

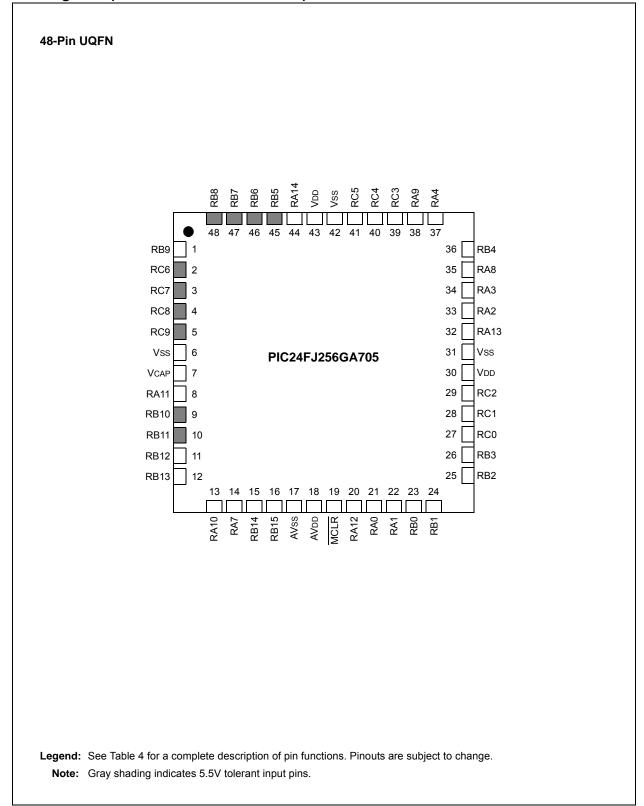
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga702-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA705 Devices)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ256GA705 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

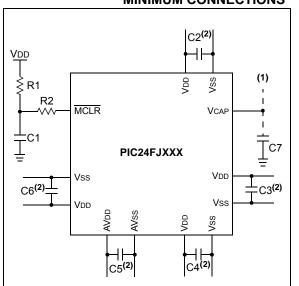
- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

 VCAP pin (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGCx/PGDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 μ F, 50V ceramic

C7: 10 µF, 16V or greater, ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of voltage regulator pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

6.0 FLASH PROGRAM MEMORY

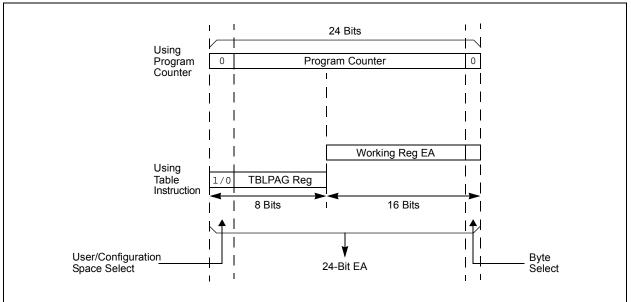
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in the this data sheet supersedes information in the FRM.

The PIC24FJ256GA705 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA705 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGCx and PGDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.

The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected; ECC double-bit errors result in a trap.


6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

TABLE 8-2: INTERRUPT VECTOR DETAILS

Interrupt Course	IRQ	IVT Address	Interrupt Bit Location			
Interrupt Source	#	IVI Address	Flag	Enable	Priority	
	Highest N	atural Order Pric	ority			
INT0 – External Interrupt 0	0	000014h	IFS0<0>	IEC0<0>	INT0Interrupt	
IC1 – Input Capture 1	1	000016h	IFS0<1>	IEC0<1>	IC1Interrupt	
OC1 – Output Compare 1	2	000018h	IFS0<2>	IEC0<2>	OC1Interrupt	
T1 – Timer1	3	00001Ah	IFS0<3>	IEC0<3>	T1Interrupt	
DMA0 – Direct Memory Access 0	4	00001Ch	IFS0<4>	IEC0<4>	DMA0Interrupt	
IC2 – Input Capture 2	5	00001Eh	IFS0<5>	IEC0<5>	IC2Interrupt	
OC2 – Output Compare 2	6	000020h	IFS0<6>	IEC0<6>	OC2Interrupt	
T2 – Timer2	7	000022h	IFS0<7>	IEC0<7>	T2Interrupt	
T3 – Timer3	8	000024h	IFS0<8>	IEC0<8>	T3Interrupt	
SPI1 – SPI1 General	9	000026h	IFS0<9>	IEC0<9>	SPI1Interrupt	
SPI1TX – SPI1 Transfer Done	10	000028h	IFS0<10>	IEC0<10>	SPI1TXInterrupt	
U1RX – UART1 Receiver	11	00002Ah	IFS0<11>	IEC0<11>	U1RXInterrupt	
U1TX – UART1 Transmitter	12	00002Ch	IFS0<12>	IEC0<12>	U1TXInterrupt	
ADC1 – A/D Converter 1	13	00002Eh	IFS0<13>	IEC0<13>	ADC1Interrupt	
DMA1 – Direct Memory Access 1	14	000030h	IFS0<14>	IEC0<14>	DMA1Interrupt	
NVM – NVM Program/Erase Complete	15	000032h	IFS0<15>	IEC0<15>	NVMInterrupt	
SI2C1 – I2C1 Slave Events	16	000034h	IFS1<0>	IEC1<0>	SI2C1Interrupt	
MI2C1 – I2C1 Master Events	17	000036h	IFS1<1>	IEC1<1>	MI2C1Interrupt	
Comp – Comparator	18	000038h	IFS1<2>	IEC1<2>	CompInterrupt	
IOC – Interrupt-on-Change Interrupt	19	00003Ah	IFS1<3>	IEC1<3>	IOCInterrupt	
INT1 – External Interrupt 1	20	00003Ch	IFS1<4>	IEC1<4>	INT1Interrupt	
_	21	_		_	_	
_	22	_	_	_	_	
_	23	_	_	_	_	
DMA2 – Direct Memory Access 2	24	000044h	IFS1<8>	IEC1<8>	DMA2Interrupt	
OC3 – Output Compare 3	25	000046h	IFS1<9>	IEC1<9>	OC3Interrupt	
_	26	_	_	_	_	
	27	_	_	_	_	
_	28	_	_	_	—	
INT2 – External Interrupt 2	29	00004Eh	IFS1<13>	IEC1<13>	INT2Interrupt	
U2RX – UART2 Receiver	30	000050h	IFS1<14>	IEC1<14>	U2RXInterrupt	
U2TX – UART2 Transmitter	31	000052h	IFS1<15>	IEC1<15>	U2TXInterrupt	
SPI2 – SPI2 General	32	000054h	IFS2<0>	IEC2<0>	SPI2Interrupt	
SPI2TX – SPI2 Transfer Done	33	000056h	IFS2<1>	IEC2<1>	SPI2TXInterrupt	
_	34	_	_	_	—	
_	35	_	_	_	—	
DMA3 – Direct Memory Access 3	36	00005Ch	IFS2<4>	IEC2<4>	DMA3Interrupt	
IC3 – Input Capture 3	37	00005Eh	IFS2<5>	IEC2<5>	IC3Interrupt	
· · ·	38	<u> </u>		_	<u>·</u>	
_	39			_	_	
	40		_	_	_	
CCT3 – Capture/Compare Timer3	43	00006Ah	IFS2<11>	IEC2<11>	CCT3Interrupt	

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			CCP4MD	CCP3MD	CCP2MD	CCP1MD

bit 7			b	oit 0
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	CCP4MD: MCCP4 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 2	CCP3MD: MCCP3 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 1	CCP2MD: MCCP2 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 0	CCP1MD: MCCP1 Module Disable bit
	1 = Module is disabled

0 = Module power and clock sources are enabled

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
· ·							

REGISTER 11-40: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP17R<5:0>: RP17 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP17 (see Table 11-7 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-7 for peripheral function numbers).

REGISTER 11-41: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

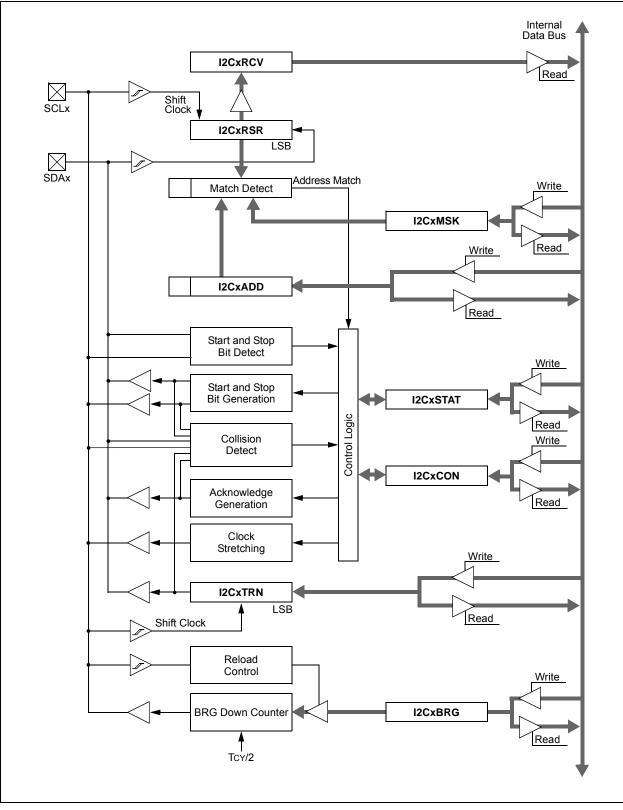
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-7 for peripheral function numbers).


R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	
PWMRSEN	ASDGM	—	SSDG	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	U = Unimplem	nented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 14		-		e to resume PW e Enable bit	M activity on c	output pins		
511 14	1 = Waits uni	til the next Time	e Base Reset o	or rollover for sh	utdown to occ	ur		
L:1 40		n event occurs	,					
bit 13	-	ted: Read as '						
DIT 12	 it 12 SSDG: CCPx Software Shutdown/Gate Control bit 1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM bit still applies) 0 = Normal module operation 							
bit 11-8	Unimplemented: Read as '0'							
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	Source Enable	e bits			
	ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits 1 = ASDGx Source n is enabled (see Table 16-6 for auto-shutdown/gating sources) 0 = ASDGx Source n is disabled							

REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 16-6: AUTO-SHUTDOWN SOURCES

ASDC .7.0	Auto-Shutdown Source								
ASDG<7:0>	MCCP1	MCCP2	МССР3	MCCP4					
1xxx xxxx		OCFB							
x1xx xxxx		OCFA							
xx1x xxxx	CLC1 CLC2 Not Used								
xxx1 xxxx		Not	Used						
xxxx 1xxx	Not Used								
xxxx x1xx		CMP3 Out							
xxxx xx1x		CMP2 Out							
xxxx xxx1		CMP	'1 Out						

FIGURE 18-1: I2Cx BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾) _	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0	
bit 15				•			bit a	
	R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-0, HC		R/W-0, HC		-	-	1	-	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL bit	
							DIL	
Legend:		HC = Hardwar	e Clearable bi	t				
R = Readab	ole bit	W = Writable t	oit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own	
bit 15		ARTx Enable bit						
		enabled; all UA disabled; all UAF					tion is minim	
bit 14		ted: Read as '0	•	,	,			
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit					
		ues module ope			e mode			
bit 12		 0 = Continues module operation in Idle mode IREN: IrDA[®] Encoder and Decoder Enable bit⁽²⁾ 						
		1 = IrDA encoder and decoder are enabled						
		oder and decode						
bit 11	RTSMD: Mod	le Selection for	JxRTS Pin bit					
		in is in Simplex ı in is in Flow Cor						
bit 10	Unimplemen	ted: Read as '0	,					
bit 9-8	UEN<1:0>: L	JARTx Enable bi	ts					
	10 = UxTX, U 01 = UxTX, U	JxRX and BCLK JxRX, UxCTS ar JxRX and UxRT nd UxRX pins a thes	nd $\overline{\text{UxRTS}}$ pins S pins are ena	are enabled a bled and used;	nd used UxCTS pin is o	controlled by po	rt latches	
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	Sleep Mode Er	nable bit			
	in hardw	continues to sam are on the follow			generated on	the falling edge	, bit is cleare	
bit 6		-up is enabled	Mada Salaat b	i+				
		ARTx Loopback		11				
		mode is disable	ed					
bit 5	ABAUD: Auto	o-Baud Enable b	pit					
		baud rate meas n hardware upoi		e next characte	er – requires re	eception of a Sy	nc field (55h	
	0 = Baud rat	e measurement	is disabled or	completed				
bit 4				-				
bit 4		e measurement RTx Receive Po		-				

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC			
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT			
bit 15				·		•	bit			
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC			
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			
bit 7	•	•		•		L.	bit			
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/C	learable bit				
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
HS = Hardwa	re Settable bit	HC = Hardwa	re Clearable b	it						
bit 15,13	UTXISEL<1:0	0>: UARTx Trar	nsmission Inter	rrupt Mode Sele	ection bits					
	11 = Reserve			•						
				ed to the Trans	mit Shift Regist	er (TSR), and a	as a result, th			
		nit buffer becomes empty upt when the last character is shifted out of the Transmit Shift Register; all transmit								
		operations are completed								
				ed to the Transn	nit Shift Registe	er (this implies t	here is at leas			
		racter open in t			U	Υ Ι				
bit 14	UTXINV: UAF	RTx IrDA [®] Enco	der Transmit I	Polarity Inversio	on bit ⁽¹⁾					
	IREN = 0:									
	1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1'									
	$\frac{ \text{REN} = 1:}{1 = \text{UxTX} \text{dle} $	state is '1'								
	0 = UxTX Idle									
bit 12	URXEN: UAF	RTx Receive En	able bit							
	1 = Receive is	s enabled, UxR	X pin is contro	lled by UARTx						
	0 = Receive is	s disabled, UxF	X pin is contro	olled by the port	:					
bit 11		ARTx Transmit I								
				n – Start bit, foll	owed by twelve	e '0' bits, follow	ed by Stop bi			
		by hardware up ak transmission	•	r completed						
bit 10	-	RTx Transmit Er		reompieted						
				olled by UARTx						
				nsmission is at		buffer is reset	t; UxTX pin i			
	controlled	d by the port					•			
bit 9	UTXBF: UAR	Tx Transmit Bu	ffer Full Status	s bit (read-only)						
	1 = Transmit									
				more character	can be written					
bit 8		mit Shift Regist								
				ansmit buffer is e transmission is			as completed			
		Shin Register is	s not empty, a		in progress of	queueu				

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

(IREN = 1).
 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

REGISTER 19-3: UXRXREG: UARTX RECEIVE REGISTER (NORMALLY READ-ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
		—	_	—	_	—	UxRXREG8
bit 15	·	· · ·		-			bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			UxRX	REG<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpler	nented bit, re	ad as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unkr	iown		

bit 15-9 Unimplemented: Read as '0'

bit 8-0 UxRXREG<8:0>: Data of the Received Character bits

REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-x
—	—			—	—	_	UxTXREG8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UxTXREG<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8-0 UxTXREG<8:0>: Data of the Transmitted Character bits

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	—	AWAITM1	AWAITM0	AWAITE
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable		W = Writable	bit	•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		rite/Enable Stro		e bit			
		MENB port is e MENB port is o					
bit 14		ad/Write Strobe		hit			
		MWR port is er					
		MWR port is di					
bit 13	PTBE1EN: Hi	igh Nibble/Byte	Enable Port E	nable bit			
		oort is enabled					
	0 = PMBE1 p	oort is disabled					
bit 12		ow Nibble/Byte	Enable Port E	nable bit			
		ort is enabled					
bit 11	•	oort is disabled ted: Read as 'o	،'				
bit 10-9	•	>: Address Lat		Stata bita			
DIL 10-9	11 = Wait of 3		ch Strobe wait	State bits			
	10 = Wait of 2						
	01 = Wait of 1	1½ TCY					
	00 = Wait of 1	∕₂ TCY					
bit 8			r Address Latc	h Strobe Wait S	State bits		
	1 = Wait of 1	, , , , , , , , , , , , , , , , , , , ,					
hit 7 0	$0 = Wait of \frac{1}{4}$,				
bit 7-0	Unimplemen	ted: Read as '	J				

REGISTER 20-3: PMCON3: EPMP CONTROL REGISTER 3

REGISTER 20-4: PMCON4: EPMP CONTROL REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	PTEN14			PTEN	<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		PTEN<7:3>				PTEN<2:0>		
bit 7					•		bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	Unimpleme	nted: Read as 'o)'					
bit 14	PTEN14: PM	A14 Port Enabl	e bit					
		functions as eith functions as por		ne 14 or Chip S	elect 1			
bit 13-3	PTEN<13:3>	-: EPMP Addres	s Port Enable	bits				
	 1 = PMA<13:3> function as EPMP address lines 0 = PMA<13:3> function as port I/Os 							
bit 2-0	PTEN<2:0>:	PMALU/PMALH	H/PMALL Strol	be Enable bits				
	1 = PMA<2:0> function as either address lines or address latch strobes 0 = PMA<2:0> function as port I/Os							

R/W-0	U-0						
IOCON		—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PMPTTL
bit 7		•	•	•			bit 0
Legend:							
						(0)	

REGISTER 20-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IOCON: Used for Non-PMP functionality

bit 14-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

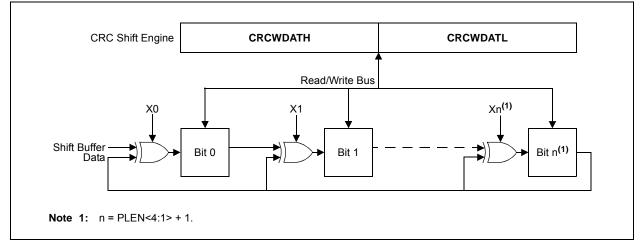
0 = EPMP module inputs use Schmitt Trigger input buffers

22.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

CRC BLOCK DIAGRAM

FIGURE 22-1:


The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 22-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 22-2.

CRCDATL CRCDATH **FIFO Empty** Variable FIFO (4x32, 8x16 or 16x8) Event CRCISEL CRCWDATH CRCWDATL 1 CRC Interrupt LENDIAN 0 Shift Buffer **CRC Shift Engine** Shift 0 Complete Event Shifter Clock 2 * FCY

FIGURE 22-2: CRC SHIFT ENGINE DETAIL

© 2016 Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE
bit 7							bit
Legend:		C = Clearable	e bit	U = Unimplen	nented bit, read	d as 'O'	
R = Readable	bit	W = Writable	bit	•	are Settable/C		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		Operating Mode rerter is operation rerter is off					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ADSIDL: A/D	Stop in Idle M	ode bit				
			eration when de ation in Idle mod		le mode		
bit 12	DMABM: Extended DMA Buffer Mode Select bit ⁽¹⁾						
			Buffer address i sses are define			egister AD1CON4<2:0	>
bit 11	1 = Extended	ended DMA/Bu DMA and buff features are d	er features are	enabled			
bit 10	1 = 12-bit A/D	•	tion Mode bit				
L:4 0 0	0 = 10-bit A/D	•		former at a fallow			
bit 9-8	11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute	al result, signe e fractional resu result, signed, e decimal resul	ult, unsigned, le right justified t, unsigned, rigl	ft justified ht justified	ng)		
bit 7-4	SSRC<3:0>:	Sample Clock	Source Select	bits			
	0001 = INT0 0010 = Timer 0100 = CTMU 0101 = Timer 0110 = Timer	J trigger 1 (will not trigg	software er during Sleep during Sleep m				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	Unimplemented: Read as '0' ASAM: A/D Sample Auto-Start bit 1 = Sampling begins immediately after last conversion; SAMP bit is auto-set 0 = Sampling begins when SAMP bit is manually set						

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

REGISTER 29-6:	FWDT CONFIGURATION REGISTER
----------------	-----------------------------

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

U-1	R/PO-1	R/PO-1	U-1	R/PO-1	U-1	R/PO-1	R/PO-1
_	WDTCLK1	WDTCLK0	_	WDTCMX	—	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	FWDTEN1	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

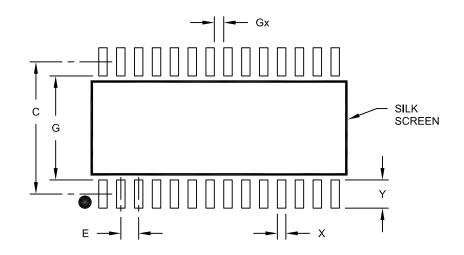
Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-15	Unimplemented: Read as '1'
bit 14-13	WDTCLK<1:0>: Watchdog Timer Clock Select bits (when WDTCMX = 1) 11 = Always uses LPRC
	10 = Uses FRC when WINDIS = 0, system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
	01 = Always uses SOSC
	00 = Uses peripheral clock when system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
bit 12	Unimplemented: Read as '1'
bit 11	WDTCMX: WDT Clock MUX Control bit
	 1 = Enables WDT clock MUX, WDT clock is selected by WDTCLK<1:0> 0 = WDT clock is LPRC
bit 10	Unimplemented: Read as '1'
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Width bits
	11 = WDT window is 25% of the WDT period
	10 = WDT window is 37.5% of the WDT period 01 = WDT window is 50% of the WDT period
	00 = WDT window is 75% of the WDT period
bit 7	WINDIS: Windowed Watchdog Timer Disable bit
	1 = Windowed WDT is disabled
	0 = Windowed WDT is enabled
bit 6-5	FWDTEN<1:0>: Watchdog Timer Enable bits
	 11 = WDT is enabled 10 = WDT is disabled (control is placed on the SWDTEN bit)
	01 = WDT is enabled (control is placed on the SWDTEN bit) 01 = WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled
	00 = WDT and SWDTEN are disabled
bit 4	FWPSA: Watchdog Timer Prescaler bit
	1 = WDT prescaler ratio of 1:128
	0 = WDT prescaler ratio of 1:32

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Operati	Operating Voltage								
DC10	Vdd	Supply Voltage	2.0	—	3.6	V	BOR is disabled		
			VBOR	_	3.6	V	BOR is enabled		
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	—		V	VBOR is used only if BOR is enabled (BOREN = 1)		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_		V	(Note 2)		
DC17A	SVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	1V/20 ms	_	1V/10 µS	Sec	(Note 2, Note 4)		
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)		

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.


2: If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

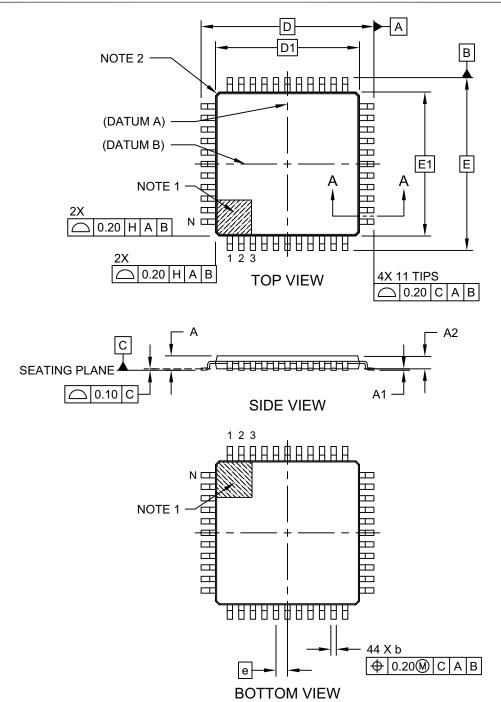
3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN


	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch			1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2