

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga705t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dim	F	Pin Number/G	rid Locator			Innut	
Function	28-Pin SOIC, SSOP, SPDIP	28-Pin QFN, UQFN	44-Pin TQFP	48-Pin QFN/TQFP	I/O	Buffer	Description
RP0	4	1	21	23	I/O	DIG/ST	Remappable Peripherals
RP1	5	2	22	24	I/O	DIG/ST	(input or output)
RP2	6	3	23	25	I/O	DIG/ST	
RP3	7	4	24	26	I/O	DIG/ST	
RP4	11	8	33	36	I/O	DIG/ST	
RP5	14	11	41	45	I/O	DIG/ST	
RP6	15	12	42	46	I/O	DIG/ST	
RP7	16	13	43	47	I/O	DIG/ST	
RP8	17	14	44	48	I/O	DIG/ST	
RP9	18	15	1	1	I/O	DIG/ST	
RP10	21	18	8	9	I/O	DIG/ST	
RP11	22	19	9	10	I/O	DIG/ST	
RP12	23	20	10	11	I/O	DIG/ST	
RP13	24	21	11	12	I/O	DIG/ST	
RP14	25	22	14	15	I/O	DIG/ST	
RP15	26	23	15	16	I/O	DIG/ST	
RP16	—	—	25	27	I/O	DIG/ST	
RP17	—	—	26	28	I/O	DIG/ST	
RP18	—	—	27	29	I/O	DIG/ST	
RP19	_	_	36	39	I/O	DIG/ST	
RP20	—	—	37	40	I/O	DIG/ST	
RP21	—	—	38	41	I/O	DIG/ST	
RP22	—	—	2	2	I/O	DIG/ST	
RP23	—	—	3	3	I/O	DIG/ST	
RP24	—	_	4	4	I/O	DIG/ST	
RP25	—	—	5	5	I/O	DIG/ST	
RP26	2	27	19	21	I/O	DIG/ST	
RP27	3	28	20	22	I/O	DIG/ST	
RP28		—	12	13	I/O	DIG/ST	
RPI29	—	—	—	8	Ι	DIG/ST	Remappable Peripherals
RPI30		—	_	20	I	DIG/ST	(input only)
RPI31	—	—	—	32	Ι	DIG/ST	
RPI32	_	—	_	44	Ι	DIG/ST	
Legend: TT	L = TTL input bu	uffer	ST =	Schmitt Trig	aer inpu	it buffer	

TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGCx and PGDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGCx/PGDx) programmed into the device match the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GA705 DEVICES

TABLE 4-1: PROGRAM MEMORY SIZES AND BOUNDARIES*	TABLE 4-1:	PROGRAM MEMORY SIZES AND BOUNDARIES ⁽²⁾
---	------------	--

Device	Program Memory Upper Boundary (Instruction Words)	Write Blocks ⁽¹⁾	Erase Blocks ⁽¹⁾
PIC24FJ256GA70X	02AFFEh (88,064 x 24)	1376	172
PIC24FJ128GA70X	015FFEh (45,056 x 24)	704	88
PIC24FJ64GA70X	00AFFEh (22,528 x 24)	352	44

Note 1: 1 Write Block = 128 Instruction Words; 1 Erase Block (Page) = 1024 Instruction Words.

2: To maintain integer page sizes, the memory sizes are not exactly half of each other.

TABLE 8-2: INTERRUPT VECTOR DETAILS

latana 2	IRQ		Int	terrupt Bit Lo	ocation
Interrupt Source	#	IVI Address	Flag	Enable	Priority
	lighest N	atural Order Pric	ority		
INT0 – External Interrupt 0	0	000014h	IFS0<0>	IEC0<0>	INT0Interrupt
IC1 – Input Capture 1	1	000016h	IFS0<1>	IEC0<1>	IC1Interrupt
OC1 – Output Compare 1	2	000018h	IFS0<2>	IEC0<2>	OC1Interrupt
T1 – Timer1	3	00001Ah	IFS0<3>	IEC0<3>	T1Interrupt
DMA0 – Direct Memory Access 0	4	00001Ch	IFS0<4>	IEC0<4>	DMA0Interrupt
IC2 – Input Capture 2	5	00001Eh	IFS0<5>	IEC0<5>	IC2Interrupt
OC2 – Output Compare 2	6	000020h	IFS0<6>	IEC0<6>	OC2Interrupt
T2 – Timer2	7	000022h	IFS0<7>	IEC0<7>	T2Interrupt
T3 – Timer3	8	000024h	IFS0<8>	IEC0<8>	T3Interrupt
SPI1 – SPI1 General	9	000026h	IFS0<9>	IEC0<9>	SPI1Interrupt
SPI1TX – SPI1 Transfer Done	10	000028h	IFS0<10>	IEC0<10>	SPI1TXInterrupt
U1RX – UART1 Receiver	11	00002Ah	IFS0<11>	IEC0<11>	U1RXInterrupt
U1TX – UART1 Transmitter	12	00002Ch	IFS0<12>	IEC0<12>	U1TXInterrupt
ADC1 – A/D Converter 1	13	00002Eh	IFS0<13>	IEC0<13>	ADC1Interrupt
DMA1 – Direct Memory Access 1	14	000030h	IFS0<14>	IEC0<14>	DMA1Interrupt
NVM – NVM Program/Erase Complete	15	000032h	IFS0<15>	IEC0<15>	NVMInterrupt
SI2C1 – I2C1 Slave Events	16	000034h	IFS1<0>	IEC1<0>	SI2C1Interrupt
MI2C1 – I2C1 Master Events	17	000036h	IFS1<1>	IEC1<1>	MI2C1Interrupt
Comp – Comparator	18	000038h	IFS1<2>	IEC1<2>	CompInterrupt
IOC – Interrupt-on-Change Interrupt	19	00003Ah	IFS1<3>	IEC1<3>	IOCInterrupt
INT1 – External Interrupt 1	20	00003Ch	IFS1<4>	IEC1<4>	INT1Interrupt
_	21	_		—	
_	22	_	_	_	
_	23			—	
DMA2 – Direct Memory Access 2	24	000044h	IFS1<8>	IEC1<8>	DMA2Interrupt
OC3 – Output Compare 3	25	000046h	IFS1<9>	IEC1<9>	OC3Interrupt
_	26	_	_	_	
	27	_	_	_	_
_	28	_	_	_	
INT2 – External Interrupt 2	29	00004Eh	IFS1<13>	IEC1<13>	INT2Interrupt
U2RX – UART2 Receiver	30	000050h	IFS1<14>	IEC1<14>	U2RXInterrupt
U2TX – UART2 Transmitter	31	000052h	IFS1<15>	IEC1<15>	U2TXInterrupt
SPI2 – SPI2 General	32	000054h	IFS2<0>	IEC2<0>	SPI2Interrupt
SPI2TX – SPI2 Transfer Done	33	000056h	IFS2<1>	IEC2<1>	SPI2TXInterrupt
_	34			—	
_	35	_	_	_	
DMA3 – Direct Memory Access 3	36	00005Ch	IFS2<4>	IEC2<4>	DMA3Interrupt
IC3 – Input Capture 3	37	00005Eh	IFS2<5>	IEC2<5>	IC3Interrupt
_	38	_	_	—	_
_	39		—	—	
_	40		—	—	_
CCT3 – Capture/Compare Timer3	43	00006Ah	IFS2<11>	IEC2<11>	CCT3Interrupt

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—										
bit 15							bit 8				
·											
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0				
_			—	REFOMD	CTMUMD	LVDMD					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-4	Unimplemen	ted: Read as '	כ'								
bit 3	REFOMD: Re	eference Outpu	t Clock Disable	e bit							
	1 = Module is	s disabled									
	0 = Module p	ower and clock	sources are e	enabled							
bit 2	CTMUMD: CT	TMU Module D	isable bit								
	1 = Module is	s disabled									
	0 = Module power and clock sources are enabled										
bit 1	LVDMD: High/Low-Voltage Detect Module Disable bit										
	1 = Module is disabled										
	0 = Module power and clock sources are enabled										
bit 0	Unimplemen	ted: Read as '0	o'								

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros. Table 11-3 through Table 11-5 show ANSELx bits and ports availability for device variants. When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

Device		PORTA I/O Pins														
Device	RA15	RA14	RA13	RA12	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PIC24FJXXXGA705	—	Х	Х	Х	Х	Х	Х	Х	Х	—	—	Х	Х	Х	Х	Х
PIC24FJXXXGA704		-	-			Х	Х	Х	Х	_	_	Х	Х	Х	Х	Х
PIC24FJXXXGA702		-	-			—	_	_	_	_	_	Х	Х	Х	Х	Х
ANSELA bit present		_	_	_		—	_	_	_	_	_	_	Х	Х	Х	Х

TABLE 11-3: PORTA PIN AND ANSELx AVAILABILITY

TABLE 11-4: PORTB PIN AND ANSELx AVAILABILITY

Device		PORTB I/O Pins														
Device	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PIC24FJXXXGA705	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA704	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA702	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB bit present	Х	Х	Х	Х	_	_	Х	_	_	_	_	_	Х	Х	Х	Х

TABLE 11-5: PORTC PIN AND ANSELX AVAILABILITY

Device		PORTC I/O Pins														
Device	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PIC24FJXXXGA705	—	_	_	—	—	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA704	_	_	—	_		_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
PIC24FJXXXGA702	_	_	—	_		_	—	—	—	—	_	—	—	_	—	—
ANSELC bit present	_			_		_		_			_		Х	Х	Х	Х

REGISTER 11-3: TRISX: OUTPUT ENABLE FOR PORTX REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS:	x<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	'OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **TRISx<15:0>:** Output Enable for PORTx bits 1 = LATx[n] is not driven on the PORTx[n] pin 0 = LATx[n] is driven on the PORTx[n] pin

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

REGISTER 11-4: PORTX: INPUT DATA FOR PORTX REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

11.5.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-32 through Register 11-46). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-7).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

IABLE 11-7:	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)	1

Output Function Number	Function	Output Name
0	None (Pin Disabled)	
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OCM2A	CCP2A Output Compare
17	OCM2B	CCP2B Output Compare
18	OCM3A	CCP3A Output Compare
19	OCM3B	CCP3B Output Compare
20	OCM4A	CCP4A Output Compare
21	OCM4B	CCP4B Output Compare
22	Reserved	_
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	PWRGT	RTCC Power Control
28	REFO	Reference Clock Output
29	CLC10UT	CLC1 Output
30	CLC2OUT	CLC2 Output
31	RTCC	RTCC Clock Output

PIC24FJ256GA705 FAMILY

3: The A/D event trigger is available only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode.

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS70000352), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA705 family contain three independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to 6 Clock Sources Available for Each module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/ Trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

"Peripheral Pin Select (PPS)" for more information.

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger mode operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{F_{CY}}{F_{PWM} \cdot (T_{imer} Prescale Value)} \right)}{\log_{10} (2)}$ bits

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

- Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 32 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
 TCY = 2 Tosc = 62.5 ns
 PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μS
 PWM Period = (PR2 + 1) TCY (Timer2 Prescale Value)
 19.2 μS = (PR2 + 1) 62.5 ns 1
 PR2 = 306

 Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
 PWM Resolution = log₁₀(FCY/FPWM)/log₁₀2) bits
 = (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits
 = 8.3 bits
- Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TABLE 15-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz) ^{(*}	1)
		· • · · · · · · · · · · · · · · · · · ·	

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

FIGURE 16-4: 32-BIT TIMER MODE

16.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of

output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 16-2 shows the various modes available in Output Compare modes.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)) Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)	Ī		
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010	1	Output Low on Compare (32-bit)			
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)			
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM Mode		
0111	0	Variable Frequency Pulse (16-bit)			
1111	0	External Input Source Mode (16-bit)			

TABLE 16-2: OUTPUT COMPARE/PWM MODES

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM	—	SSDG	—		_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14	PWMRSEN: (1 = ASEVT b has ende 0 = ASEVT b ASDGM: CCF 1 = Waits unt 0 = Shutdown	CCPx PWM Re it clears autom d it must be clea Px Auto-Shutdo il the next Time n event occurs	estart Enable b atically at the l red in software own Gate Mode e Base Reset o immediately	it beginning of the to resume PW e Enable bit or rollover for sh	e next PWM pe /M activity on o nutdown to occ	riod, after the s utput pins ur	shutdown input
bit 13	Unimplemen	ted: Read as '),				
bit 12	SSDG: CCPx 1 = Manually ASDGM 0 = Normal n	Software Shut forces auto-sh bit still applies) nodule operatio	down/Gate Co nutdown, timer n	ntrol bit ⁻ clock gate or	input capture	signal gate ev	ent (setting of
bit 11-8	Unimplemen	ted: Read as '	י)				
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	Source Enable	e bits		
	1 = ASDGx S 0 = ASDGx S	Source n is ena Source n is disa	bled (see Table bled	e 16-6 for auto-	shutdown/gatir	ng sources)	

REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 16-6: AUTO-SHUTDOWN SOURCES

	Auto-Shutdown Source							
ASDG<7.0>	MCCP1	MCCP2	MCCP3	MCCP4				
1xxx xxxx		OCFB						
x1xx xxxx		OCFA						
xx1x xxxx	CLC1	CLC1 CLC2 Not Used						
xxx1 xxxx		Not	Used					
xxxx 1xxx		Not Used						
xxxx x1xx		CMP3 Out						
xxxx xx1x		CMP2 Out						
xxxx xxx1		CMP	1 Out					

21.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- Timestamp Registers

21.2.1 REGISTER MAPPING

Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

21.2.2 WRITE LOCK

To prevent spurious changes to the Time Control or Time Value registers, the WRLOCK bit (RTCCON1L1<11>) must be cleared ('0'). The POR default state is when the WRLOCK bit is '0' and is cleared on any device Reset (POR, BOR, MCLR). It is recommended that the WRLOCK bit be set to '1' after the Date and Time registers are properly initialized, and after the RTCEN bit (RTCCON1L<15>) has been set.

Any attempt to write to the RTCEN bit, the RTCCON2L/H registers, or the Date or Time registers, will be ignored as long as WRLOCK is '1'. The Alarm, Power Control and Timestamp registers can be changed when WRLOCK is '1'.

EXAMPLE 21-1: SETTING THE WRLOCK BIT

Clearing the WRLOCK bit requires an unlock sequence after it has been written to a '1', writing two bytes consecutively to the NVMKEY register. A sample assembly sequence is shown in Example 21-1. If WRLOCK is already cleared, it can be set to '1' without using the unlock sequence.

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit (RTCCON1L<11>) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 21-1.

21.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

DISI	#6	;disable interrupts for 6 instructions
MOV	#NVKEY, W1	
MOV	#0x55, W2	; first unlock code
MOV	W2, [W1]	; write first unlock code
MOV	#0xAA, W3	; second unlock sequence
MOV	W3, [W1]	; write second unlock sequence
BCLR	RTCCON1L, #WRLOCK	; clear the WRLOCK bit

REGISTER 29-5: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	IOL1WAY	PLLSS	SOSCSEL	OSCIOFCN	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM<1:0>: Clock Switching and Monitor Selection bits
	 1x = Clock switching and the Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5	IOL1WAY: Peripheral Pin Select Configuration bit
	 1 = The IOLOCK bit can be set only once (with unlock sequence). 0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit 4	PLLSS: PLL Secondary Selection Configuration bit
	This Configuration bit only takes effect when the PLL is NOT being used by the system (i.e., not selected as part of the system clock source). Used to generate an independent clock out of REFO. 1 = PLL is fed by the Primary Oscillator 0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3	SOSCSEL: SOSC Selection Configuration bit
	1 = Crystal (SOSCI/SOSCO) mode 0 = Digital (SOSCI) Externally Supplied Clock mode
bit 2	OSCIOFCN: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected (10 MHz-32 MHz) 01 = XT Oscillator mode is selected (1.5 MHz-10 MHz) 00 = External Clock mode is selected

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

G

Guidelines for Getting Started with 16-Bit MCUs	29
н	
High/Low-Voltage Detect (HLVD) High/Low-Voltage Detect. See HLVD.	327

L

	Porte	125
1/01	Analog Port Ding Configuration (ANISy)	120
	Configuring Analog/Digital Eurotion of I/O Ding	120
	Configuring Analog/Digital Function of I/O Fins	120
		129
	Input Voltage Levels for Port/Pin Tolerated	400
	Description Input	126
	Open-Drain Configuration	126
	Parallel (PIO)	125
	Peripheral Pin Select	136
	PORTA Pin and ANSELx Availability	127
	PORTB Pin and ANSELx Availability	127
	PORTC Pin and ANSELx Availability	127
	Write/Read Timing	126
l ² C	0	
	Clock Rates	223
	Communicating as Master in Single	
	Master Environment	221
	Reserved Addresses	223
	Setting Boud Bate on Bun Manter	220
	Selling Baud Rale as Bus Master	223
100	Slave Address Masking	223
ICS		
In-C	fircuit Debugger	344
Inpu	it Capture	
	32-Bit Cascaded Mode	168
	Operations	168
	Synchronous and Trigger Modes	167
Inpu	It Capture with Dedicated Timers	167
Inst	ruction Set	
	Overview	351
	Summary	
	Symbols Used in Opcode Descriptions	350
Inte	rfacing Program and Data Memory Spaces	58
Inte	r-Integrated Circuit See I ² C	
Into	rnet Address	407
Inte	rrunt Controllor	407
me	Alternate Interrunt Vector Table (AIVT)	00 05
	Alternate Interrupt vector Table (AIVT)	
	IFS0-IFS7	
	INTCON1	90
	INTCON2	90
	INTCON4	90
	INTTREG	90
	IPC0-IPC29	90
	Interrupt Vector Details	87
	Interrupt Vector Table (IVT)	85
	Reset Sequence	85
	Descurses	00
	Resources	
Inte	rrupt-on-Change (IOC)	90 128
Inte Inte	rrupt-on-Change (IOC)	128
Inte Inte	rrupt-on-Change (IOC) rrupts Tran Vectors	90 128 .86
Inte Inte	rrupt-on-Change (IOC) rrupts Trap Vectors	128
Inte Inte	rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables	90 128 86 86
Inte Inte	rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables	90 128 86 86
Inter Inter	Resources rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables	90 128 86 86
Inte Inte J JTA	Resources rrupt-on-Change (IOC) rrupts Trap Vectors Vector Tables G Interface	90 128 86 86 86
Inte Inte J JTA	Resources rrupts Trap Vectors Vector Tables G Interface	90 128 86 86 86

L

Low-Voltage/Retention Regulator	341
Μ	
Memory Organization	41
Program Memory Space	41
Microchip Internet Web Site	407
MPLAB ASM30 Assembler, Linker, Librarian	346
MPLAB Integrated Development	
Environment Software	345
MPLAB PM3 Device Programmer	347
MPLAB REAL ICE In-Circuit Emulator System	347
MPLINK Object Linker/MPLIB Object Librarian	346
Ν	
Near Data Space	46
0	
On-Chip Voltage Regulator	341
POR	341
Standby Mode	341
Oscillator Configuration	97
Clock Switching	106
Sequence	106
Configuration Bit Values for Clock Selection	99
Control Registers	99
Initial Configuration on POR	98
Modes	108
Output Compare with Dedicated Timers	173
Operating Modes	173
32-Bit Cascaded Mode	173
Synchronous and Trigger Modes	173
Operations	174
_	

Ρ

Packaging	
Details	377
Marking	375
Peripheral Enable Bits	115
Peripheral Module Disable Bits	115
Peripheral Pin Select (PPS)	136
Available Peripherals and Pins	136
Configuration Control	139
Considerations for Selection	140
Control Registers	141
Input Mapping	137
Mapping Exceptions	139
Output Mapping	138
Peripheral Priority	136
Selectable Input Sources	137
Selectable Output Sources	138
PIC24FJ256GA705 Family Pinout Descriptions	20
Pin Descriptions	
28-Pin QFN, UQFN Devices	3
28-Pin SOIC, SSOP, SPDIP Devices	4
44-Pin TQFP Devices	6
48-Pin TQFP Devices	10
48-Pin UQFN Devices	8
Power-Saving Features	
Clock Frequency, Clock Switching	113
Doze Mode	115
Instruction-Based Modes	113
Idle	114
Sleep	113
Low-Voltage Retention Regulator	114
Selective Peripheral Module Control	115

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-1023-2