

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga702t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Address	All Resets	File Name	Address	All Resets
DMA (CONTINUED)			DMA (CONTINUED)		
DMAINT5	0500	0000	DMADST5	0504	0000
DMASRC5	0502	0000	DMACNT5	0506	0001

TABLE 4-9: SFR MAP: 0500h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

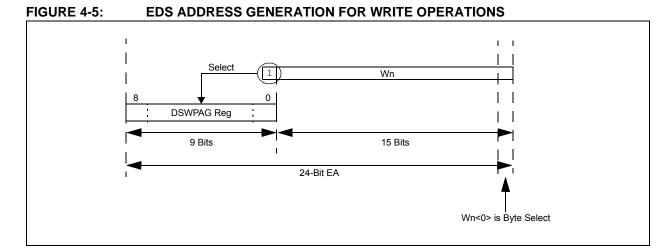
TABLE 4-10: SFR MAP: 0600h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
I/O			PORTB (CONTINUE	D)	
PADCON	065E	0000	ANSB	067E	FFFF
IOCSTAT	0660	0000	IOCPB	0680	0000
PORTA			IOCNB	0682	0000
TRISA	0662	FFFF	IOCFB	0684	0000
PORTA	0664	0000	IOCPUB	0686	0000
LATA	0666	0000	IOCPDB	0688	0000
ODCA	0668	0000	PORTC		
ANSA	066A	FFFF	TRISC	068A	FFFF
IOCPA	066C	0000	PORTC	068C	0000
IOCNA	066E	0000	LATC	068E	0000
IOCFA	0670	0000	ODCC	0690	0000
IOCPUA	0672	0000	ANSC	0692	FFFF
IOCPDA	0674	0000	IOCPC	0694	0000
PORTB			IOCNC	0696	0000
TRISB	0676	FFFF	IOCFC	0698	0000
PORTB	0678	0000	IOCPUC	069A	0000
LATB	067A	0000	IOCPDC	069C	0000
ODCB	067C	0000			

Legend: x = undefined. Reset values are shown in hexadecimal.

4.2.5.2 Data Write into EDS

In order to write data to EDS, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register, and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register, assigned with the offset address, and the accessed location can be written.


Figure 4-5 illustrates how the EDS address is generated for write operations.

When the MSbs of EA are '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double word to EDS.

The Data Space Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to

0x8000. While developing code in assembly, care must be taken to update the Data Space Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
 - 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example: BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
 - **3:** Use the DSRPAG register while performing Read/Modify/Write operations.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
          #0x0002, w0
   mov
          w0, DSWPAG
                         ;page 2 is selected for write
   mov
          #0x0800, w1
                         ;select the location (0x800) to be written
   mov
          w1, #15
                         ;set the MSB of the base address, enable EDS mode
   bset
;Write a byte to the selected location
   mov #0x00A5, w2
   mov
          #0x003C, w3
   mov.b w2, [w1++]
                        ;write Low byte
   mov.b w3, [w1++]
                        ;write High byte
;Write a word to the selected location
          #0x1234, w2
   mov
                         ;
          w2, [w1]
   mov
                         ;
;Write a Double - word to the selected location
          #0x1122, w2
   mov
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

R/S-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	R/W-0	r-0	r-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL	—	—	—	_
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	_			NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit
Legend:		S = Settable	bit	HC = Hardware	Clearable bit	r = Reserved b	oit
R = Readable	e bit	W = Writable	bit	'0' = Bit is cleare	ed	x = Bit is unkn	own
-n = Value at	POR	'1' = Bit is se	t	U = Unimpleme	nted bit, read as	s 'O'	
HSC = Hardv	vare Settable	/Clearable bit					
bit 15	WR: Write C						
	cleared	by hardware of	nce the oper	or erase operat ation is complete plete and inactive	-	on is self-timed	and the bit
bit 14	cleared 0 = Program	by hardware of	nce the oper		-	on is self-timed	and the bit
bit 14	cleared 0 = Program WREN: Writ 1 = Enables	by hardware o n or erase ope e Enable bit ⁽¹⁾ s Flash prograr	nce the oper ration is com n/erase opera	ation is complete plete and inactive ations	-	on is self-timed	and the bit
bit 14	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits	by hardware o n or erase ope e Enable bit ⁽¹⁾ s Flash program Flash program	nce the oper ration is com n/erase oper /erase opera	ation is complete plete and inactive ations tions	-	on is self-timed	and the bit
bit 14 bit 13	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits WRERR: W	by hardware o n or erase ope e Enable bit ⁽¹⁾ s Flash program Flash program rite Sequence	nce the oper ration is com n/erase opera /erase opera Error Flag bit	ation is complete plete and inactive ations tions (1)	;		
	cleared 0 = Program WREN: Writi 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa	by hardware on n or erase ope the Enable bit ⁽¹⁾ the Flash program Flash program rite Sequence proper program tically on any s	nce the oper ration is com n/erase opera /erase opera Error Flag bit n or erase set attempt of	ation is complete plete and inactive ations (1) sequence attem the WR bit)	pt, or terminati		
bit 13	cleared 0 = Program WREN: Writh 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro	by hardware o n or erase ope e Enable bit ⁽¹⁾ s Flash program Flash program rite Sequence proper program tically on any s gram or erase	nce the oper ration is com n/erase opera /erase opera Error Flag bit n or erase et attempt of operation co	ation is complete plete and inactive ations tions (1) sequence attem	pt, or terminati		
	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1	by hardware of n or erase ope e Enable bit ⁽¹⁾ s Flash program Flash program rite Sequence proper program tically on any s gram or erase	nce the oper ration is com /erase opera /erase opera Error Flag bit n or erase tet attempt of operation co le bit	ation is complete plete and inactive ations (1) sequence attem the WR bit) mpleted normally	pt, or terminati	ion has occurr	
bit 13	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: N 1 = Remove	by hardware of n or erase ope e Enable bit ⁽¹⁾ s Flash program rite Sequence proper program tically on any s gram or erase NVM Stop in Id es power from	nce the oper ration is com /erase opera /erase opera Error Flag bit n or erase set attempt of operation co le bit the program	ation is complete plete and inactive ations (1) sequence attem the WR bit)	pt, or terminati	ion has occurr mode	
bit 13	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1 1 = Remove 0 = Powers	by hardware of n or erase ope e Enable bit ⁽¹⁾ s Flash program rite Sequence proper program tically on any s gram or erase NVM Stop in Id es power from	nce the oper ration is com /erase opera /erase opera Error Flag bit n or erase set attempt of operation co le bit the program	ation is complete plete and inactive ations (1) sequence attem the WR bit) mpleted normally memory when de	pt, or terminati	ion has occurr mode	
bit 13 bit 12	cleared 0 = Program WREN: Writt 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1 1 = Removed 0 = Powers Reserved: 1 Unimpleme	by hardware on n or erase ope the Enable bit ⁽¹⁾ is Flash program Flash program rite Sequence proper program tically on any s ogram or erase NVM Stop in Id es power from program mem Maintain as '0' nted: Read as	nce the oper ration is com /erase opera Error Flag bit n or erase set attempt of operation co le bit the program ory in Standb	ation is complete plete and inactive ations (1) sequence attem the WR bit) mpleted normally memory when de by mode when the	pt, or terminati	ion has occurr mode	
bit 13 bit 12 bit 11-10	cleared 0 = Program WREN: Writ 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1 1 = Remove 0 = Powers Reserved: 1 Unimpleme NVMOP<3:0	by hardware on n or erase ope the Enable bit ⁽¹⁾ is Flash program Flash program rite Sequence proper program tically on any sigram or erase NVM Stop in Id es power from program mem Maintain as '0' nted: Read as D : NVM Operation	nce the oper ration is com n/erase opera /erase opera Error Flag bit n or erase et attempt of operation co le bit the program ory in Standb '0' ation Select b	ation is complete plete and inactive ations tions (1) sequence attem the WR bit) mpleted normally memory when de by mode when the	pt, or terminati vice enters Idle e device enters I	ion has occurr mode Idle mode	red (bit is s
bit 13 bit 12 bit 11-10 bit 9-4	cleared 0 = Program WREN: Writt 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1 1 = Remove 0 = Powers Reserved: 1 Unimpleme NVMOP<3:0 1110 = Chip	by hardware on n or erase ope the Enable bit ⁽¹⁾ is Flash program Flash program rite Sequence proper program tically on any s gram or erase NVM Stop in Id es power from program mem Maintain as '0' nted: Read as D : NVM Opera o erases user m	nce the oper ration is com n/erase opera /erase opera Error Flag bit n or erase et attempt of operation co le bit the program ory in Standb '0' ation Select b	ation is complete plete and inactive ations (1) sequence attem the WR bit) mpleted normally memory when de by mode when the	pt, or terminati vice enters Idle e device enters I	ion has occurr mode Idle mode	red (bit is s
bit 13 bit 12 bit 11-10 bit 9-4	cleared 0 = Program WREN: Writt 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: 1 1 = Remove 0 = Powers Reserved: 1 Unimpleme NVMOP<3:0 1110 = Chip 0100 = Unu	by hardware on n or erase ope the Enable bit ⁽¹⁾ is Flash program Flash program rite Sequence proper program tically on any s gram or erase NVM Stop in Id es power from program mem Maintain as '0' nted: Read as D : NVM Opera o erases user m sed	nce the oper ration is com /erase opera /erase opera Error Flag bit n or erase set attempt of operation co le bit the program ory in Standb '0' ation Select b nemory (does	ation is complete plete and inactive ations tions (1) sequence attem the WR bit) mpleted normally memory when de by mode when the bits ^(1,2) s not erase Devic	pt, or terminati vice enters Idle e device enters I	ion has occurr mode Idle mode	red (bit is s
bit 13 bit 12 bit 11-10 bit 9-4	cleared 0 = Program WREN: Writt 1 = Enables 0 = Inhibits WRERR: W 1 = An imp automa 0 = The pro NVMSIDL: N 1 = Remove 0 = Powers Reserved: N Unimpleme NVMOP<3:0 1110 = Chip 0100 = Unu 0011 = Eras 0100 = Row	by hardware on n or erase ope the Enable bit ⁽¹⁾ is Flash program Flash program rite Sequence proper program tically on any s gram or erase NVM Stop in Id es power from program mem Maintain as '0' nted: Read as D : NVM Opera o erases user m sed	nce the oper ration is com /erase opera /erase opera Error Flag bit n or erase tet attempt of operation co le bit the program ory in Standb '0' ation Select b nemory (does program or ex operation	ation is complete plete and inactive ations tions (1) sequence attem the WR bit) mpleted normally memory when de by mode when the bits ^(1,2) s not erase Devic	pt, or terminati vice enters Idle e device enters I	ion has occurr mode Idle mode	red (bit is s

REGISTER 6-1. NVMCON: ELASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B MOV MOV.B MOV	#0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY	; Write the 0x55 key ; ; Write the 0xAA key
BSET NOP NOP BTSC BRA	NVMCON, #WR NVMCON, #15 \$-2	; Start the programming sequence ; Required delays ; and wait for it to be ; completed

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽⁴⁾
	1 = WDT is enabled
	0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾
	1 = WDT time-out has occurred0 = WDT time-out has not occurred
bit 3	SLEEP: Wake from Sleep Flag bit ⁽¹⁾
	1 = Device has been in Sleep mode0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit ⁽¹⁾
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = A Brown-out Reset has occurred (also set after a Power-on Reset)0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred
Noto	1. All of the Depart status hits may be set or cleared in software. Setting one of

- 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect. Retention mode preserves the SRAM contents during Sleep.
- **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
- 4: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- 5: The BOREN<1:0> (FPOR<1:0>) Configuration bits must be set to '01' in order for SBOREN to have an effect.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

REGISTER 8-1:	SR: ALU STATUS REGISTER ⁽¹⁾
---------------	--

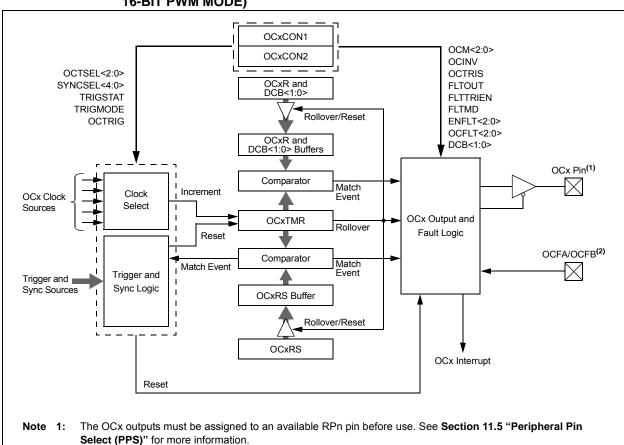
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—		—	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

011	= CPU Interrupt Priority Level is 6 (14) = CPU Interrupt Priority Level is 5 (13) = CPU Interrupt Priority Level is 4 (12) = CPU Interrupt Priority Level is 3 (11)
010 001	 CPU Interrupt Priority Level is 3 (11) CPU Interrupt Priority Level is 2 (10) CPU Interrupt Priority Level is 1 (9) CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.


- 2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 9-8: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ROTE	RIM<0:7>					
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
ROTRIM8	—	—	—	—	—	—	—		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-7	ROTRIM<0:8	B>: REFO Trim b	oits						
				the RODIVx valu the RODIVx val		period of the RE	FO clock.		
	000000001	= 1/512 (0.0019	53125 divisoi	r added to the R	ODIVx value)				
	00000010	= 2/512 (0.0039	0625 divisor	added to the RO	DIVx value)				
	•								
	•								
	100000000	= 256/512 (0.50	00 divisor ad	ded to the RODI	Vx value)				
	•								
	•								
	111111110	- 510/512 (0.00	600375 divis	or added to the F		`			

111111110 = 510/512 (0.99609375 divisor added to the RODIVx value) 111111111 = 511/512 (0.998046875 divisor added to the RODIVx value)

bit 6-0 Unimplemented: Read as '0'

FIGURE 15-2: OUTPUT COMPARE x BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

15.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 15-1.

EQUATION 15-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1 \bullet TCY \bullet (Timer Prescale Value)]$

Where: PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

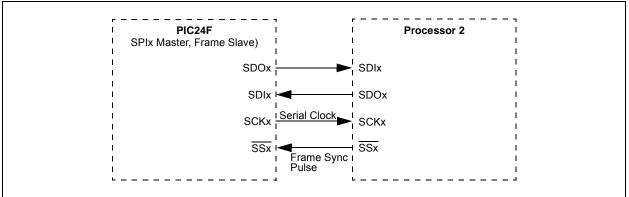
Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7, written into the PRy register, will yield a period consisting of 8 time base cycles.

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 8		CKE: SPIx Clock Edge Select bit ⁽¹⁾
		1 = Transmit happens on transition from active clock state to Idle clock state
		0 = Transmit happens on transition from Idle clock state to active clock state
bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6		CKP: SPIx Clock Polarity Select bit
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode 0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module
bit 3		DISSCK: Disable SCKx Output Port bit
		 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0		ENHBUF: Enhanced Buffer Mode Enable bit
		 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note	1:	When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1. SSEN is not used.

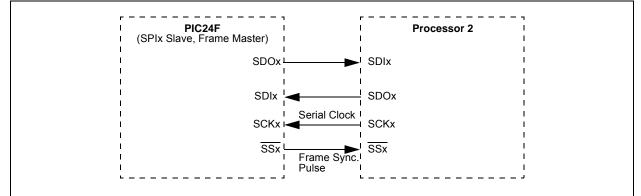
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW


U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC
_	—	_	FRMERR	SPIBUSY	—	—	SPITUR ⁽¹⁾
bit 15							bit 8

R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC
SRMT	SPIROV	SPIRBE		SPITBE	—	SPITBF	SPIRBF
bit 7 bit							bit 0

Legend:	C = Clearable bit	HS = Hardware Settable bit	x = Bit is unknown	
R = Readable bit	W = Writable bit	'0' = Bit is cleared	HSC = Hardware Settable/Clearable bit	
-n = Value at POR	'1' = Bit is set	U = Unimplemented bit, read as '0'		


bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERR: SPIx Frame Error Status bit
	1 = Frame error is detected0 = No frame error is detected
bit 11	SPIBUSY: SPIx Activity Status bit
	1 = Module is currently busy with some transactions0 = No ongoing transactions (at time of read)
bit 10-9	Unimplemented: Read as '0'
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾
	 1 = Transmit buffer has encountered a Transmit Underrun condition 0 = Transmit buffer does not have a Transmit Underrun condition
bit 7	SRMT: Shift Register Empty Status bit
	 1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit) 0 = Current or pending transactions
bit 6	SPIROV: SPIx Receive Overflow Status bit
	 1 = A new byte/half-word/word has been completely received when the SPIxRXB is full 0 = No overflow
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit
	1 = RX buffer is empty 0 = RX buffer is not empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 6'b000000.
bit 4	Unimplemented: Read as '0'
bit 3	SPITBE: SPIx Transmit Buffer Empty Status bit
	1 = SPIxTXB is empty 0 = SPIxTXB is not empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB.
	Enhanced Buffer Mode: Indicates TXELM<5:0> = 6'b000000.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

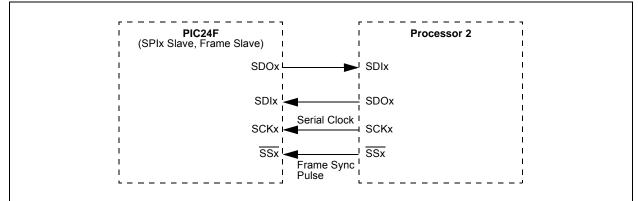


FIGURE 17-5: SPIX MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 17-7: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

 $Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$ Where: FPB is the Peripheral Bus Clock Frequency.

REGISTER 20-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
			BASE	<23:16>			
bit 15							bit 8
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
BASE15	_	—		BASE11	—	_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	
bit 15-7	BASE<23:1	5>: Chip Select >	Base Addres	ss bits ⁽¹⁾			
hit 6.4 Inimplemented: Read as '0'							

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE11: Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 8080h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be FFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV<	15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV	<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

Note 1: A write to this register is only allowed when WRLOCK = 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCSAMP7	PWCSAMP6	PWCSAMP5	PWCSAMP4	PWCSAMP3	PWCSAMP2	PWCSAMP1	PWCSAMP0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCSTAB7	PWCSTAB6	PWCSTAB5	PWCSTAB4	PWCSTAB3	PWCSTAB2	PWCSTAB1	PWCSTAB0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15-8 bit 7-0	<pre>11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPwccLk clock periods</pre>						

REGISTER 21-5: RTCCON3L: RTCC CONTROL REGISTER 3 (LOW)

Note 1: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0	
bit 15		•	•	·	•		bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 7		•		•	•		bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-12	HRTEN<1:0>	: Binary Codeo	d Decimal Valu	e of Hours '10'	Digit bits			
	Contains a va	lue from 0 to 2						
bit 11-8	HRONE<3:0>	Binary Code	d Decimal Valu	e of Hours '1' I	Digit bits			
	Contains a va	lue from 0 to 9						
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minutes '1	0' Digit bits			
	Contains a value from 0 to 5.							
bit 3-0	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minutes 'a	1' Digit bits			
	Contains a value from 0 to 9.							
Note 1: If	TSAEN = 0, bits	s<15:0> can be	e used for persi	istence storage	throughout a r	on-Power-on F	Reset (MCLR	

REGISTER 21-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)⁽¹⁾

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS				Standard Operating Conditions:2.0V to 3.6V (unless otherwise $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Operati	ing Volta	ge						
DC10	Vdd	Supply Voltage	2.0	—	3.6	V	BOR is disabled	
			VBOR	_	3.6	V	BOR is enabled	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	—		V	VBOR is used only if BOR is enabled (BOREN = 1)	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_		V	(Note 2)	
DC17A	SVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	1V/20 ms	_	1V/10 µS	Sec	(Note 2, Note 4)	
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)	

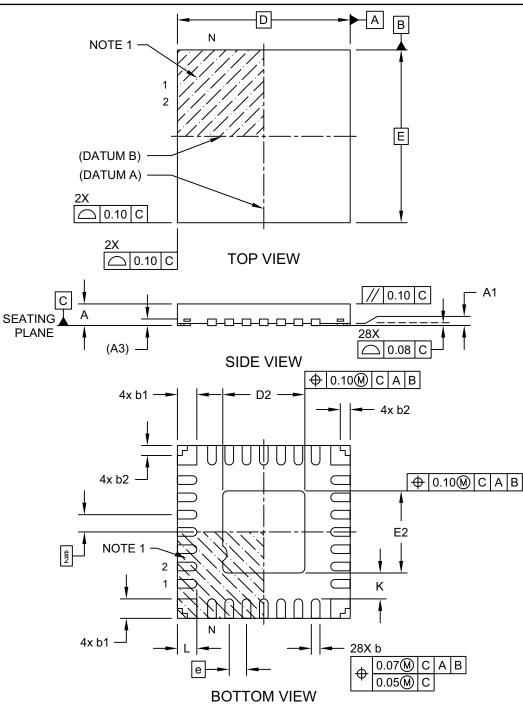
Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

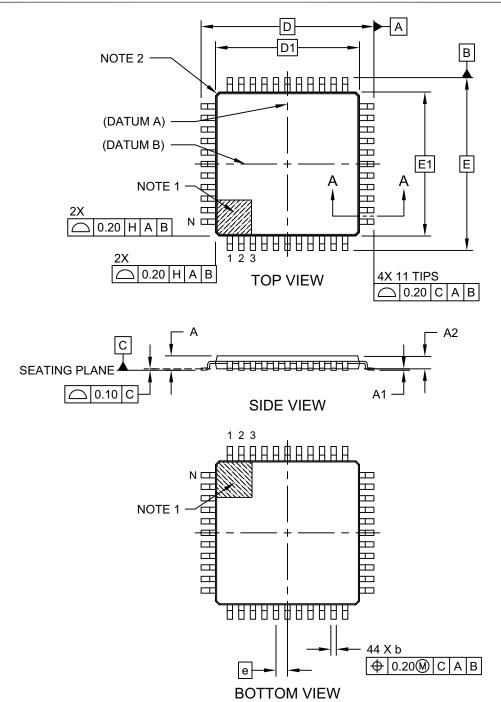
3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	VDD	Conditions				
Operating Current (IDD) ⁽²⁾										
DC19	230	365	μA	-40°C to +85°C	2.0V	0.5 MIPS, Fosc = 1 MHz				
	250	365	μΑ	-40°C to +85°C	3.3V					
DC20	430	640	μA	-40°C to +85°C	2.0V	1 MIPS,				
	440	640	μΑ	-40°C to +85°C	3.3V	Fosc = 2 MHz				
DC23	1.5	2.4	mA	-40°C to +85°C	2.0V	4 MIPS, Fosc = 8 MHz				
	1.65	2.4	mA	-40°C to +85°C	3.3V					
DC24	6.1	7.7	mA	-40°C to +85°C	2.0V	16 MIPS, Fosc = 32 MHz				
	6.3	7.7	mA	-40°C to +85°C	3.3V					
DC31	43	130	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),				
	46	130	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz				
DC32	1.6	2.5	mA	-40°C to +85°C	2.0V	FRC (4 MIPS), Fosc = 8 MHz				
	1.65	2.5	mA	-40°C to +85°C	3.3V					


TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

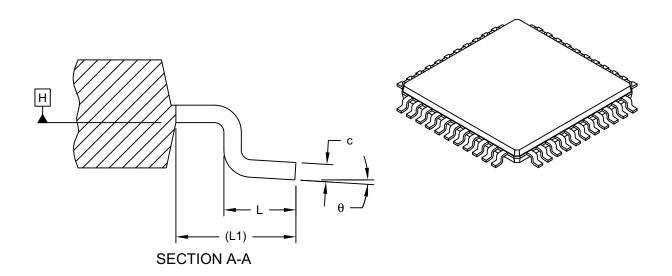
Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.


2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as outputs and driving low. MCLR = VDD; WDT and FSCM are disabled. CPU, program memory and data memory are operational. No peripheral modules are operating or being clocked (defined PMDx bits are all '1's). JTAG interface is disabled.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-333-M6 Rev B Sheet 1 of 2


44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N	44			
Lead Pitch	е	0.80 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2