

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga702t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA702 Devices)

28-Pin SOIC, SSOP, SPDIP

Legend: See Table 2 for a complete description of pin functions. Pinouts are subject to change.Note: Gray shading indicates 5.5V tolerant input pins.

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA702 SOIC, SSOP, SPDIP)

Pin	Function	Pin	Function
1	MCLR	15	PGC3/ RP6 /ASCL1/OCM1F/RB6
2	VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0	16	RP7/OCM1A/CTED3/INT0/RB7
3	VREF-/CVREF-/AN1/C3IND/ RP27 /CTED2/RA1	17	TCK/RP8/SCL1/OCM1B/CTED10/RB8
4	PGD1/AN2/CTCMP/C2INB/ RP0 /RB0	18	TDO/C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/RB9
5	PGC1/AN1-/AN3/C2INA/ RP1 /CTED12/RB1	19	Vss
6	AN4/C1INB/ RP2 /SDA2/CTED13/RB2	20	VCAP
7	AN5/C1INA/RP3/SCL2/CTED8/RB3	21	PGD2/TDI/ RP10 /OCM1C/CTED11/RB10
8	Vss	22	PGC2/TMS/REFI1/RP11/CTED9/RB11
9	OSCI/CLKI/C1IND/RA2	23	AN8/LVDIN/ RP12 /RB12
10	OSCO/CLKO/C2IND/RA3	24	AN7/C1INC/RP13/OCM1D/CTPLS/RB13
11	SOSCI/ RP4 /RB4	25	CVREF/AN6/C3INB/RP14/CTED5/RB14
12	SOSCO/PWRLCLK/RA4	26	AN9/C3INA/ RP15 /CTED6/RB15
13	VDD	27	AVss/Vss
14	PGD3/ RP5 /ASDA1/OCM1E/RB5	28	AVdd/Vdd

Legend: RPn represents remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 25V-50V capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 BULK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitance of 10 μ F or greater located near the MCU. The value of the capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. Typical values range from 10 μ F to 47 μ F. The capacitor should be ceramic and have a voltage rating of 25V or more to reduce DC bias effects (see Section 2.4.1 "Considerations for Ceramic Capacitors").

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

RCON: RESET CONTROL REGISTER

REGISTER 7-1:

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR	(1) IOPUWR ⁽¹⁾	SBOREN ⁽⁵⁾	RETEN ⁽²⁾	—	—	CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR(1)
bit 7							bit 0
Logondi							
R = Read	ahle hit	W = Writable b	vit	II = I Inimplem	nented hit read	l as 'O'	
-n = Value	at POR	(1) = Bit is set	nt -	0' = Bit is clea	ared	x = Bit is unkr	lown
iii value						X Dicio unia	
bit 15	TRAPR: Trap	Reset Flag bit(1)				
	1 = A Trap Co	nflict Reset has	occurred				
	0 = A Trap Co	onflict Reset has	not occurred			(1)	
bit 14	IOPUWR: Illeg	gal Opcode or l	Jninitialized W	Register Acce	ss Reset Flag I	bit ⁽¹⁾	
	1 = An illegal Address F	opcode detect Pointer and cau	tion, an illega sed a Reset	l address mod	e or Uninitializ	ed W register	is used as an
	0 = An illegal	opcode or Unir	nitialized W reg	gister Reset ha	s not occurred		
bit 13	SBOREN: So	ftware Control (Over the BOR	Function bit ⁽⁵⁾			
	1 = BOR is en	abled					
h:: 10		sabled					
	1 = Retention	mode is enable	able blo-v ad while device	a is in Sleen mo	nde (1.2\/ regul	ator sunnlins to	o the core)
	0 = Retention	mode is disable	ed; normal vol	tage levels are	present	ator supplies to	
bit 11-10	Unimplement	ted: Read as '0	,				
bit 9	CM: Configura	ation Word Misr	match Reset F	lag bit ⁽¹⁾			
	1 = A Configu	ration Word Mis	match Reset	has occurred	1		
hit Q		Noko un from	Shoop hit(3)	nas not occurre	ed		
DILO	1 = Fast wake	-up is disabled	(lower power)				
	0 = Fast wake	-up is enabled	(higher power))			
bit 7	EXTR: Extern	al Reset (MCLF	R) Pin bit ⁽¹⁾				
	1 = A Master (Clear (pin) Rese	et has occurre	d			
h it C	0 = A Master (Clear (pin) Rese	et has not occ	urred (1)			
DIT 6	SVVR: Soπwar	e RESET (Instri	uction) Flag bi	1			
	$0 = \mathbf{A} \text{ RESET } \mathbf{i}$	nstruction has r	not been executed	uted			
Note 1	All of the Reset st	atus hite may h	a set or cleare	d in coffware. S	etting one of th	asa hite in soft	ware does not
Note 1.	cause a device Re	eset.					ware does not
2:	If the LPCFG Con	figuration bit is	ʻ1' (unprogran	nmed), the rete	ntion regulator	is disabled and	d the RETEN
_	bit has no effect. F	Retention mode	preserves the	e SRAM conten	ts during Sleep).	6 O
3:	Re-enabling the re	gulator after it e	nters Standby	mode will add a	a delay, TVREG, bit to prevent th	when waking u	p trom Sleep.
4:	If the FWDTEN<1	:0> Configuratio	on bits are '11	' (unprogramm	ed), the WDT is	s always enabl	ed, regardless
	of the SWDTEN b	it setting.			·· ·		

5: The BOREN<1:0> (FPOR<1:0>) Configuration bits must be set to '01' in order for SBOREN to have an effect.

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The oscillator system for the PIC24FJ256GA705 family devices has the following features:

 An On-Chip PLL Block to provide a Range of Frequency Options for the System Clock

- Software-Controllable Switching between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable System Clock Output for Synchronizing External Hardware
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ256GA705 FAMILY CLOCK DIAGRAM

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- 4. Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV $\#0x78$, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

_	—	—	—	—	—	—	SPI3MD
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 SPI3MD: SPI3 Module Disable bit

1 = Module is disabled

0 = Module power and clock sources are enabled

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	—	DMA1MD	DMA0MD	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	DMA1MD: DMA1 Controller (Channels 4 through 7) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
bit 4	DMA0MD: DMA0 Controller (Channels 0 through 3) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
L:1 0 0	Unimplemented, Deed es (o)

bit 3-0 Unimplemented: Read as '0'

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decide if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 32.0 "Electrical Characteristics"** for more details.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTB<11:10,8:5>	5.5)/	Tolerates input levels above VDD; useful		
PORTC<9:6>	5.50	for most standard logic.		
PORTA<14:7,4:0>				
PORTB<15:12,9,4:0>	VDD	Only VDD input levels are tolerated.		
PORTC<5:0>				

11-0	11_0				P/\/_0		P/\/_0
0-0	0-0	10,00-0	10/00-0	10,00-0	10.00-0	10/00-0	10,00-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	

REGISTER 11-38: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

'1' = Bit is set

-n = Value at POR

bit 13-8RP13R<5:0>: RP13 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP13 (see Table 11-7 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 5-0 **RP12R<5:0>:** RP12 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP12 (see Table 11-7 for peripheral function numbers).

REGISTER 11-39: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7			•			•	bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP14 (see Table 11-7 for peripheral function numbers).

FIGURE 18-1: I2Cx BLOCK DIAGRAM

R/W-0	U-0	HC, R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15	I		I		I		bit 8
R/W-0	R/W-0	R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	 bit 15 I2CEN: I2Cx Enable bit (writable from software only) 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I²C pins are controlled by port functions 						S
bit 14	Unimplemer	nted: Read as ')'				
bit 13	12CSIDL: 120	Cx Stop in Idle M	lode bit				
	1 = Discontin	ues module opera	eration when de	evice enters Idl	e mode		
hit 12	SCI REL: SC		ntrol bit $(l^2 C S)$	ave mode only	_\ (1)		
	Module resets and (I2CEN = 0) sets SCLREL = 1. $\frac{\text{If STREN = 0:}^{(2)}}{1 = \text{Releases clock}}$ $0 = \text{Forces clock low (clock stretch)}$ $\frac{\text{If STREN = 1:}}{1 = \text{Releases clock}}$ $0 = Holds clock low (clock stretch): user may program this bit to '0' clock stretch at next SCLx low of the stretch stretch at next SCL x low of the stretch str$						t SCLx low
bit 11	STRICT: 12C	x Strict Reserve	d Address Rule	e Enable bit			
	 1 = Strict reserved addressing is enforced (for reserved addresses, refer to Table 18-2) In Slave Mode: The device doesn't respond to reserved address space and addresses falling in that category are NACKed. In Master Mode: The device is allowed to generate addresses with reserved address space. 0 = Reserved addressing would be Acknowledged In Slave Mode: The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. In Master Mode: Reserved. 						
bit 10	A10M: 10-Bit	t Slave Address	Flag bit				
	1 = I2CxADD 0 = I2CxADD) is a 10-bit slav) is a 7-bit slave	e address address				
bit 9	DISSLW: Sle	w Rate Control	Disable bit				
	1 = Slew rate 0 = Slew rate	e control is disat e control is enab	oled for Standa led for High-Sp	rd Speed mode beed mode (40	e (100 kHz, also 0 kHz)	o disabled for 1	MHz mode)
Note 1:	Automatically cle of slave reception ting the SCLREL specified in Sect	ared to '0' at th n. The user soft bit. This delay ion 32.0 "Elect	e beginning of ware must prov must be greate rical Characte	slave transmiss vide a delay be r than the minin ristics".	sion; automatic tween writing t mum setup tim	ally cleared to o the transmit b e for slave tran	⁶ 0' at the end ouffer and set- smissions, as

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

R/M_0	11_0	R/\\/_0	R/\\/_0	R/M-0	11-0	R/\\/_0	R/\/\-0
	1)			RTSMD			
hit 15		UCIDE				ULINI	hit 9
							Dit 0
R/W-0. H0	C R/W-0	R/W-0. HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7		-		_	-		bit 0
Legend:		HC = Hardwar	re Clearable bit	t			
R = Reada	ble bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	UARTEN: UA	RTx Enable bit	(1)				
	1 = UARTx is	enabled; all UA	RTx pins are o	controlled by UA	ARTx as define	d by UEN<1:0>	
	0 = UARTx is 0	disabled; all UAI	RTx pins are co	ntrolled by port I	atches, UARTx	power consump	otion is minimal
bit 14	Unimplement	ted: Read as '0)^ A - 1 - 1 • 1				
DIT 13	USIDL: UARI	x Stop in Idle N	lode bit	vice entere Idk	modo		
	0 = Continues	s module operat	tion in Idle mod	le	emode		
bit 12	IREN: IrDA [®] E	Encoder and De	ecoder Enable	bit ⁽²⁾			
	1 = IrDA enco	der and decode	er are enabled				
	0 = IrDA enco	der and decode	er are disabled				
bit 11	RTSMD: Mod	e Selection for	UxRTS Pin bit				
	1 = UxRTS pir 0 = UxRTS pir	n is in Simplex n is in Flow Cor	mode ntrol mode				
bit 10	Unimplement	ted: Read as '0	,				
bit 9-8	UEN<1:0>: U	ARTx Enable b	its				
	 11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by 						rt latches rt latches controlled by
bit 7	WAKE: Wake	-up on Start Bit	Detect During	Sleep Mode Er	nable bit		
	1 = UARTx co in hardwa	ontinues to san are on the follow	nple the UxRX ving rising edge	pin; interrupt is e	generated on	the falling edge	, bit is cleared
1.1.0	0 = No wake-	up is enabled		.,			
bit 6	LPBACK: UA	RIX Loopback	Mode Select b	It			
	0 = Loopback	mode is disabl	ed				
bit 5	ABAUD: Auto	-Baud Enable I	oit				
	1 = Enables I cleared ir 0 = Baud rate	baud rate meas hardware upo e measurement	surement on th n completion is disabled or	e next characte completed	er – requires re	ception of a Sy	nc field (55h);
bit 4	URXINV: UAF	RTx Receive Pc	larity Inversion	ı bit			
	1 = UxRX Idle 0 = UxRX Idle	e state is '0' state is '1'					
Note 1:	If UARTEN = 1, 1 more information	the peripheral in , see Section ²	nputs and outp 11.5 "Peripher	uts must be cor al Pin Select (nfigured to an a PPS) ".	vailable RPn/R	PIn pin. For

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 3
	0 = The Data Source 2 signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 signal is enabled for Gate 3
	0 = The Data Source 1 signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

FIGURE 24-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0
bit 15	•	•		•		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7							bit 0
Legend:	1.11	C = Clearable	bit		nented bit, read	as '0'	
R = Readable	bit		DIt	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: $A/D C$ 1 = $A/D Conv$	perating Mode erter is operatio	bit ng				
bit 14		ted: Pead as '	،'				
bit 13		Stop in Idle M	, nde hit				
Sit To	1 = Discontinu	ues module opera	eration when d	evice enters Idl	e mode		
hit 12	DMARM. Exte	ended DMA Bu	ffer Mode Sele	act hit(1)			
SICIL	1 = Extended	Buffer mode: E	Buffer address	is defined by th	e DMADSTn r	egister	~
hit 11		anded DMA/Bu	ffer Enable hit			AD 100114 \$2.0	-
Sit II	1 = Extended	DMA and buffe	er features are	enabled			
bit 10	MODE12: A/) 12-Bit Operat	ion Mode bit				
2	1 = 12-bit A/D 0 = 10-bit A/D	operation					
bit 9-8	FORM<1:0>: Data Output Format bits (see formats following)						
	11 = Fractiona	al result, signed	d, left justified		0,		
	10 = Absolute	fractional resu	lt, unsigned, le	eft justified			
	01 = Decimal	result, signed, decimal result	right justified	ht iustified			
bit 7-4	SSRC<3:0>:	Sample Clock	source Select	hits			
Sit 1	0000 = SAMF	P is cleared by	software	bito			
	0001 = INTO	,					
	0010 = Timer	3 L trigger					
	0101 = Timer1 (will not trigger during Sleep mode)						
	0110 = Timer1 (may trigger during Sleep mode)						
h:+ 0	0111 = Auto-(Convert mode	.,				
DIL O		ample Auto Ot) art bit				
	1 = Sampling	begins immedi	ately after last	conversion SA	MP bit is auto	-set	
	0 = Sampling	begins when S	AMP bit is mai	nually set		001	
		-		-			

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 12-8	CHONB<2:0>: Sample B Channel 0 Negative Input Select bits 1xx = Unimplemented 01x = Unimplemented 001 = Unimplemented 000 = AVss						
	000 = AVss CH0SB-4:0>: Sample B Channel 0 Positive Input Select bits 1110 = AVp0 ⁽¹⁾ 11101 = AVss ⁽¹⁾ 1100 = Band Gap Reference (VBG) ⁽¹⁾ 10000-11011 = Reserved 01111 = No external channels connected (used for CTMU) 01101 = AN13 01100 = AN12 01011 = AN11 01000 = AN12 01010 = AN10 01101 = AN5 00111 = AN5 00101 = AN4 00101 = AN4 00101 = AN4 00111 = AN5 00101 = AN4						
bit 7-5	CH0NA<2:0>	Sample A Ch	annel 0 Negat	ive Input Select	bits		
	Same definiti	ons as for CHO	NB<2:0>.				
bit 4-0	CH0SA<4:0>	: Sample A Ch	annel 0 Positiv	e Input Select I	bits		
	Same definiti	ons as for CHO	SB<4:0>.				

REGISTER 24-6: AD1CHS: A/D SAMPLE SELECT REGISTER

Note 1: These input channels do not have corresponding memory-mapped result buffers.

REGISTER 27-3:	CTMUCON2L: CTMU CONTROL REGISTER 2 LOW
----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	_	—	—	—	
bit 15				·	·	•	bit 8	
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	IRSTEN	_	DSCHS2	DSCHS1	DSCHS0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4	IRSTEN: CTMU Current Source Reset Enable bit							
	1 = Signal selected by DSCHS<2:0> bits or IDISSEN control bit will reset CTMU edge detect logic							
	0 = CTMU edge detect logic will not occur							
bit 3	Unimplemented: Read as '0'							
bit 2-0	DSCHS<2:0>: Discharge Source Select Bits							
	111 = CLC2	out						
110 = CLC1 out								
	101 = Disabled 100 = A/D end of conversion 011 = MCCP3 auxiliary output MOODS							
	010 = MCCP2 auxiliary output							

000 = Disabled

REGISTER 29-3: FSIGN CO	NFIGURATION REGISTER
-------------------------	----------------------

01	0-1	U-1	U-1	U-1	U-1	U-1	
—	—	_	—		—		
						bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—		—		_		
						bit 8	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—		—	—	
						bit 0	
	PO = Program Once bit		r = Reserved bit				
pit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
		— — U-1 U-1 — — U-1 U-1 — — PO = Program Dit W = Writable I DR '1' = Bit is set	U-1U-1U-1U-1U-1U-1OF = Program Once bitbitW = Writable bitOR'1' = Bit is set	- - - U-1 U-1 U-1 - - - OP Program Once bit r = Reserved I Dit W = Writable bit U = Unimplem OR '1' = Bit is set '0' = Bit is clear	- - - - U-1 U-1 U-1 U-1 U-1 - - - - - U-1 U-1 U-1 U-1 U-1 - - - - - U-1 U-1 U-1 U-1 U-1 - - - - - PO = Program Once bit r = Reserved bit U = Unimplemented bit, read DR '1' = Bit is set '0' = Bit is cleared	- - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - PO = Program Once bit r = Reserved bit V V V bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn	

bit 23-16 Unimplemented: Read as '1'

bit 15 Reserved: Maintain as '0'

bit 14-0 Unimplemented: Read as '1'

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support