

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

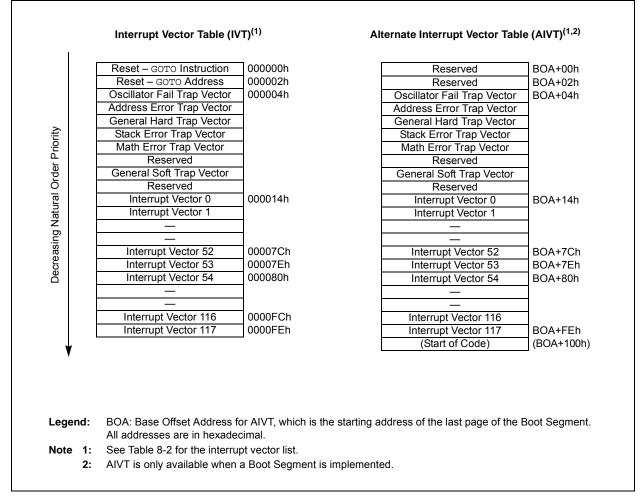
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga704-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24FJ64GA702	PIC24FJ128GA702	PIC24FJ256GA702		
Operating Frequency		DC – 32 MHz			
Program Memory (bytes)	64K	128K	256K		
Program Memory (instruction words, 24 bits)	22,528	45,056	88,064		
Data Memory (bytes)		16K			
Interrupt Sources (soft vectors/NMI traps)		124			
I/O Ports		Ports A, B			
Total I/O Pins		22			
Remappable Pins		18 (18 I/Os, 0 input only)			
DMA		1 6-channel			
16-Bit Timers		3(1)			
Real-Time Clock and Calendar (RTCC)		Yes			
Cyclic Redundancy Check (CRC)		Yes			
Input Capture Channels		3 ⁽¹⁾			
Output Compare/PWM Channels		3(1)			
Input Change Notification Interrupt		21 (remappable pins)			
Serial Communications:					
UART		2(1)			
SPI (3-wire/4-wire)		3(1)			
I ² C		2			
Configurable Logic Cell (CLC)		2(1)			
Parallel Communications (EPMP/PSP)	No				
Capture/Compare/PWM/Timer		4 Multiple CCPs			
Modules		1 (6-output), 3 (2-output)			
JTAG Boundary Scan		Yes			
10/12-Bit Analog-to-Digital Converter (A/D) Module (input channels)		10			
Analog Comparators		3			
CTMU Interface		Yes			
Universal Serial Bus Controller		No			
Resets (and Delays)	Core POR, VDD POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)				
Instruction Set	76 Base Instru	uctions, Multiple Addressing M	lode Variations		
Packages	28-Pin (QFN, UQFN, SOIC, SSOP an	d SPDIP		

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJXXXGA702: 28-PIN DEVICES

Note 1: Some peripherals are accessible through remappable pins.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLES

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source	
0	000004h	BOA+04h	Oscillator Failure	
1	000006h	BOA+06h	Address Error	
2	000008h	BOA+08h	General Hardware Error	
3	00000Ah	BOA+0Ah	Stack Error	
4	00000Ch	BOA+0Ch	Math Error	
5	00000Eh	BOA+0Eh	Reserved	
6	000010h	BOA+10h	General Software Error	
7	000012h	BOA+12h	Reserved	

Legend: BOA = Base Offset Address for AIVT segment, which is the starting address of the last page of the Boot Segment.

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	-	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
—	—	—	_	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 **PSV:** Not used as part of the interrupt module

bit 1-0 Unimplemented: Read as '0'

Note 1: For complete register details, see Register 3-2.

2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
NSTDIS		—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		_	MATHERR	ADDRERR	STKERR	OSCFAIL	
bit 7							bit (
Legend:							
R = Readab		W = Writable		•	ented bit, read		
-n = Value a	t POR	'1' = Bit is se	et	'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	1 = Interrupt 0 = Interrupt	errupt Nesting nesting is dis nesting is en	abled abled				
bit 14-5	-	nted: Read as					
bit 4	1 = Math err	Math Error St or trap has oc or trap has nc	curred				
bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred						
bit 2	STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred						
bit 1	1 = Oscillato	r failure trap h	re Trap Status bi nas occurred nas not occurred	it			
bit 0	Unimpleme	nted: Read as	s '0'				

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		T3MD	T2MD	T1MD	_	_	
oit 15				1			bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADC1MD
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	-	3 Module Disat					
	1 = Module is						
	-	ower and clock		enabled			
bit 12	-	2 Module Disat	ole bit				
	1 = Module is						
		ower and clock		enabled			
bit 11	-	1 Module Disat	ble bit				
	1 = Module is	s disabled		anabled			
bit 10-8	-	ted: Read as '					
bit 7	-	1 Module Disat					
	1 = Module is						
		ower and clock	sources are	enabled			
bit 6		2 Module Disa					
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are	enabled			
bit 5	U1MD: UART	1 Module Disa	ble bit				
	1 = Module is						
	-	ower and clock		enabled			
bit 4	SPI2MD: SPI	2 Module Disal	ole bit				
	1 = Module is						
		ower and clock		enabled			
bit 3		1 Module Disal	DIE DIT				
	1 = Module is	s disabled		anabled			
bit 2-1		ted: Read as '					
bit 0	-	D Converter M		hit			
	1 = Module is	s disabled					

REGISTER 11-10: IOCFx: INTERRUPT-ON-CHANGE FLAG x REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCF	Fx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOC	Fx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 **IOCFx<15:0>:** Interrupt-on-Change Flag x bits

- 1 = An enabled change was detected on the associated pin; set when IOCPx = 1 and a positive edge was detected on the IOCx pin, or when IOCNx = 1 and a negative edge was detected on the IOCx pin
 0 = No change was detected or the user cleared the detected change
- **Note 1:** It is not possible to set the IOCFx register bits with software writes (as this would require the addition of significant logic). To test IOC interrupts, it is recommended to enable the IOC functionality on one or more GPIO pins and then use the corresponding LATx register bit(s) to trigger an IOC interrupt.
 - 2: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-11: IOCPUx: INTERRUPT-ON-CHANGE PULL-UP ENABLE x REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			IOCPU	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IOCPL	Jx<7:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 IOCPUx<15:0>: Interrupt-on-Change Pull-up Enable x bits

1 = Pull-up is enabled

0 = Pull-up is disabled

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15					•		bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-26: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0

REGISTER 11-36: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: RP9 Output Pin Mapping bits

- Peripheral Output Number n is assigned to pin, RP9 (see Table 11-7 for peripheral function numbers).bit 7-6Unimplemented: Read as '0'bit 5-0RP8R<5:0>: RP8 Output Pin Mapping bits
 - Peripheral Output Number n is assigned to pin, RP8 (see Table 11-7 for peripheral function numbers).

REGISTER 11-37: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15					•		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP10 (see Table 11-7 for peripheral function numbers).

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8
U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

19.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate when BRGH = 0.

EQUATION 19-1: UARTX BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

 $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$
Note 1: FCY denotes the instruction cycle
clock frequency (FOSC/2).
2: Based on FCY = FOSC/2; Doze mo

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 19-2 shows the formula for computation of the baud rate when BRGH = 1.

EQUATION 19-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - 2: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG Value: **UxBRG** = ((FCY/Desired Baud Rate)/16) - 1**UxBRG** = ((400000/9600)/16) - 1UxBRG = 25 Calculated Baud Rate = 4000000/(16(25+1))= 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600 = 0.16%Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)0 = Standard Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
- 11 = 9-bit data, no parity10 = 8-bit data, odd parity01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	U-0									
IOCON	—	—	—	—	—	—				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	—	—	—	—	PMPTTL			
bit 7		•	•	•			bit 0			
Legend:										

REGISTER 20-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IOCON: Used for Non-PMP functionality

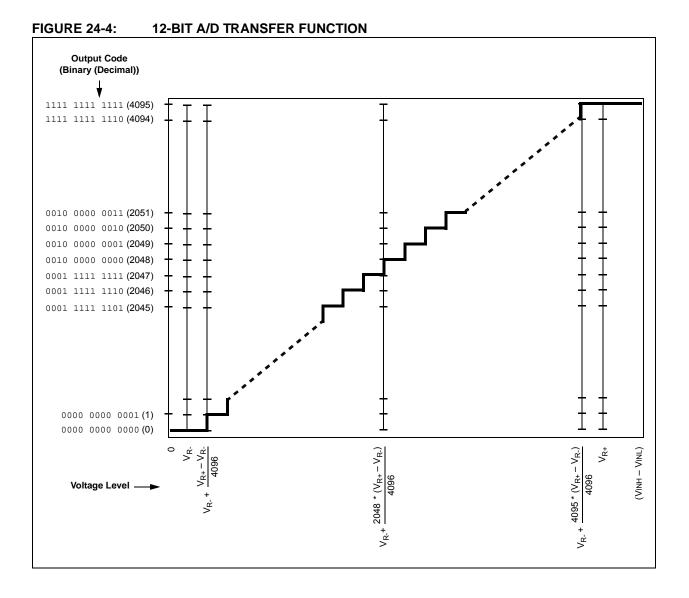
bit 14-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15		•			•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7		•	•	•	•		bit (
-							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	Unimplemen	ted: Read as '	o'				
bit 13-12	HRTEN<1:0>	: Binary Codeo	I Decimal Valu	e of Hours '10'	Digit bits		
	Contains a va	lue from 0 to 2					
bit 11-8	HRONE<3:0>	Binary Code	d Decimal Valu	e of Hours '1' [Digit bits		
	Contains a va	lue from 0 to 9					
bit 7	Unimplemen	ted: Read as '	o'				
bit 6-4	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minutes '1	0' Digit bits		
	Contains a value from 0 to 5.						
bit 3-0	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minutes 'a	1' Digit bits		
		lue from 0 to 9			-		
Note 1: If	TSAEN = 0, bits	s<15:0> can be	used for persi	istence storage	throughout a r	10n-Power-on F	Reset (MCLR

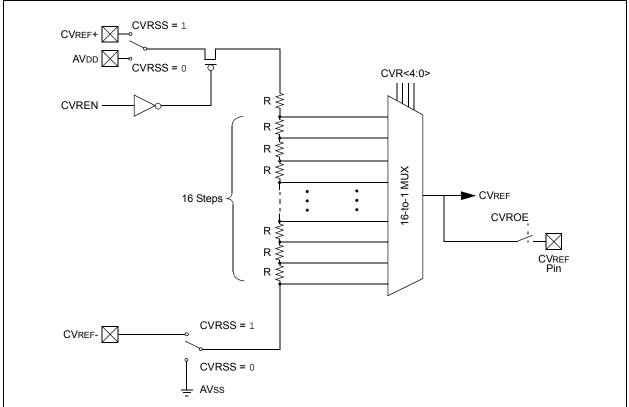
REGISTER 21-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)⁽¹⁾

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

- bit 1SAMP: A/D Sample Enable bit1 = A/D Sample-and-Hold amplifiers are sampling0 = A/D Sample-and-Hold amplifiers are holdingbit 0DONE: A/D Conversion Status bit
 - 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

26.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

26.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 26-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The primary difference between the ranges is the size of the steps selected by the CVREF Value Selection bits (CVR<4:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

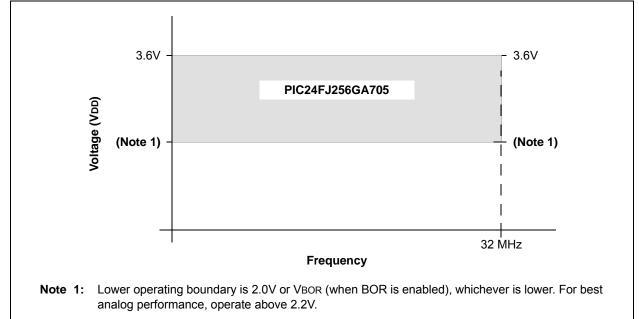


FIGURE 26-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 29-6: FWDT CONFIGURATION REGISTER (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16
 - 0011 = 1:8 0010 = 1:4
 - 0001 = 1:2
 - 0000 = 1:1

32.1 DC Characteristics

FIGURE 32-1: PIC24FJ256GA705 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 32-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ256GA705:					
Operating Junction Temperature Range	TJ	-40	—	+85	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 32-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 6x6 mm 28-Pin QFN	θJA			°C/W	(Note 1)
Package Thermal Resistance, 4x4x0.6 mm 28-Pin UQFN	θJA			°C/W	(Note 1)
Package Thermal Resistance, 7.50 mm 28-Pin SOIC	θJA		_	°C/W	(Note 1)
Package Thermal Resistance, 5.30 mm 28-Pin SSOP	θJA		_	°C/W	(Note 1)
Package Thermal Resistance, 300 mil 28-Pin SPDIP	θJA		_	°C/W	(Note 1)
Package Thermal Resistance, 6x6x0.5 mm 48-Pin UQFN	θJA	33.7	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm 44-Pin TQFP	θJA	28	_	°C/W	(Note 1)
Package Thermal Resistance, 7x7x1 mm 48-Pin TQFP	θJA	39.3	—	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

AC CH	ARACTER	ISTICS	Standard Operating Conditions			: 2.0V to 3.6V (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Devid	e Supp	ly			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2		Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V		
			Refere	nce Inp	uts			
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	VREF	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V		
		•	Anal	og Input	ts			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V		
AD12	Vinl	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/3	V		
AD13		Leakage Current	—	±1.0	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$	
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		2.5K	Ω	10-bit	
		·	A/D /	Accurac	y		·	
AD20B	Nr	Resolution	—	12	—	bits		
AD21B	INL	Integral Nonlinearity	—	±1	< ±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD22B	DNL	Differential Nonlinearity	—	—	< ±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD23B	Gerr	Gain Error	—	±1	±4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25B		Monotonicity ⁽¹⁾	_		_		Guaranteed	

TABLE 32-24: A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.

APPENDIX A: REVISION HISTORY

Revision A (March 2016)

Original data sheet for the PIC24FJ256GA705 family of devices.

Revision B (October 2016)

This revision incorporates the following updates:

- · Sections:
 - Removes Section 9.5 "FRC Active Clock Tuning".
 - Updates the Absolute Maximum Ratings in Section 32.0 "Electrical Characteristics".
 - Changes the 48-Lead QFN (7x7 mm) to 48-Lead UQFN (6x6 mm) in Section 33.0 "Packaging Information".
- Registers:
 - Updates Register 9-1, Register 9-3, Register 9-6, Register 16-5 and Register 16-6.
- Tables:
 - Adds Table 11-3, Table 11-4 and Table 11-5.
 - Updates the GPIO column in the Peripheral Features table on Page 2.
 - Updates Table 1, Table 2, Table 3, Table 4, Table 5, Table 32-4, Table 32-5, Table 32-6, Table 32-7 and Table 32-25.
- Figures
 - Updates Figure 9-1.
- Changes to text and formatting were incorporated throughout the document.