

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga705-i-m4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (PIC24FJ256GA702 Devices)

28-Pin SOIC, SSOP, SPDIP

Legend: See Table 2 for a complete description of pin functions. Pinouts are subject to change.Note: Gray shading indicates 5.5V tolerant input pins.

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA702 SOIC, SSOP, SPDIP)

Pin	Function	Pin	Function
1	MCLR	15	PGC3/ RP6 /ASCL1/OCM1F/RB6
2	VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0	16	RP7/OCM1A/CTED3/INT0/RB7
3	VREF-/CVREF-/AN1/C3IND/ RP27 /CTED2/RA1	17	TCK/RP8/SCL1/OCM1B/CTED10/RB8
4	PGD1/AN2/CTCMP/C2INB/ RP0 /RB0	18	TDO/C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/RB9
5	PGC1/AN1-/AN3/C2INA/ RP1 /CTED12/RB1	19	Vss
6	AN4/C1INB/ RP2 /SDA2/CTED13/RB2	20	VCAP
7	AN5/C1INA/RP3/SCL2/CTED8/RB3	21	PGD2/TDI/ RP10 /OCM1C/CTED11/RB10
8	Vss	22	PGC2/TMS/REFI1/RP11/CTED9/RB11
9	OSCI/CLKI/C1IND/RA2	23	AN8/LVDIN/ RP12 /RB12
10	OSCO/CLKO/C2IND/RA3	24	AN7/C1INC/RP13/OCM1D/CTPLS/RB13
11	SOSCI/ RP4 /RB4	25	CVREF/AN6/C3INB/RP14/CTED5/RB14
12	SOSCO/PWRLCLK/RA4	26	AN9/C3INA/ RP15 /CTED6/RB15
13	VDD	27	AVss/Vss
14	PGD3/ RP5 /ASDA1/OCM1E/RB5	28	AVdd/Vdd

Legend: RPn represents remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

NOTES:

	Pin Number/Grid Locator						
Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, UQFN	44-Pin TQFP	48-Pin QFN/TQFP	I/O	Input Buffer	Description
PGC1	5	2	22	24	Ι	ST	ICSP™ Programming Clock
PGC2	22	19	9	10	Ι	ST	
PGC3	15	12	42	46	Ι	ST	
PGD1	4	1	21	23	I/O	DIG/ST	ICSP Programming Data
PGD2	21	18	8	9	I/O	DIG/ST	
PGD3	14	11	41	45	I/O	DIG/ST	
PMA0	-	—	3	3	I/O	DIG/ST/ TTL	Parallel Master Port Address<0>/ Address Latch Low
PMA1	-	—	2	2	I/O	DIG/ST/ TTL	Parallel Master Port Address<1>/ Address Latch High
PMA2	-	—	12	13	I/O	DIG/ST/ TTL	Parallel Master Port Address<2>
PMA3	-	—	38	41	I/O	DIG/ST/ TTL	Parallel Master Port Address<3>
PMA4	-	_	37	40	I/O	DIG/ST/ TTL	Parallel Master Port Address<4>
PMA5	-	—	4	4	I/O	DIG/ST/ TTL	Parallel Master Port Address<5>
PMA6	-	—	5	5	I/O	DIG/ST/ TTL	Parallel Master Port Address<6>
PMA7	-	—	13	14	I/O	DIG/ST/ TTL	Parallel Master Port Address<7>
PMA8	-	—	32	35	I/O	DIG/ST/ TTL	Parallel Master Port Address<8>
PMA9	-	—	35	38	I/O	DIG/ST/ TTL	Parallel Master Port Address<9>
PMA14/PMCS/ PMCS1	-	—	15	16	I/O	DIG/ST/ TTL	Parallel Master Port Address<14>/ Slave Chip Select/Chip Select 1 Strobe

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

© 2016 Microchip Technology Inc.

R/W-0	U-0						
DMAEN	—	—					_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	_		—	PRSSEL
bit 7							bit 0

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

CHSEL<6:0>	Trigger (Interrupt)	CHSEL<6:0>	Trigger (Interrupt)
0000000	Off	1000001	UART2 TX Interrupt
0001001	MCCP4 IC/OC Interrupt	1000010	UART2 RX Interrupt
0001010	MCCP4 Timer Interrupt	1000011	UART2 Error Interrupt
0001011	MCCP3 IC/OC Interrupt	1000100	UART1 TX Interrupt
0001100	MCCP3 Timer Interrupt	1000101	UART1 RX Interrupt
0001101	MCCP2 IC/OC Interrupt	1000110	UART1 Error Interrupt
0001110	MCCP2 Timer Interrupt	1001011	DMA Channel 5 Interrupt
0001111	MCCP1 IC/OC Interrupt	1001100	DMA Channel 4 Interrupt
0010000	MCCP1 Timer Interrupt	1001101	DMA Channel 3 Interrupt
0010100	OC3 Interrupt	1001110	DMA Channel 2 Interrupt
0010101	OC2 Interrupt	1001111	DMA Channel 1 Interrupt
0010110	OC1 Interrupt	1010000	DMA Channel 0 Interrupt
0011010	IC3 Interrupt	1010001	A/D Interrupt
0011011	IC2 Interrupt	1010011	PMP Interrupt
0011100	IC1 Interrupt	1010100	HLVD Interrupt
0100000	SPI3 Receive Interrupt	1010101	CRC Interrupt
0100001	SPI3 Transmit Interrupt	1011011	CLC2 Out
0100010	SPI3 General Interrupt	1011100	CLC1 Out
0100011	SPI2 Receive Interrupt	1011110	RTCC Alarm Interrupt
0100100	SPI2 Transmit Interrupt	1100001	TMR3 Interrupt
0100101	SPI2 General Interrupt	1100010	TMR2 Interrupt
0100110	SPI1 Receive Interrupt	1100011	TMR1 Interrupt
0100111	SPI1 Transmit Interrupt	1100110	CTMU Trigger
0101000	SPI1 General Interrupt	1100111	Comparator Interrupt
0101111	I2C2 Slave Interrupt	1101000	INT4 Interrupt
0110000	I2C2 Master Interrupt	1101001	INT3 Interrupt
0110001	I2C2 Bus Collision Interrupt	1101010	INT2 Interrupt
0110010	I2C1 Slave Interrupt	1101011	INT1 Interrupt
0110011	I2C1 Master Interrupt	1101100	INT0 Interrupt
0110100	I2C1 Bus Collision Interrupt	1101101	Interrupt-on-Change (IOC) Interrupt

TABLE 5-1: DMA TRIGGER SOURCES

TABLE 8-2:	INTERRUPT VECTOR DETAILS (CONTINUED))
-------------------	-------------------------------------	----

	IRQ #	IVT Address	Interrupt Bit Location			
			Flag	Enable	Priority	
PMP – Parallel Master Port	45	00006Eh	IFS2<13>	IEC2<13>	PMPInterrupt	
DMA4 – Direct Memory Access 4	46	000070h	IFS2<14>	IEC2<14>	DMA4Interrupt	
—	47	—		—	—	
—	48	—		—	—	
SI2C2 – I2C2 Slave Events	49	000076h	IFS3<1>	IEC3<1>	SI2C2Interrupt	
MI2C2 – I2C2 Master Events	50	000078h	IFS3<2>	IEC3<2>	MI2C2Interrupt	
—	51	—		_	_	
—	52	_		—		
INT3 – External Interrupt 3	53	00007Eh	IFS3<5>	IEC3<5>	INT3Interrupt	
INT4 – External Interrupt 4	54	000080h	IFS3<6>	IEC3<6>	INT4Interrupt	
—	55	_		—		
—	56			_		
—	57	—		_	_	
SPI1RX – SPI1 Receive Done	58	000088h	IFS3<10>	IEC3<10>	SPI1RXInterrupt	
SPI2RX – SPI2 Receive Done	59	00008Ah	IFS3<11>	IEC3<11>	SPI2RXInterrupt	
SPI3RX – SPI3 Receive Done	60	00008Ch	IFS3<12>	IEC3<12>	SPI3RXInterrupt	
DMA5 – Direct Memory Access 5	61	00008Eh	IFS3<13>	IEC3<13>	DMA5Interrupt	
RTCC – Real-Time Clock and Calendar	62	000090h	IFS3<14>	IEC3<14>	RTCCInterrupt	
CCP1 – Capture/Compare 1	63	000092h	IFS3<15>	IEC3<15>	CCP1Interrupt	
CCP2 – Capture/Compare 2	64	000094h	IFS4<0>	IEC4<0>	CCP2Interrupt	
U1E – UART1 Error	65	000096h	IFS4<1>	IEC4<1>	U1EInterrupt	
U2E – UART2 Error	66	000098h	IFS4<2>	IEC4<2>	U2EInterrupt	
CRC – Cyclic Redundancy Check	67	00009Ah	IFS4<3>	IEC4<3>	CRCInterrupt	
—	68	—		—	—	
—	69	—		—	—	
—	70	—		_	—	
—	71	—		_	—	
HLVD – High/Low-Voltage Detect	72	0000A4h	IFS4<8>	IEC4<8>	HLVDInterrupt	
—	73	—		—	—	
—	74	—		—	—	
—	75	—		—	—	
—	76	—	_	_	—	
CTMU – Interrupt	77	0000AEh	IFS4<13>	IEC4<13>	CTMUInterrupt	
—	78	—		—	—	
—	79	—		_	—	
	80	—		_	_	
	81	—		_	_	
—	82	—		_	_	
_	83		_	_	_	

REGISTER 9-7: REFOCONH: REFERENCE OSCILLATOR CONTROL REGISTER HIGH

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RODIV<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RODI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, rea	ıd as '0'	
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared x =			x = Bit is unkr	iown
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-0	RODIV<14:0	>: Reference Clo	ock Divider bi	ts			
	Specifies 1/2	period of the ref	erence clock	in the source cl	ocks		
	(ex: Period o	of Output = [Refer	ence Source	* 2] * RODIV<1	14:0>; this equ	ation does not a	apply to
	RODIV<14:0)> = 0).					
	111111111	111111 = REFO	clock is the b	ase clock frequ	iency divided	by 65,534 (32,70	67 * 2)
	111111111	111110 = REFO	CIOCK IS the b	ase clock frequ	iency divided	by 65,532 (32,70	56 ^ 2)
	•						

.

0000000000011 = REFO clock is the base clock frequency divided by 6 (3 * 2) 00000000000010 = REFO clock is the base clock frequency divided by 4 (2 * 2) 00000000000001 = REFO clock is the base clock frequency divided by 2 (1 * 2) 00000000000000 = REFO clock is the same frequency as the base clock (no divider)

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ256GA705 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled.

Interrupt-on-Change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1<3>) must be set, the PADCON<15> bit set (IOCON) and the associated ISFx flag cleared.

When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx<15:0> bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

Each Interrupt-on-Change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pullups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV0xFFFF, W0; Initial mask value 0xFFFF -> W0XORIOCFx, W0; W0 has 'l' for each bit set in IOCFxANDIOCFx; IOCFx & W0 ->IOCFx

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 11-3: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13){ };</pre>	// Next Instruction

REGISTER 11-32: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGIST	ER 0
--	------

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	
bit 15	·				- -		bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-14	bit 15-14 Unimplemented: Read as '0'							
bit 13-8	RP1R<5:0>: RP1 Output Pin Mapping bits							
	Peripheral Ou	Itput Number n	is assigned to	pin, RP1 (see	Table 11-7 for	peripheral func	tion numbers).	

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-7 for peripheral function numbers).

REGISTER 11-33: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0
Legend:							
R = Readable bit V		W = Writable bit		U = Unimplemented bit, read as '0'			

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP2R<5:0>: RP2 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP2 (see Table 11-7 for peripheral function numbers).

'0' = Bit is cleared

x = Bit is unknown

16.5 Auxiliary Output

The MCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA705 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary Output Disabled	No Output
01	0	0000	Time Base Modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare Modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11				Output Compare Signal
01	1	xxxx	Input Capture Modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 16-4: AUXILIARY OUTPUT

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 8		CKE: SPIx Clock Edge Select bit ⁽¹⁾
		1 = Transmit happens on transition from active clock state to Idle clock state
		0 = Transmit happens on transition from Idle clock state to active clock state
bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6		CKP: SPIx Clock Polarity Select bit
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode
		0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module
bit 3		DISSCK: Disable SCKx Output Port bit
		 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0		ENHBUF: Enhanced Buffer Mode Enable bit
		 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note	1:	When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1. SSEN is not used.

- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 8	SMEN: SMBus Input Levels Enable bit
	 1 = Enables input logic so thresholds are compliant with the SMBus specification 0 = Disables SMBus-specific inputs
bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits the ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (l^2 C Master mode only)
	 1 = Enables Receive mode for I²C; automatically cleared by hardware at the end of the 8-bit receive data byte 2 Provide a structure of the structure
h:4 0	0 = Receive sequence is not in progress
DIT 2	PEN: Stop Condition Enable bit (I ^{-C} Master mode only)
	0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on the SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on the SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum setup time for slave transmissions, as specified in Section 32.0 "Electrical Characteristics" .

2: Automatically cleared to '0' at the beginning of slave transmission.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP		WRSP	RDSP	SM
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0		_		_	_
bit 7							bit 0
Logondi							
R = Readab	le bit	W = Writable t	oit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CSDIS: Chip	Select x Disable	e bit				
	1 = Disables	the Chip Select	t x functionality	y ,			
bit 14		elect v Polarity k	vit	/			
	1 = Active-hi	iah (PMCSx)					
	0 = Active-lo	w (PMCSx)					
bit 13	CSPTEN: PN	MCSx Port Enab	le bit				
	1 = PMCSx	port is enabled					
bit 12	BEP: Chip S	elect x Nibble/B	vte Enable Po	larity bit			
	1 = Nibble/b	vte enable is act	tive-high (PME	BEO, PMBE1)			
	0 = Nibble/b	yte enable is act	tive-low (PMB	E0, PMBE1)			
bit 11	Unimplemer	nted: Read as '0)'				
bit 10	WRSP: Chip	Select x Write S	Strobe Polarity	bit			
	For Slave mo	odes and Master	mode when S	SM = 0:			
	0 = Write str	obe is active-lov	v (PMWR)				
	For Master m	node when SM =	: <u>1:</u>				
	1 = Enable s	strobe is active-h	high (PMENB)				
hit 0	0 = Enable s	Strobe is active-le	OW (PMENB) Strobo Dolority	hit			
DIL 9	For Slave mc	odes and Master	mode when s	SM = 0			
	1 = Read str	obe is active-hig	gh (PMRD)	<u>.</u>			
	0 = Read str	obe is active-lov	v (PMRD)				
	For Master m	node when SM =	<u>: 1:</u> vo high (DMD				
	0 = Read/wr	ite strobe is acti	ve-low (PMRD	D/PMWR)			
bit 8	SM: Chip Sel	lect x Strobe Mo	de bit	,			
	1 = Reads/w 0 = Reads a	rites and enable nd writes strobe	es strobes (PM s (PMRD and	IRD/ <mark>PMWR</mark> ar PMWR)	nd PMENB)		
bit 7	ACKP: Chip	Select x Acknow	vledge Polarity	y bit			
	1 = ACK is a $0 = ACK$ is a	active-high <u>(PMA</u> active-low (PMA	<u>(CK1)</u> CK1)				
bit 6-5	PTSZ<1:0>:	Chip Select x P	ort Size bits				
	11 = Reserve	ed					
	10 = Reserve		0~)				
	01 = 4-bit po 00 = 8-bit po	rt size (PMD<3: httsize (PMD<7:	0~) 0>)				
bit 4-0	Unimplemen	nted: Read as '0	,				

REGISTER 20-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
IOCON	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	PMPTTL		
bit 7	bit 7 bit 0								
Legend:									

REGISTER 20-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IOCON: Used for Non-PMP functionality

bit 14-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

PIC24FJ256GA705 FAMILY

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

bit 2-0 MODE<2:0>: CLCx Mode bits

- 111 = Cell is a 1-input transparent latch with S and R
- 110 = Cell is a JK flip-flop with R
- 101 = Cell is a 2-input D flip-flop with R
- 100 = Cell is a 1-input D flip-flop with S and R
- 011 = Cell is an SR latch
- 010 = Cell is a 4-input AND
- 001 = Cell is an OR-XOR
- 000 = Cell is an AND-OR

REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15 bit 8								

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

l egend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell0 = The output of Channel 4 logic is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell0 = The output of Channel 3 logic is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	 1 = The output of Channel 2 logic is inverted when applied to the logic cell 0 = The output of Channel 2 logic is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = The output of Channel 1 logic is inverted when applied to the logic cell0 = The output of Channel 1 logic is not inverted

Address	Name	Bit													
		15	14	13	12	11	10	9	8	7	6	5	4	3	2
FF0000h	DEVID		FAMID<7:0> DEV						DEV	<7:0>					
FF0002h	DEVREV		_						REV<3:0>						

TABLE 29-2: PIC24FJ CORE DEVICE ID REGISTERS

TABLE 29-3: DEVICE ID BIT FIELD DESCRIPTIONS

Bit Field	Register	Description				
FAMID<7:0>	DEVID	Encodes the family ID of the device; FAMID = 0x75.				
DEV<7:0>	DEVID	Encodes the individual ID of the device.				
REV<3:0>	DEVREV	Encodes the sequential (numerical) revision identifier of the device.				

TABLE 29-4: PIC24FJ256GA705 FAMILY DEVICE IDs

Device	DEVID
PIC24FJ64GA705	07
PIC24FJ128GA705	0B
PIC24FJ256GA705	0F
PIC24FJ64GA704	05
PIC24FJ128GA704	09
PIC24FJ256GA704	0D
PIC24FJ64GA702	06
PIC24FJ128GA702	0A
PIC24FJ256GA702	0E

29.2 Unique Device Identifier (UDID)

All PIC24FJ256GA705 family devices are individually encoded during final manufacturing with a Unique Device Identifier, or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- · Tracking the device
- · Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x800F00 and 0x800F08 in the device Configuration space. Table 29-5 lists the addresses of the identifier words and shows their contents.

UDID	Address	Description				
UDID1	0x800F00	UDID Word 1				
UDID2	0x800F02	UDID Word 2				
UDID3	0x800F04	UDID Word 3				
UDID4	0x800F06	UDID Word 4				
UDID5	0x800F08	UDID Word 5				

TABLE 29-5: UDID ADDRESSES

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS							
Dimensio	Dimension Limits			MAX					
Number of Pins	Ν		28						
Pitch	Pitch e			0.65 BSC					
Overall Height	Α	—	-	2.00					
Molded Package Thickness	A2	1.65	1.75	1.85					
Standoff	A1	0.05	-	-					
Overall Width	Е	7.40	7.80	8.20					
Molded Package Width	E1	5.00	5.30	5.60					
Overall Length	D	9.90	10.20	10.50					
Foot Length	L	0.55	0.75	0.95					
Footprint	1.25 REF								
Lead Thickness	С	0.09	-	0.25					
Foot Angle	¢	0°	4°	8°					
Lead Width	b	0.22	_	0.38					

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B