3(1)					
Real-Time Clock and Calendar (RTCC)	Yes						
Cyclic Redundancy Check (CRC)		Yes					
Input Capture Channels		3 ⁽¹⁾					
Output Compare/PWM Channels		3 ⁽¹⁾					
Input Change Notification Interrupt		25 (remappable pins)					
Serial Communications:							
UART		2(1)					
SPI (3-wire/4-wire)		3 ⁽¹⁾					
l ² C		2					
Configurable Logic Cell (CLC)		2(1)					
Parallel Communications (EPMP/PSP)		Yes					
Capture/Compare/PWM/Timer Modules (MCCP)		4 Modules 1 (6-output), 3 (2-output)					
JTAG Boundary Scan		Yes					
10/12-Bit Analog-to-Digital Converter (A/D) Module (input channels)		14					
Analog Comparators		3					
CTMU Interface		Yes					
Universal Serial Bus Controller		No					
Resets (and delays)	Core POR, VDD POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)						
Instruction Set	76 Base Instru	ctions, Multiple Addressing N	Mode Variations				
Packages		Pin TQFP, 48-Pin TQFP and					

Note 1: Some peripherals are accessible through remappable pins.

Pin	Pin Number/Grid Locator					Innut		
Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, 44-Pin UQFN TQFP		48-Pin QFN/TQFP	I/O	Input Buffer	Description	
PGC1	5 2 22 24 I ST		ST	ICSP™ Programming Clock				
PGC2	22	19	9	10	Ι	ST		
PGC3	15	12	42	46	Ι	ST		
PGD1	4	1	21	23	I/O	DIG/ST	ICSP Programming Data	
PGD2	21	18	8	9	I/O	DIG/ST		
PGD3	14	11	41	45	I/O	DIG/ST		
PMA0	—	—	3	3	I/O	DIG/ST/ TTL	Parallel Master Port Address<0>/ Address Latch Low	
PMA1	—	—	2	2	I/O	DIG/ST/ TTL	Parallel Master Port Address<1>/ Address Latch High	
PMA2	—	—	12	13	I/O	DIG/ST/ TTL	Parallel Master Port Address<2>	
PMA3	_	_	38	41	I/O	DIG/ST/ TTL	Parallel Master Port Address<3>	
PMA4	—	_	37	40	I/O	DIG/ST/ TTL	Parallel Master Port Address<4>	
PMA5	_	_	4	4	I/O	DIG/ST/ TTL	Parallel Master Port Address<5>	
PMA6	_	_	5	5	I/O	DIG/ST/ TTL	Parallel Master Port Address<6>	
PMA7	—	—	13	14	I/O	DIG/ST/ TTL	Parallel Master Port Address<7>	
PMA8	—	—	32	35	I/O	DIG/ST/ TTL	Parallel Master Port Address<8>	
PMA9	_	—	35	38	I/O	DIG/ST/ TTL	Parallel Master Port Address<9>	
PMA14/PMCS/ PMCS1	_	—	15	16	I/O	DIG/ST/ TTL	Parallel Master Port Address<14>/ Slave Chip Select/Chip Select 1 Strobe	

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

© 2016 Microchip Technology Inc.

R/W-0	U-0						
DMAEN	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—			_	PRSSEL
bit 7							bit 0

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B MOV MOV.B MOV	#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY	; Write the 0x55 key ; ; Write the 0xAA key
BSET NOP NOP BTSC BRA	NVMCON, #WR NVMCON, #15 \$-2	; Start the programming sequence ; Required delays ; and wait for it to be ; completed

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

8.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC24FJ256GA705 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24FJ256GA705 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24FJ256GA705 family CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

The PIC24FJ256GA705 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains 6 non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The AIVTEN (INTCON2<8>) control bit provides access to the AIVT. If the AIVTEN bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ256GA705 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

8.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

8.4 Interrupt Control and Status Registers

PIC24FJ256GA705 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through ICP29
- INTTREG

8.4.1 INTCON1-INTCON4

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IPx bits in the first position of IPC0 (IPC0<2:0>).

8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features" (DS39698), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GA705 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the ${\tt PWRSAV}$ instruction is shown in Example 10-1.

The MPLAB[®] XC16 C compiler offers "built-in" functions for the power-saving modes as follows:

Idle(); // places part in Idle
Sleep(); // places part in Sleep

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	SLEEP mode
PWRSAV	#IDLE_MODE	;	Put	the	device	into	IDLE mode

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			CCP4MD	CCP3MD	CCP2MD	CCP1MD

bit 7			b	oit 0
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	CCP4MD: MCCP4 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 2	CCP3MD: MCCP3 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 1	CCP2MD: MCCP2 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 0	CCP1MD: MCCP1 Module Disable bit
	1 = Module is disabled

0 = Module power and clock sources are enabled

REGISTER 10-8: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
_	—	—	—	CLC2MD	CLC1MD	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-4	Unimplemer	ted: Read as ')'				
bit 3	CLC2MD: CI	C2 Module Dis	able bit				
	1 = Module i	s disabled					
	0 = Module	power and clock	sources are e	nabled			

- 0 = Module power and clock sources are enabled
 bit 2
 CLC1MD: CLC1 Module Disable bit
 1 = Module is disabled
 0 = Module power and clock sources are enabled
- bit 1-0 Unimplemented: Read as '0'

11.4 I/O Port Control Registers

| U-0 |
|-----|-----|-----|-----|-----|-----|--------|
| | — | — | — | — | _ | — |
| | | | | | | bit 8 |
| | | | | | | |
| U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
| _ | — | — | — | — | _ | PMPTTL |
| | | | | | | bit 0 |
| | _ | | | | | |

REGISTER 11-1: PADCON: PORT CONFIGURATION REGISTER

Legend:

=ogonan				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

IOCON: Interrupt-on-Change Enable bit
 1 = Interrupt-on-Change functionality is enabled 0 = Interrupt-on-Change functionality is disabled
Unimplemented: Read as '0'
PMPTTL: PMP Port Type bit
 1 = TTL levels on PMP port pins 0 = Schmitt Triggers on PMP port pins

REGISTER 11-2: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—				—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0
—	—	—	—	—	IOCPCF	IOCPBF	IOCPAF
bit 7							bit 0

Legend:	HS = Hardware Settable bit	Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
bit 2	IOCPCF: Interrupt-on-Change PORTC Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTC 0 = No change was detected or the user has cleared all detected changes
bit 1	IOCPBF: Interrupt-on-Change PORTB Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTB 0 = No change was detected or the user has cleared all detected changes
bit 0	IOCPAF: Interrupt-on-Change PORTA Flag bit
	 1 = A change was detected on an IOC-enabled pin on PORTA 0 = No change was detected, or the user has cleared all detected change

REGISTER 11-10: IOCFx: INTERRUPT-ON-CHANGE FLAG x REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCF	Fx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOC	Fx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 **IOCFx<15:0>:** Interrupt-on-Change Flag x bits

- 1 = An enabled change was detected on the associated pin; set when IOCPx = 1 and a positive edge was detected on the IOCx pin, or when IOCNx = 1 and a negative edge was detected on the IOCx pin
 0 = No change was detected or the user cleared the detected change
- **Note 1:** It is not possible to set the IOCFx register bits with software writes (as this would require the addition of significant logic). To test IOC interrupts, it is recommended to enable the IOC functionality on one or more GPIO pins and then use the corresponding LATx register bit(s) to trigger an IOC interrupt.
 - 2: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-11: IOCPUx: INTERRUPT-ON-CHANGE PULL-UP ENABLE x REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCPU	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOCPL	Jx<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 IOCPUx<15:0>: Interrupt-on-Change Pull-up Enable x bits

1 = Pull-up is enabled

0 = Pull-up is disabled

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	as '0'	

REGISTER 11-38: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

'1' = Bit is set

-n = Value at POR

bit 13-8RP13R<5:0>: RP13 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP13 (see Table 11-7 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 5-0 **RP12R<5:0>:** RP12 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP12 (see Table 11-7 for peripheral function numbers).

REGISTER 11-39: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP14 (see Table 11-7 for peripheral function numbers).

NOTES:

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave)
	0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	1 = Frame Sync pulse/slave select is active-high
	0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)
	0 = SPIx slave select support is disabled (SSx pin will be controlled by port IO)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse.
	111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
	000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD<1:0> bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8
U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

REGISTER 17-5: SPIXSTATH: SPIX STATUS REGISTER HIGH	REGISTER 17-5:	SPIxSTATH: SPIx STATUS REGISTER HIGH
---	----------------	--------------------------------------

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

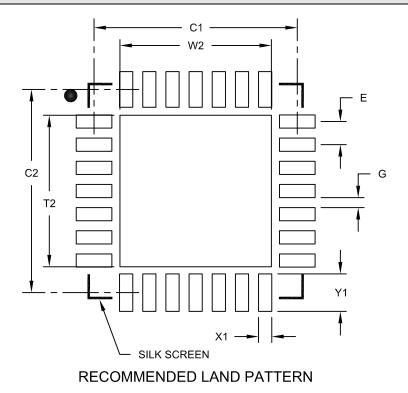
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

REGISTER 24-7: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	—	—	VBGEN3 ⁽¹⁾	VBGEN2 ⁽¹⁾	VBGEN1 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow		iown				
bit 15-3	Unimplemen	ted: Read as '	כ'				
bit 2	VBGEN3: A/I	D Band Gap Re	eference Enabl	e bit ⁽¹⁾			
	1 = Band gap reference is enabled 0 = Band gap reference is disabled						
bit 1	VBGEN2: CTMLL and Comparator Band Gap Reference Enable bit ⁽¹⁾						

- bit 1 **VBGEN2:** CTMU and Comparator Band Gap Reference Enable bit⁽¹⁾
 - 1 = Band gap reference is enabled
 - 0 = Band gap reference is disabled

bit 0 VBGEN1: VREG, BOR, HLVD, FRC, NVM and A/D Boost Band Gap Reference Enable bit⁽¹⁾


- 1 = Band gap reference is enabled
- 0 = Band gap reference is disabled
- **Note 1:** When a module requests a band gap reference voltage, that reference will be enabled automatically after a brief start-up time. The user can manually enable the band gap references using the ANCFG register before enabling the module requesting the band gap reference to avoid this start-up time (~1 ms).

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

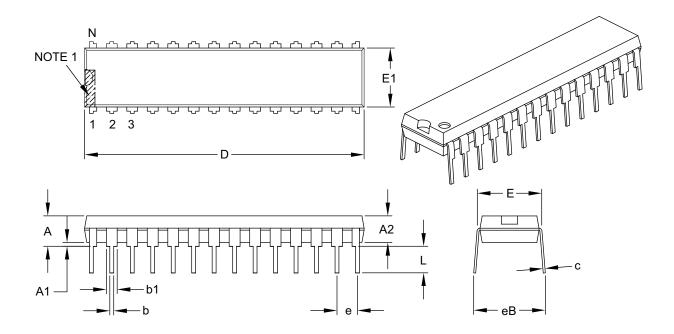
				-			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC
CEN	COE	CPOL	—	—	—	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	—	CREF	—	—	CCH1	CCH0
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	HSC = Hardv	vare Settable	/Clearable bit	
R = Readabl	e bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 bit 14	1 = Compara 0 = Compara COE: Compa 1 = Compara	arator Enable bit ator is enabled ator is disabled arator Output En- ator output is pre ator output is inte	sent on the C>	OUT pin			
bit 13	•	parator Output P	5	oit			
	1 = Compara	ator output is inv ator output is not	erted				
bit 12-10	Unimplemented: Read as '0'						
bit 9	CEVT: Comp	arator Event bit					
	are disal	ator event that is bled until the bit ator event has no	is cleared	POL<1:0> has c	occurred; sub	sequent triggers	and interrupts
bit 8	COUT: Comp	parator Output bi	t				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$ $0 = \text{VIN} + < \text{V}$	/in- /in-					
	$\frac{\text{When CPOL}}{1 = \text{VIN} + < \text{V}}$						
	0 = VIN + > V						
bit 7-6	11 = Trigger/ 10 = Trigger/ High-to <u>If CPOI</u> Low-to- 01 = Trigger/ <u>If CPOI</u> Low-to- <u>If CPOI</u> Low-to- <u>If CPOI</u>	Trigger/Event/ /event/interrupt is /event/interrupt is _ = 0 (non-inverter -low transition or _ = 1 (inverted pot high transition of /event/interrupt is _ = 0 (non-inverter high transition of _ = 1 (inverted pot -low transition or	s generated on s generated on <u>ed polarity):</u> nly. <u>plarity):</u> nly. s generated on <u>ed polarity):</u> nly. <u>plarity):</u>	any change of transition of th	e comparator	output:	CEVT = 0)
	00 = Trigger/	/event/interrupt g	eneration is di	sabled			
bit 5	Unimplemer	nted: Read as '0	,				

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIM	ETERS	
Dimensio	MIN	NOM	MAX	
Contact Pitch	E			
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dime	nsion Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

т

Timer1 159 Timer2/3 161 Timing Diagrams 161
CLKO and I/O Characteristics
External Clock
Triple Comparator
Triple Comparator Module
U
UART
Baud Rate Generator (BRG)231
Infrared Support
Operation of UxCTS and UxRTS Pins
Receiving
8-Bit or 9-Bit Data Mode232
Transmitting
8-Bit Data Mode
9-Bit Data Mode232
Break and Sync Sequence
Unique Device Identifier (UDID)
Universal Asynchronous Receiver Transmitter. See UART.
Unused I/Os

V

Voltage Regulator Pin (VCAP)	31
W	
Watchdog Timer (WDT)	342
Control Register	342
Windowed Operation	342
WWW Address	407
WWW, On-Line Support	12