

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga702t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	F	Pin Number/Grid Locator						
Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, UQFN	44-Pin TQFP	48-Pin QFN/TQFP	I/O	Input Buffer	Description	
SCL1	17	14	44	48	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output	
SCL2	7	4	24	26	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output	
SDA1	18	15	1	1	I/O	l ² C	I2C1 Data Input/Output	
SDA2	6	3	23	25	I/O	l ² C	I2C2 Data Input/Output	
SOSCI	11	8	33	36	Ι	ANA/ST	Secondary Oscillator/Timer1 Clock Input	
SOSCO	12	9	34	37	0	ANA	Secondary Oscillator/Timer1 Clock Output	
T1CK	18	15	1	1	I	ST	Timer1 Clock	
ТСК	17	14	13	14	-	ST	JTAG Test Clock/Programming Clock Input	
TDI	21	18	35	38	Ι	ST	JTAG Test Data/Programming Data Input	
TDO	18	15	32	35	0	DIG	JTAG Test Data Output	
TMPRN	18	15	1	1	Ι	ST	Tamper Detect Input	
TMS	22	19	12	13	I	ST	JTAG Test Mode Select Input	
VCAP	20	17	7	7	Р	—	External Filter Capacitor Connection (regulator enabled)	
Vdd	13, 28	10, 25	28, 40	30, 43	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins	
VREF+	2	27	19	21	I	ANA	Comparator and A/D Reference Voltage (high) Input	
VREF-	3	28	20	22	Ι	ANA	Comparator and A/D Reference Voltage (low) Input	
Vss	8, 19, 27	5, 16, 24	6, 29, 39	6, 31, 42	Р	—	Ground Reference for Peripheral Digital Logic and I/O Pins	

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer Legend: ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

- - - - - - bit 15 R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 R/W-0 IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z bit 7 Legend: R R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)	DC bit									
R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R-0 R/W-0 R/W-0 R/W-0 IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 6 (13) 100 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 1 (9) 001 = CPU Interrupt Priority Level is 1 (9)	bit									
IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 5 (13) 101 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 011 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 2 (10)										
IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 5 (13) 101 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 2 (10) 011 = CPU Interrupt Priority Level is 1 (9) 11										
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknowr bit 15-9 Unimplemented: Read as '0' bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 3 (11) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)	R/W-0 C									
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-s of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 011	bit									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-softhe result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 100 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)	DIL									
Image: n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-softher result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred 0 = No carry out from the 4 th or 8 th low-order bits of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 100 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 011 = CPU Interrupt Priority Level is 2 (10)										
 bit 15-9 Unimplemented: Read as '0' bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-s of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 101 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 										
 bit 8 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-s of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 100 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 	n									
 DC: ALU Half Carry/Borrow bit 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-s of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry/Borrow bit 1 = A carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry/Borrow bit 0 = No carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry/Borrow bit 0 = No carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of the result has occurred DE: ALU Half Carry out from the 4th or 8th low-order bit of 10th low out from the 4th low out fro										
 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-s of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 										
of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)										
0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)	sized dat									
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)										
<pre>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)</pre>										
<pre>110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)</pre>										
 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 										
100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)										
011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)										
010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)										
001 = CPU Interrupt Priority Level is 1 (9)										
bit 4 RA: REPEAT Loop Active bit										
1 = REPEAT loop is in progress										
0 = REPEAT loop is not in progress										
bit 3 N: ALU Negative bit										
1 = Result was negative										
	0 = Result was not negative (zero or positive)									
	OV: ALU Overflow bit									
 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred 	 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred 									
bit 1 Z: ALU Zero bit										
1 = An operation, which affects the Z bit, has set it at some time in the past										
0 = The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result))									
bit 0 C: ALU Carry/Borrow bit										
1 = A carry out from the Most Significant bit (MSb) of the result occurred										
0 = No carry out from the Most Significant bit of the result occurred										
Note 1: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.										
2. The IPLX Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPL	Interrup									

2: The IPLx Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on a device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

The PIC24FJ256GA705 devices can have up to two Interrupt Vector Tables (IVT). The first is located from addresses, 00004h to 0000FFh. The Alternate Interrupt Vector Table (AIVT), which can be enabled by the AIVTDIS Configuration bit, is located from 000104h to 0001FFh if no Boot Segment (BS) is present. If the user has configured a Boot <u>Segment</u>, the AIVT will be located at the address, (BSLIM<12:0> x 1024) – 508. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables is provided in **Section 8.1** "Interrupt Vector Table".

4.1.3 CONFIGURATION BITS OVERVIEW

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Table 4-2 lists all of the Configuration registers as well as their Configuration register locations. Refer to **Section 29.0** "**Special Features**" for the full Configuration register description for each specific device.

Configuration Registers	PIC24FJ256GA70X	PIC24FJ128GA70X	PIC24FJ64GA70X
FSEC	02AF00h	015F00h	00AF00h
FBSLIM	02AF10h	015F10h	00AF10h
FSIGN	02AF14h	015F14h	00AF14h
FOSCSEL	02AF18h	015F18h	00AF18h
FOSC	02AF1Ch	015F1Ch	00AF1Ch
FWDT	02AF20h	015F20h	00AF20h
FPOR	02AF24h	015F24h	00AF24h
FICD	02AF28h	015F28h	00AF28h
FDEVOPT1	02AF2Ch	015F2Ch	00AF2Ch

TABLE 4-2: CONFIGURATION WORD ADDRESSES

CHSEL<6:0>	Trigger (Interrupt)	CHSEL<6:0>	Trigger (Interrupt)
0000000	Off	1000001	UART2 TX Interrupt
0001001	MCCP4 IC/OC Interrupt	1000010	UART2 RX Interrupt
0001010	MCCP4 Timer Interrupt	1000011	UART2 Error Interrupt
0001011	MCCP3 IC/OC Interrupt	1000100	UART1 TX Interrupt
0001100	MCCP3 Timer Interrupt	1000101	UART1 RX Interrupt
0001101	MCCP2 IC/OC Interrupt	1000110	UART1 Error Interrupt
0001110	MCCP2 Timer Interrupt	1001011	DMA Channel 5 Interrupt
0001111	MCCP1 IC/OC Interrupt	1001100	DMA Channel 4 Interrupt
0010000	MCCP1 Timer Interrupt	1001101	DMA Channel 3 Interrupt
0010100	OC3 Interrupt	1001110	DMA Channel 2 Interrupt
0010101	OC2 Interrupt	1001111	DMA Channel 1 Interrupt
0010110	OC1 Interrupt	1010000	DMA Channel 0 Interrupt
0011010	IC3 Interrupt	1010001	A/D Interrupt
0011011	IC2 Interrupt	1010011	PMP Interrupt
0011100	IC1 Interrupt	1010100	HLVD Interrupt
0100000	SPI3 Receive Interrupt	1010101	CRC Interrupt
0100001	SPI3 Transmit Interrupt	1011011	CLC2 Out
0100010	SPI3 General Interrupt	1011100	CLC1 Out
0100011	SPI2 Receive Interrupt	1011110	RTCC Alarm Interrupt
0100100	SPI2 Transmit Interrupt	1100001	TMR3 Interrupt
0100101	SPI2 General Interrupt	1100010	TMR2 Interrupt
0100110	SPI1 Receive Interrupt	1100011	TMR1 Interrupt
0100111	SPI1 Transmit Interrupt	1100110	CTMU Trigger
0101000	SPI1 General Interrupt	1100111	Comparator Interrupt
0101111	I2C2 Slave Interrupt	1101000	INT4 Interrupt
0110000	I2C2 Master Interrupt	1101001	INT3 Interrupt
0110001	I2C2 Bus Collision Interrupt	1101010	INT2 Interrupt
0110010	I2C1 Slave Interrupt	1101011	INT1 Interrupt
0110011	I2C1 Master Interrupt	1101100	INT0 Interrupt
0110100	I2C1 Bus Collision Interrupt	1101101	Interrupt-on-Change (IOC) Interrupt

TABLE 5-1: DMA TRIGGER SOURCES

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB XC16 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location	to be written
NVMADRU = progAddr>>16;	// Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
$NVMCON = 0 \times 4003;$	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

TABLE 6-2: CODE MEMORY PROGRAMMING EXAMPLE: ROW WRITES

Step 1: Set	t the NVMCON register to program 128 instruction words.
MOV	#0x4002, W0
MOV	W0, NVMCON
Step 2: Init	ialize the TBLPAG register for writing to the latches.
MOV	#0xFA, W12
MOV	W12, TBLPAG
Step 3: Loa	ad W0:W5 with the next 4 instruction words to program.
MOV	# <lsw0>, W0</lsw0>
MOV	# <msb1:msb0>, W1</msb1:msb0>
MOV	# <lsw1>, W2</lsw1>
MOV	# <lsw2>, W3</lsw2>
MOV	# <msb3:msb2>, W4</msb3:msb2>
MOV	# <lsw3>, W5</lsw3>
Step 4: Set	t the Read Pointer (W6) and load the (next set of) write latches.
CLR	WG
CLR	W7
TBLWTL	[W6++], [W7]
TBLWTH.B	[W6++], [W7++]
TBLWTH.B	[W6++], [++W7]
TBLWTL	[W6++], [W7++]
TBLWTL	[W6++], [W7]
TBLWTH.B	[W6++], [W7++]
TBLWTH.B	[W6++], [++W7]
TBLWTL	[W6++], [W7++]
Step 5: Re	peat Steps 4 and 5, for a total of 32 times, to load the write latches with 128 instructions.
Step 6: Set	t the NVMADRU/NVMADR register pair to point to the correct address.
MOV	<pre>#DestinationAddress<15:0>, W3</pre>
MOV	<pre>#DestinationAddress<23:16>, W4</pre>
MOV	W3, NVMADR
MOV	W4, NVMADRU
Step 7: Exe	ecute the WR bit unlock sequence and initiate the write cycle.
MOV	#0x55, W0
MOV	WO, NVMKEY
MOV	#0xAA, W0
MOV	WO, NVMKEY
BSET	NVMCON, #WR
NOP	
NOP	
NOP	

R/W-1	R-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0					
GIE	DISI	SWTRAP	_	_			AIVTEN					
bit 15							bit					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	GIE: Global	Interrupt Enable	e bit									
		s and associate	•		abled							
	•	s are disabled, I	•	still enabled								
bit 14		Instruction Statu										
		1 = DISI instruction is active 0 = DISI instruction is not active										
bit 13		Software Trap St										
		e trap is enabled										
	0 = Software	e trap is disabled	ł									
bit 12-9	Unimpleme	nted: Read as '	0'									
bit 8	AIVTEN: Alt	ernate Interrupt	Vector Table	Enable bit								
		ernate Interrupt \ ndard Interrupt \			onfiguration bits)						
bit 7-5	Unimplemented: Read as '0'											
bit 4	INT4EP: Ext	ternal Interrupt 4	Edge Detect	Polarity Select	t bit							
	 1 = Interrupt on negative edge 0 = Interrupt on positive edge 											
bit 3		ternal Interrupt 3		Polarity Select	bit							
Sit 0		on negative ed			. on							
		on positive edg	0									
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit											
		t on negative edg										
bit 1	•	ternal Interrupt 1		Polarity Select	bit							
	1 = Interrupt	t on negative edg	ge	·								
bit 0	•	ternal Interrupt C		Polaritv Select	bit							
		on negative ed										
		on positive edg										

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
							0.0101.00

	—	 	 —	—	SPI3MD
bit 7					bit 0
l egend:					

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 SPI3MD: SPI3 Module Disable bit

1 = Module is disabled

0 = Module power and clock sources are enabled

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	DMA1MD	DMA0MD	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	DMA1MD: DMA1 Controller (Channels 4 through 7) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
bit 4	DMA0MD: DMA0 Controller (Channels 0 through 3) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
hit 2 0	Unimplemented, Dood op (o)

bit 3-0 Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15	·	-		-			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as 'd)'				
bit 13-8	RP1R<5:0>:	RP1 Output Pir	n Mapping bits				
	Peripheral Ou	itput Number n	is assigned to	pin, RP1 (see	Table 11-7 for p	peripheral func	tion numbers).

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-7 for peripheral function numbers).

REGISTER 11-33: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

Legend: R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	l as '0'		
bit 7							bit 0
_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP2R<5:0>: RP2 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP2 (see Table 11-7 for peripheral function numbers).

'0' = Bit is cleared

x = Bit is unknown

U-0 RW-0 RW-0 R/W-0 U-0 R/W-0 R/W-0 U-0 — TGATE TCKPS1 TCKPS0 — TSYNC TCS — bit7	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 — TGATE TCKPS1 TCKPS0 — TSYNC TCS — bit7	TON	—	TSIDL	_	—	_	TECS1	TECS0
- TGATE TCKPS1 TCKPS0 - TSYNC TCS - bit 7 bit bit U = Unimplemented bit, read as '0' bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Stapts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' Dit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' I1 = Genetic timer (TxCN) external input 0 = DRC Oscillator 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = TICK external clock input 0 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled	bit 15						I	bit 8
- TGATE TCKPS1 TCKPS0 - TSYNC TCS - bit 7 bit bit U = Unimplemented bit, read as '0' bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Stapts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' Dit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' I1 = Genetic timer (TxCN) external input 0 = DRC Oscillator 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = EPRC Oscillator 0 = TICK external clock input 0 = Stops Dif 7 0 = TICK external clock input 0 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	LI-0
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 0 = Discontinues module operation when device enters ldle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = TTCK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' 11 = Gated time accumulation Enable bit When TCS = 1; This bit is ignored. When TCS = 0; 1 = Gated time accumulation is enabled 0 = 1:1 bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit Men TCS = 1; 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not sync		-	-	-			_	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' 0 0 bit 13 TSDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 0 Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 1 = DERC Sociilator 0 = Continues module operation in Idle mode bit 9-8 TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 1 = Generic timer (TxCK) external input 0 = D = Co Sociilator 01 = 11CK external clock input 0 = SOSC 0 1 = TicK external clock input 00 = 0 Gated Time accumulation is enabled 0 = Gated Time accumulation is enabled 0 = Gated Time accumulation is enabled 0 = Gated Time accumulation is disabled Unimplemented: Read as '0' 1 = 1:266 1 = 1:266 0 = 1:64 1 = 1:26 1 = Synchronizes the external clock input Te Synchronizes the external clock input	bit 7	TOAL	TOREST	1011 30		101110	100	bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' 0 0 bit 13 TSDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 0 Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 1 = DERC Sociilator 0 = Continues module operation in Idle mode bit 9-8 TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 1 = Generic timer (TxCK) external input 0 = D = Co Sociilator 01 = 11CK external clock input 0 = SOSC 0 1 = TicK external clock input 00 = 0 Gated Time accumulation is enabled 0 = Gated Time accumulation is enabled 0 = Gated Time accumulation is enabled 0 = Gated Time accumulation is disabled Unimplemented: Read as '0' 1 = 1:266 1 = 1:266 0 = 1:64 1 = 1:26 1 = Synchronizes the external clock input Te Synchronizes the external clock input								
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TON: Timer1 On bit 1 start 16-bit Timer1 0 stops 16-bit Timer1 0 stops 16-bit Timer1 bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 e. Bit is unknown bit 14 Unimplemented: Read as '0' 1 e. Bit is unknown bit 15 TSIDL: Timer1 Stop in Idle Mode bit 1 e. Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 c. Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 c. Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 c. Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 c. Continues module operation when device enters Idle mode 0 = Discontinues module operation in Idle mode 0 c. Continues module operation when device enters Idle mode 0 = Discontinues module lock input 0 = Sols 0 0 = Discont superineable input input input<	-						(0)	
bit 15 TON : Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' bit 9-8 TECS-1:0-: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS-1: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:18 00 = 1:1 bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input 0 = Does not synchronize the external clock input 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'					•			
1 = Stars 16-bit Timer1 0 = Stops 16-bit Timer1 0 = Stops 16-bit Timer1 bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 0: 1 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock input	-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' bit 9-8 TECS-1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled 0 = Gated time accumulation is disabled bit 3 Unimplemented: Read as '0' bit 4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:1 1:1 bit 3 Unimplemented: Read as '0' bit 4 TSYNC: Timer1 External clock input 0 = 0:1 1 = Synchronize the external clock input 0 = Does not synchronize the external clock input Does not synchronize the external clock input	bit 15	TON: Timer1	On bit					
bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = Continues module operation in Idle mode 0 0 = LPRC Oscillator 0 0 = TICK external clock input 0 0 = SOSC 0 bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. 11 = 1:256 0 0 = 1:1 1 bit 3 Unimplemented: Read as '0' bit 4 TCKPS-1:0:: Timer1 Input Clock Input Synchronization Select bit 11 = 1:266 1 0 = 1:1 1 bit 3 Unimple		1 = Starts 16	-bit Timer1					
TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 Unimplemented: Read as '0' ECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 11 = Generic timer (TXCK) external input 0 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:1 bit 3 Unimplemented: Read as '0' bit 3 Unimplemented: Read as '0' bit 3 Unimplemented: Read as '0' bit 4 TCKPS<1::		0 = Stops 16	-bit Timer1					
 1 = Discontinues module operation when device enters Idle mode a = Continues module operation when device enters Idle mode bit 9-8 TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 1 = Generic timer (TxCK) external input 1 = LPRC Oscillator 0 = T1CK external clock input 0 = LPRC Oscillator 0 = T1CK external clock input 0 = SOSC bit 7 Unimplemented: Read as '0' TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 1 = 1:256 1 = 1:256 1 = 1:26 1 = 1:2 1 = Synchronizes the external clock input 0 = 1:1 bit 3 Unimplemented: Read as '0' bit 3 Unimplemented: Read as '0' bit 4 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: T = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0	bit 14	Unimplemen	ted: Read as '	0'				
0 = Continues module operation in Idle modebit 12-10Unimplemented: Read as '0'bit 9-8TECS<1:0-: Timer1 Extended Clock Source Select bits (selected when TCS = 1)11 = Generic timer (TxCK) external input10 = LPRC Oscillator01 = T1CK external clock input00 = SOSCbit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1:This bit is ignored.When TCS = 0:1 = Gated time accumulation is enabled0 = Cated time accumulation is disabledbit 5-4TCKPS<1:0-: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:400 = 1:1bit 3Unimplemented: Read as '0'bit 4TCKPS = 1:1 = Synchronizes the external Clock Input Synchronization Select bitWhen TCS = 0:1 = Synchronizes the external clock input0 = Does not synchronize the external clock input0 = Does not synchronize the external clock inputWhen TCS = 0:This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'	bit 13	TSIDL: Time	1 Stop in Idle N	/lode bit				
bit 12-10 Unimplemented: Read as 'o' bit 9-8 TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = 17CK external clock input 00 = SOSC bit 7 Unimplemented: Read as 'o' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:1 10 bit 3 Unimplemented: Read as '0' bit 4 TCSPS_1:: TECS = 1: 1 = Synchronizes the external clock input 0 = 1:1 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'						dle mode		
bit 9-8TECS-(1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1)11 = Generic timer (TxCK) external input10 = LPRC Oscillator01 = T1CK external clock input00 = SOSCbit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1:This bit is ignored.When TCS = 0:1 = Gated time accumulation is enabled0 = Soto0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:2560 = 1:6401 = 1:800 = 1:1bit 3Unimplemented: Read as '0'bit 4TSYNC: Timer1 External Clock Input Synchronization Select bitWhen TCS = 1:1 = Synchronizes the external clock input0 = Does not synchronize the external clock inputWhen TCS = 0:This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'			-		de			
11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS 11 = 1:256 10 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' bit 4 TCS = 1: 1 = \$\symbol{schematrix}\$ is inported. When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 1 = Extended clock is selected by the timer		-						
10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC bit 7 Unimplemented: Read as '0' bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' bit 4 0 = 1:1 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (FOSC/2) bit 0 Unimplemented: Read as '0'	bit 9-8				e Select bits (s	selected when T	FCS = 1)	
$01 = T1CK$ external clock input $00 = SOSC$ bit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bit $\frac{When TCS = 1:}{This bit is ignored.}$ $\frac{When TCS = 0:}{1 = Gated time accumulation is enabled0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:800 = 1:1bit 3Unimplemented: Read as '0'bit 4Unimplemented: Read as '0'bit 5TSYNC: Timer1 External Clock Input Synchronization Select bit\frac{When TCS = 1:}{1 = Synchronize the external clock input}0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$				external input				
$00 = SOSC$ bit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0' bit 2bit 4Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronize the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$				out				
bit 6TGATE: Timer1 Gated Time Accumulation Enable bit 				Jui				
When TCS = 1: This bit is ignored.When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0'bit 4TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$	bit 7	Unimplemen	ted: Read as '	0'				
This bit is ignored. $\frac{When TCS = 0:}{1 = Gated time accumulation is enabled}$ $0 = Gated time accumulation is disabled$ bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits $11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (FOSC/2)bit 0Unimplemented: Read as '0'$	bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0'bit 4TCS = 1: 1 = Synchronizes the external Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes the external clock input}$ $\frac{When TCS = 0:}{This bit is ignored.}$ bit 1TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'								
$1 = Gated time accumulation is enabled0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:6401 = 1:800 = 1:1bit 3Unimplemented: Read as '0'bit 4Unimplemented: Read as '0'bit 5TSYNC: Timer1 External Clock Input Synchronization Select bit\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$		-						
0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'				n is onabled				
bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'								
$11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3Unimplemented: Read as '0' $Men TCS = 1$: $1 = Synchronizes the external Clock Input Synchronization Select bit\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$	bit 5-4				Select bits			
$10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = \text{ Synchronizes the external clock input}}$ $0 = \text{ Does not synchronize the external clock input}$ $\frac{When TCS = 0:}{\text{This bit is ignored.}}$ bit 1 TCS: Timer1 Clock Source Select bit $1 = \text{Extended clock is selected by the timer}$ $0 = \text{ Internal clock (Fosc/2)}$ bit 0 Unimplemented: Read as '0'			pat					
00 = 1:1 bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'		10 = 1:64						
bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'								
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'	hit 2		tad. Dood oo '	o'				
When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'		-			ranization Sol	oot hit		
1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'				Jok input Synci	ITOTIZATION Sei			
0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'				nal clock input				
This bit is ignored. bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'					k input			
bit 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'								
1 = Extended clock is selected by the timer 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0'	bit 1	0		Select bit				
0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'								
				.,				
Note 1: Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to	bit 0	Unimplemen	ted: Read as '	0'				
	Note 1. C	banging the vel		hilo the times is			o timor proces	lo countor to

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

Note 1: Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
OENSYNC		OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN
bit 15			1				bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICGSM1	ICGSM0		AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0
bit 7			I				bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Update b	y output enable	Synchronizatior e bits occurs or e bits occurs im	n the next Time	Base Reset o	r rollover	
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-8	OCxEN: Outp	out Enable/Stee	ering Control bi	ts			
	0 = OCMx pi		lled by the CCI	odule and prod Px module; the			
bit 7-6	ICGSM<1:0>:	: Input Capture	Gating Source	Mode Control	bits		
	01 = One-Sho 00 = Level-Se	ot mode: Fallin ot mode: Rising ensitive mode:	g edge from ga	ting source dis ting source ena om gating sour	bles future ca	pture events (IC	CDIS = 0)
bit 5	Unimplemen	ted: Read as '	0'				
bit 4-3	AUXOUT<1:0	>: Auxiliary O	utput Signal on	Event Selectio	n bits		
	10 = Signal o	utput is defined se rollover eve	d by module op	t; no signal in T erating mode (s		•)	
bit 2-0	ICS<2:0>: Inp	out Capture So	urce Select bits	3			
	010 = Compa 001 = Compa	ved output	x) I/O pin				

REGISTER 16-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

R/W-0	U-0	HC, R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15						•	bit
R/W-0	R/W-0	R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0	HC, R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit
				4			
Legend:	bl. b:t		re Clearable bi			1 (0)	
R = Reada		W = Writable		•	nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Enables t	Enable bit (writ he I2Cx module the I2Cx modul	e and configure	s the SDAx an			S
bit 14	Unimplemen	ted: Read as ')'				
bit 13	I2CSIDL: I2C	x Stop in Idle M	lode bit				
		ues module ope s module opera			e mode		
bit 12	Module resets <u>If STREN = 0</u> 1 = Releases 0 = Forces clo <u>If STREN = 1</u> 1 = Releases 0 = Holds cloo STRICT: I2C> 1 = Strict ress In Slave that categories In Master 0 = Reserved In Slave of the start	clock ock low (clock s clock ck low (clock st ctrict Reserve erved addressin Mode: The dev gory are NACK r Mode: The de d addressing wi Mode: The devia match with an	0) sets SCLRI stretch) retch); user ma ed Address Rule ng is enforced vice doesn't res ed. vice is allowed ould be Acknow ice will respond y of the reserve	EL = 1. ay program this e Enable bit (for reserved a spond to reserved to generate ac vledged t to an address	bit to '0', clock ddresses, refer ved address sp ldresses with r falling in the re	r to Table 18-2) bace and addres eserved address served address	esses falling ss space. s space. Whe
bit 10		r Mode: Reserv Slave Address					
	1 = I2CxADD	is a 10-bit slav is a 7-bit slave	e address				
bit 9	DISSLW: Slew Rate Control Disable bit						
		control is disat control is enab				o disabled for 1	MHz mode)
	Automatically clear of slave reception ting the SCLREL specified in Secti	n. The user soft bit. This delay	ware must prov must be greate	/ide a delay be r than the mini	tween writing t	o the transmit b	ouffer and se

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

21.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- Timestamp Registers

21.2.1 REGISTER MAPPING

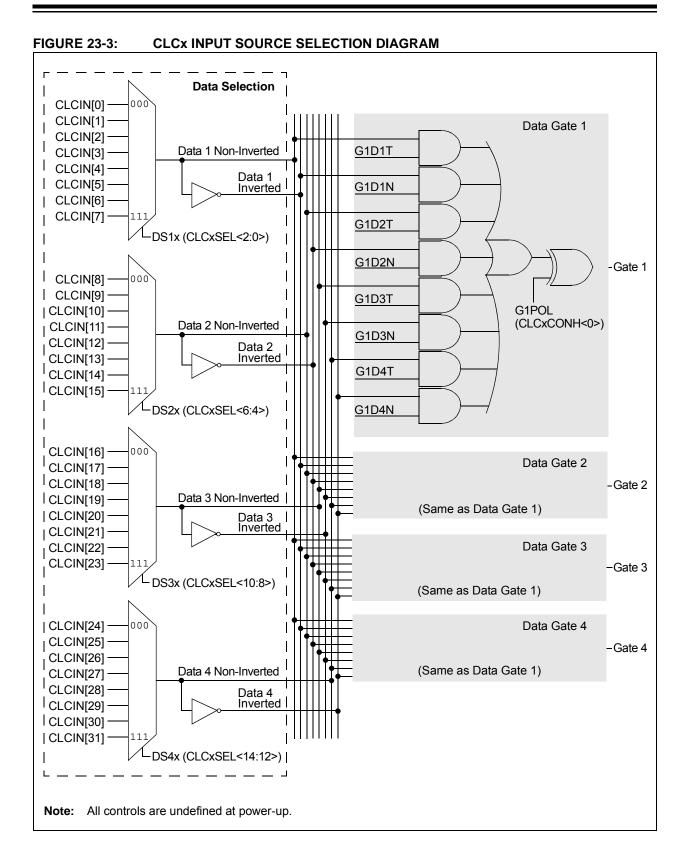
Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

21.2.2 WRITE LOCK

To prevent spurious changes to the Time Control or Time Value registers, the WRLOCK bit (RTCCON1L1<11>) must be cleared ('0'). The POR default state is when the WRLOCK bit is '0' and is cleared on any device Reset (POR, BOR, MCLR). It is recommended that the WRLOCK bit be set to '1' after the Date and Time registers are properly initialized, and after the RTCEN bit (RTCCON1L<15>) has been set.

Any attempt to write to the RTCEN bit, the RTCCON2L/H registers, or the Date or Time registers, will be ignored as long as WRLOCK is '1'. The Alarm, Power Control and Timestamp registers can be changed when WRLOCK is '1'.

EXAMPLE 21-1: SETTING THE WRLOCK BIT


Clearing the WRLOCK bit requires an unlock sequence after it has been written to a '1', writing two bytes consecutively to the NVMKEY register. A sample assembly sequence is shown in Example 21-1. If WRLOCK is already cleared, it can be set to '1' without using the unlock sequence.

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit (RTCCON1L<11>) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 21-1.

21.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

DISI	#6	;disable interrupts for 6 instructions
MOV	#NVKEY, W1	
MOV	#0x55, W2	; first unlock code
MOV	W2, [W1]	; write first unlock code
MOV	#0xAA, W3	; second unlock sequence
MOV	W3, [W1]	; write second unlock sequence
BCLR	RTCCON1L, #WRLOCK	; clear the WRLOCK bit

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

				-			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC
CEN	COE	CPOL	—	—	—	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	—	CREF	—	—	CCH1	CCH0
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	HSC = Hardv	vare Settable	/Clearable bit	
R = Readabl	e bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 bit 14	1 = Compara 0 = Compara COE: Compa 1 = Compara	arator Enable bit ator is enabled ator is disabled arator Output En- ator output is pre ator output is inte	sent on the C>	OUT pin			
bit 13	•	parator Output P	5	oit			
	1 = Compara	ator output is inv ator output is not	erted				
bit 12-10	Unimplemer	nted: Read as '0	,				
bit 9	CEVT: Comp	arator Event bit					
	are disal	ator event that is bled until the bit ator event has no	is cleared	POL<1:0> has c	occurred; sub	sequent triggers	and interrupts
bit 8	COUT: Comp	parator Output bi	t				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$ $0 = \text{VIN} + < \text{V}$	/in- /in-					
	$\frac{\text{When CPOL}}{1 = \text{VIN} + < \text{V}}$						
	0 = VIN + > V						
bit 7-6	11 = Trigger/ 10 = Trigger/ High-to <u>If CPOI</u> Low-to- 01 = Trigger/ <u>If CPOI</u> Low-to- <u>If CPOI</u> Low-to- <u>If CPOI</u>	Trigger/Event/ /event/interrupt is /event/interrupt is _ = 0 (non-inverter -low transition or _ = 1 (inverted po high transition of /event/interrupt is _ = 0 (non-inverter high transition of _ = 1 (inverted po -low transition or	s generated on s generated on <u>ed polarity):</u> nly. <u>plarity):</u> nly. s generated on <u>ed polarity):</u> nly. <u>plarity):</u>	any change of transition of th	e comparator	output:	CEVT = 0)
	00 = Trigger/	/event/interrupt g	eneration is di	sabled			
bit 5	Unimplemer	nted: Read as '0	,				

NOTES:

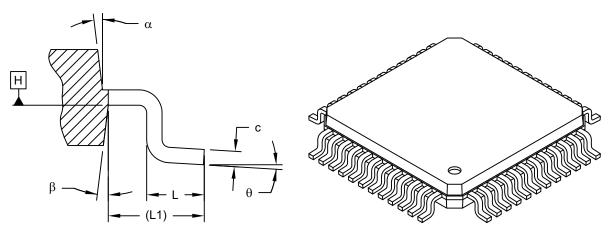
TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
51	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
		*	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd				
	SUBBR	Wb,#lit5,Wd Wn	Wd = lit5 – Wb – (C) Wn = Nibble Swap Wn	1	1	C, DC, N, OV, Z None
SWAP	SWAP.b					

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARAG	CTERISTICS		Standard C Operating te			unless otherwise stated) 85°C for Industrial	
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions	
Operating C	urrent (IDD) ⁽	2)					
DC19	230	365	μA	-40°C to +85°C	2.0V	0.5 MIPS,	
	250	365	μΑ	-40°C to +85°C	3.3V	Fosc = 1 MHz	
DC20	430	640	μA	-40°C to +85°C	2.0V	1 MIPS,	
	440	640	μΑ	-40°C to +85°C	3.3V	Fosc = 2 MHz	
DC23	1.5	2.4	mA	-40°C to +85°C	2.0V	4 MIPS,	
	1.65	2.4	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	
DC24	6.1	7.7	mA	-40°C to +85°C	2.0V	16 MIPS,	
	6.3	7.7	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz	
DC31	43	130	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),	
	46	130	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz	
DC32	1.6	2.5	mA	-40°C to +85°C	2.0V	FRC (4 MIPS),	
	1.65	2.5	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz	


TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as outputs and driving low. MCLR = VDD; WDT and FSCM are disabled. CPU, program memory and data memory are operational. No peripheral modules are operating or being clocked (defined PMDx bits are all '1's). JTAG interface is disabled.

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	N		48	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		9.00 BSC	
Overall Length	D		9.00 BSC	
Molded Package Width	E1		7.00 BSC	
Molded Package Length	D1		7.00 BSC	
Lead Thickness	С	0.09	-	0.16
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

Code Examples	
Basic Clock Switching	
Configuring UART1 Input/Output Functions	140
Double-Word Flash Programming (C Language)	78
EDS Read from Program Memory in Assembly	61
EDS Read in Assembly	
EDS Write in Assembly	
Erasing a Program Memory Block (C Language)	
Initiating a Programming Sequence	
IOC Status Read/Clear in Assembly	
Port Read/Write in Assembly	
Port Read/Write in C	
PWRSAV Instruction Syntax	
Setting the WRLOCK Bit	
Code Memory Programming Example	200
Double-Word Programming	77
Page Erase	
Row Writes	74
Code Protection	
Comparator Voltage Reference	
Configuring	
Configurable Logic Cell (CLC)	
Configurable Logic Cell. See CLC.	211
Configuration Bits	220
Core Features	
CPU	
Arithmetic Logic Unit (ALU)	
Clocking Scheme	
Control Registers	
Core Registers	
Programmer's Model	35
CRC	070
Data Shift Direction	
Interrupt Operation	
Polynomials	
Setup Examples for 16 and 32-Bit Polynomials	
Typical Operation	
User Interface	272
CTMU	
Measuring Capacitance	
Measuring Die Temperature	
Measuring Time/Routing Current to A/D Input Pin	
Pulse Generation and Delay	
Customer Change Notification Service	
Customer Notification Service	
Customer OTP Memory	
Customer Support	407
Cyclic Redundancy Check. See CRC.	
-	

D

Data Memory Space	45
Extended Data Space (EDS)	54
Memory Map	45
Near Data Space	46
Organization, Alignment	46
SFR Space	46
Implemented Regions	46
Map, 0000h Block	47
Map, 0100h Block	48
Map, 0200h Block	49
Map, 0300h Block	50
Map, 0400h Block	51
Map, 0500h Block	52
Map, 0600h Block	52
Map, 0700h Block	53
Software Stack	57

Comparator Specifications
Comparator Voltage Reference Specifications 367
CTMU Current Source
Δ Current (BOR, WDT, HLVD, RTCC)
High/Low-Voltage Detect 366
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IIDLE)
Internal Voltage Regulator Specifications
Operating Current (IDD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Thermal Packaging
Development Support
Device Features
28-Pin Devices
44/48-Pin Devices
Direct Memory Access Controller. See DMA.
DMA
Channel Trigger Sources70
Control Registers 66
Peripheral Module Disable (PMD) Registers
Summary of Operations64
Types of Data Transfers65
Typical Setup 66
DMA Controller
E
Electrical Characteristics
Absolute Maximum Ratings
V/F Graph (Industrial)
Enhanced Parallel Master Port (EPMP)
Enhanced Parallel Master Port. See EPMP.
FPMP
EPMP Key Features
EPMP Key Features
Key Features 239
Key Features
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations240
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223 Calculating the PWM Period 176
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223 Calculating the PWM Period 176 Calculation for Maximum PWM Resolution 177
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223 Calculating the PWM Period 176 Calculation for Maximum PWM Resolution 177 Relationship Between Device and 177
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223 Calculating the PWM Period 176 Calculation for Maximum PWM Resolution 177 Relationship Between Device and SPIx Clock Speed 220
Key Features 239 Memory Addressable in Different Modes 240 Pin Descriptions 241 PMDIN1 and PMDIN2 Registers 240 PMDOUT1 and PMDOUT2 Registers 240 Equations 240 16-Bit, 32-Bit CRC Polynomials 272 A/D Conversion Clock Period 305 Baud Rate Reload Calculation 223 Calculating the PWM Period 176 Calculation for Maximum PWM Resolution 177 Relationship Between Device and SPIx Clock Speed 220 UARTx Baud Rate with BRGH = 0 231
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33FFlash Program Memory71and Table Instructions71Control Registers72
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and SPIx Clock Speed220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33 F Flash Program Memory71 and Table InstructionsFlash Program Memory71 control Registers72 Double-Word Programming
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33F71Flash Program Memory71and Table Instructions71Control Registers72Double-Word Programming77Enhanced ICSP Operation72
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and SPIx Clock Speed220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33 F Flash Program Memory71and Table Instructions71Control Registers72Double-Word Programming77Enhanced ICSP Operation72JTAG Operation72
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device andSPIx Clock SpeedUARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33 F Flash Program Memory71and Table Instructions72Double-Word Programming77Enhanced ICSP Operation72JTAG Operation72Operations72
Key Features239Memory Addressable in Different Modes240Pin Descriptions241PMDIN1 and PMDIN2 Registers240PMDOUT1 and PMDOUT2 Registers240Equations16-Bit, 32-Bit CRC Polynomials16-Bit, 32-Bit CRC Polynomials272A/D Conversion Clock Period305Baud Rate Reload Calculation223Calculating the PWM Period176Calculation for Maximum PWM Resolution177Relationship Between Device and SPIx Clock Speed220UARTx Baud Rate with BRGH = 0231UARTx Baud Rate with BRGH = 1231Errata12Extended Data Space (EDS)239External Oscillator Pins33 F Flash Program Memory71and Table Instructions71Control Registers72Double-Word Programming77Enhanced ICSP Operation72JTAG Operation72