

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u7cvm08ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the AP to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller in order to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The Temperature sensor IP is used for detecting die temperature. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed, therefore the read out value may not be the reflection of the temperature value of the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 5 Mbps. 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.
VDOA	VDOA	Multimedia Peripherals	Video Data Order Adapter (VDOA): used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Modules List

3.1 Special Signal Considerations

Table 3 lists special signal considerations for the i.MX 6Solo/6DualLite processors. The signal names are listed in alphabetical order.

The package contact assignments can be found in Section 6, "Package Information and Contact Assignments." Signal descriptions are provided in the *i.MX 6Solo/6DualLite Reference Manual* (IMX6SDLRM).

Signal Name	Remarks
CLK1_P/CLK1_N CLK2_P/CLK2_N	 Two general purpose differential high speed clock Input/outputs are provided. Any or both of them could be used: To feed external reference clock to the PLLs and further to the modules inside SoC, for example as alternate reference clock for PCIe, Video/Audio interfaces, etc. To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals, for example it could be used as an output of the PCIe master clock (root complex use) See the i.MX 6Solo/6DualLite reference manual for details on the respective clock trees. The clock inputs/outputs are LVDS differential pairs compatible with TIA/EIA-644 standard, the maximum frequency range supported is 0600 MHz. Alternatively one may use single ended signal to drive CLKx_P input. In this case corresponding CLKx_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. See LVDS pad electrical specification for further details. After initialization, the CLKx inputs/outputs could be disabled (if not used). If unused any or both of the CLKx_N/P pairs may remain unconnected.
XTALOSC_RTC_XTALI/ RTC_XTALO	If the user wishes to configure XTALOSC_RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (\leq 100 k Ω ESR, 10 pF load) should be connected between XTALOSC_RTC_XTALI and RTC_XTALO. Remember that the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from XTALOSC_RTC_XTALI and RTC_XTALO to either power or ground (>100 M Ω). This will debias the amplifier and cause a reduction of startup margin. Typically XTALOSC_RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into XTALOSC_RTC_XTALI the RTC_XTALO pin must remain unconnected or driven with a complimentary signal. The logic level of this forcing clock must not exceed VDD_SNVS_CAP level and the frequency must be <100 kHz under typical conditions.
XTALI/XTALO	A 24.0 MHz crystal should be connected between XTALI and XTALO. level and the frequency should be <32 MHz under typical conditions. See the Hardware Development Guide (IMX6DQ6SDLHDG), Design Checklist chapter, for details on crystal selection. NXP BSP (board support package) software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTALI must be directly driven by the external oscillator and XTALO remains unconnected. The XTALI signal level must swing from ~0.8 x NVCC_PLL_OUT to ~0.2 V. If this clock is used as a reference for USB and PCIe, then there are strict frequency tolerance and jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details.

Table 3. Special Signal Considerations

4.1.3 Operating Ranges

Table 8 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX* 6Solo/6DualLite Reference Manual (IMX6SDLRM).

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment ²
Run mode: LDO enabled	VDD_ARM_IN	1.275 ³	_	1.5	V	LDO Output Set Point (VDD_ARM_CAP) = 1.150 V minimum for operation up to 792MHz.
		1.275 ³	—	1.5	V	LDO Output Set Point (VDD_ARM_CAP) = 1.125 V minimum for operation up to 396MHz.
	VDD_SOC_IN	1.275 ^{3,4}		1.5	V	VPU \leq 328 MHz, VDD_SOC and VDD_PU LDO outputs (VDD_SOC_CAP and VDD_PU_CAP) = 1.225 V ⁵ maximum and 1.15 V minimum.
Run mode: LDO	VDD_ARM_IN	1.150	—	1.3	V	LDO bypassed for operation up to 792 MHz
bypassed		1.125	—	1.3	V	LDO bypassed for operation up to 396 MHz
	VDD_SOC_IN	1.150 ⁶	_	1.21 ⁵	V	LDO bypassed for operation VPU \leq 328 MHz
Standby/DSM mode	VDD_ARM_IN	0.9	—	1.3	V	Refer to Table 11, "Stop Mode Current and Power Consumption," on page 29.
	VDD_SOC_IN	0.9	—	1.225 ⁵	V	—
VDD_HIGH internal regulator	VDD_HIGH_IN	2.8	-	3.3	V	Must match the range of voltages that the rechargeable backup battery supports.
Backup battery supply range	VDD_SNVS_IN ⁷	2.9		3.3	V	Must be supplied from the same supply as VDD_HIGH_IN if the system does not require keeping real time and other data on OFF state.
USB supply voltages	USB_OTG_VBUS	4.4		5.25	V	_
	USB_H1_VBUS	4.4		5.25	V	_
DDR I/O supply	NVCC_DRAM	1.14	1.2	1.3	V	LPDDR2
voltage		1.425	1.5	1.575	V	DDR3
		1.283	1.35	1.45	V	DDR3L
Supply for RGMII I/O power group ⁸	NVCC_RGMII	1.15	_	2.625	V	1.15 V–1.30 V in HSIC 1.2 V mode 1.43 V–1.58 V in RGMII 1.5 V mode 1.70 V–1.90 V in RGMII 1.8 V mode 2.25 V–2.625 V in RGMII 2.5 V mode

Table	8.	Oper	rating	Ranges
-------	----	------	--------	--------

The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.

NOTE

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier.

Table 9 shows the interface frequency requirements.

Parameter Description Symbol		Min	Тур	Мах	Unit
RTC_XTALI Oscillator ^{1,2}	f _{ckil}	—	32.768 ³ /32.0	_	kHz
XTALI Oscillator ^{2,4}	f _{xtal}	_	24	_	MHz

Table 9. External Input Clock Frequency

¹ External oscillator or a crystal with internal oscillator amplifier.

² The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).

³ Recommended nominal frequency 32.768 kHz.

⁴ External oscillator or a fundamental frequency crystal with internal oscillator amplifier.

The typical values shown in Table 9 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For XTALOSC_RTC_XTALI operation, two clock sources are available.

- On-chip 40 kHz ring oscillator—this clock source has the following characteristics:
 - Approximately 25 μ A more Idd than crystal oscillator
 - Approximately ±50% tolerance
 - No external component required
 - Starts up quicker than 32 kHz crystal oscillator
- External crystal oscillator with on-chip support circuit:
 - At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.
 - Higher accuracy than ring oscillator
 - If no external crystal is present, then the ring oscillator is used

The choice of a clock source must be based on real-time clock use and precision timeout.

NOTE

In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.

ID	Parameter	Timing T = GPMI Clock Cycle		ing lock Cycle	Unit
			Min	Мах	
NF1	NAND_CLE setup time	tCLS	$(AS + DS) \times T$	- 0.12 [see ^{2,3}]	ns
NF2	NAND_CLE hold time	tCLH	DH × T - 0	.72 [see ²]	ns
NF3	NAND_CE0_B setup time	tCS	(AS + DS + 1)×T [see ^{3,2}]	ns
NF4	NAND_CE0_B hold time	tCH	(DH+1) × T	- 1 [see ²]	ns
NF5	NAND_WE_B pulse width	tWP	$DS \times T$ [see ²]		ns
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49 [see ^{3,2}]		ns
NF7	NAND_ALE hold time	tALH	(DH × T - 0.42 [see ²]		ns
NF8	Data setup time	tDS	DS × T - 0.26 [see ²]		ns
NF9	Data hold time	tDH	DH × T - 1	.37 [see ²]	ns
NF10	Write cycle time	tWC	(DS + DH)	×T [see ²]	ns
NF11	NAND_WE_B hold time	tWH	DH×T	[see ²]	ns
NF12	Ready to NAND_RE_B low	tRR ⁴	(AS + 2) × T [see ^{3,2}]	_	ns
NF13	NAND_RE_B pulse width	tRP	DS × T	[see ²]	ns
NF14	READ cycle time	tRC	$(DS + DH) \times T [see 2]$		ns
NF15	NAND_RE_B high hold time	tREH	DH × T [see ²]		ns
NF16	Data setup on read	tDSR	— (DS × T -0.67)/18.38 [see ^{5,6}]		ns
NF17	Data hold on read	tDHR	0.82/11.83 [see ^{5,6}] —		ns

Table 41. Asynchronous Mode Timing Parameters¹

¹ GPMI's Async Mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = GPMI clock period -0.075ns (half of maximum p-p jitter).

⁴ NF12 is guaranteed by the design.

⁵ Non-EDO mode.

⁶ EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 26), NF16/NF17 are different from the definition in non-EDO mode (Figure 25). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

Figure 31. NAND_DQS/NAND_DQ Read Valid Window

ID	Parameter		Timing T = GPMI Clock Cycle		Unit
			Min	Мах	
NF18	NAND_CE0_B access time	tCE	CE_DELAY × T -	0.79 [see ²]	ns
NF19	NAND_CE0_B hold time	tCH	0.5 × tCK - 0.6	63 [see ²]	ns
NF20	Command/address NAND_DATAxx setup time	tCAS	$0.5 imes tCK \cdot$	0.05	ns
NF21	Command/address NAND_DATAxx hold time	tCAH	0.5 × tCK - 1.23		ns
NF22	clock period	tCK	—		ns
NF23	preamble delay	tPRE	PRE_DELAY × T - 0.29 [see ²]		ns
NF24	postamble delay	tPOST	POST_DELAY × T - 0.78 [see ²]		ns
NF25	NAND_CLE and NAND_ALE setup time	tCALS	0.5 × tCK - 0.86		ns
NF26	NAND_CLE and NAND_ALE hold time	tCALH	0.5 × tCK - 0.37		ns
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	T - 0.41 [see ²]		ns
NF28	Data write setup	—	0.25 × tCK - 0.35		
NF29	Data write hold	—	0.25 × tCK - 0.85		
NF30	NAND_DQS/NAND_DQ read setup skew	—	— 2.06		
NF31	NAND_DQS/NAND_DQ read hold skew	—	_	1.95	

Table 42. Source Synchronous Mode Timing Parameters¹

¹ GPMI's source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).

For DDR Source sync mode, Figure 31 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6Solo/6DualLite reference manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.2.2 ECSPI Slave Mode Timing

Figure 35 depicts the timing of ECSPI in slave mode. Table 45 lists the ECSPI slave mode timing characteristics.

Note: ECSPIx_MISO is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave.

Figure 35. ECSPI Slave Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read ECSPIx_SCLK Cycle Time-Write	t _{clk}	43 15	—	ns
CS2	ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write	t _{SW}	21.5 7	—	ns
CS4	ECSPIx_SS_B pulse width	t _{CSLH}	Half ECSPIx_SCLK period		ns
CS5	ECSPIx_SS_B Lead Time (CS setup time)	t _{SCS}	5	_	ns
CS6	ECSPIx_SS_B Lag Time (CS hold time)	t _{HCS}	5	_	ns
CS7	ECSPIx_MOSI Setup Time	t _{Smosi}	4	_	ns
CS8	ECSPIx_MOSI Hold Time	t _{Hmosi}	4	_	ns
CS9	ECSPIx_MISO Propagation Delay (C _{LOAD} = 20 pF) •	t _{PDmiso}	4	19	ns

Table 45. ECSPI Slave Mode Timing Parameters

Table 52. MI	Asynchronous	Inputs	Signal	Timing
--------------	--------------	--------	--------	--------

ID	Characteristic	Min	Max	Unit
M9 ¹	ENET_CRS to ENET_COL minimum pulse width	1.5	—	ENET_TX_CLK period

¹ ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 44 shows MII asynchronous input timings. Table 53 describes the timing parameters (M10–M15) shown in the figure.

Figure 44. MII Serial Management Channel Timing Diagram

Table 53. MII Serial Management Channel Til	ning
---	------

ID	Characteristic	Min	Max	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	0	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	-	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	—	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	—	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

4.11.5.2 RMII Mode Timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz \pm 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.

Figure 45 shows RMII mode timings. Table 54 describes the timing parameters (M16–M21) shown in the figure.

Figure 45. RMII Mode Signal Timing Diagram

Table 54. RMII Signal Timing

ID	Characteristic	Min	Max	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid	4	—	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid	_	15	ns
M20	ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	4	—	ns
M21	ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	—	ns

4.11.5.3 Signal Switching Specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

4.11.9 I²C Module Timing Parameters

This section describes the timing parameters of the I^2C module. Figure 57 depicts the timing of I^2C module, and Table 58 lists the I^2C module timing characteristics.

Figure 57. I²C Bus Timing

Table	58.	l ² C	Module	Timing	Parameters
-------	-----	------------------	--------	--------	------------

	Barometer	Standa	ard Mode	Fast Mo	Unit	
	Falameter	Min	Мах	Min	Max	Onit
IC1	I2Cx_SCL cycle time	10	_	2.5		μs
IC2	Hold time (repeated) START condition	4.0	_	0.6		μs
IC3	Set-up time for STOP condition	4.0	_	0.6		μs
IC4	Data hold time	0 ¹	3.45 ²	01	0.9 ²	μs
IC5	HIGH Period of I2Cx_SCL Clock	4.0	_	0.6		μs
IC6	LOW Period of the I2Cx_SCL Clock	4.7	_	1.3		μs
IC7	Set-up time for a repeated START condition	4.7	_	0.6	—	μs
IC8	Data set-up time	250	_	100 ³	—	ns
IC9	Bus free time between a STOP and START condition	4.7	_	1.3	—	μs
IC10	Rise time of both I2Cx_SDA and I2Cx_SCL signals	—	1000	$20 + 0.1 C_b^4$	300	ns
IC11	Fall time of both I2Cx_SDA and I2Cx_SCL signals	—	300	$20 + 0.1 C_b^4$	300	ns
IC12	Capacitive load for each bus line (C _b)	—	400	—	400	pF

¹ A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL.

² The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.

³ A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the I2Cx_SCL line is released.

⁴ C_b = total capacitance of one bus line in pF.

4.11.10 Image Processing Unit (IPU) Module Parameters

The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities:

- Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
- Related image processing and manipulation: sensor image signal processing, display processing, image conversions, and other related functions.
- Synchronization and control capabilities, such as avoidance of tearing artifacts.

4.11.10.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 59 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 1 cycle	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA00	—	—		—	—	_	_	0	C[0]
IPUx_CSIx_ DATA01	_	_	_	_	—	_	_	0	C[1]
IPUx_CSIx_ DATA02	—	_	_	—	—	_	—	C[0]	C[2]
IPUx_CSIx_ DATA03	_	—	_	—	—	—	—	C[1]	C[3]
IPUx_CSIx_ DATA04	_	—	_	—	—	B[0]	C[0]	C[2]	C[4]
IPUx_CSIx_ DATA05	—	_	_	—	—	B[1]	C[1]	C[3]	C[5]
IPUx_CSIx_ DATA06	—	_	_	—	—	B[2]	C[2]	C[4]	C[6]
IPUx_CSIx_ DATA07	_	_	_	—	—	B[3]	C[3]	C[5]	C[7]
IPUx_CSIx_ DATA08	—	_	_	—	—	B[4]	C[4]	C[6]	C[8]
IPUx_CSIx_ DATA09	_	—	_	—	—	G[0]	C[5]	C[7]	C[9]
IPUx_CSIx_ DATA10	_	—	_	—	—	G[1]	C[6]	0	Y[0]
IPUx_CSIx_ DATA11	_	_	—	—	_	G[2]	C[7]	0	Y[1]
IPUx_CSIx_ DATA12	B[0], G[3]	R[2],G[4],B[2]	R/G/B[4]	R/G/B[0]	Y/C[0]	G[3]	Y[0]	Y[0]	Y[2]

Table 59. Camera Input Signal Cross Reference, Format, and Bits Per Cycle

Table 59.	Camera Input	Signal Cros	s Reference	. Format.	and Bits P	er Cvcle	(continued)
	•••••••••••••••••••••••••••••••••••••••			,,			(

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 1 cycle	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA13	B[1], G[4]	R[3],G[5],B[3]	R/G/B[5]	R/G/B[1]	Y/C[1]	G[4]	Y[1]	Y[1]	Y[3]
IPUx_CSIx_ DATA14	B[2], G[5]	R[4],G[0],B[4]	R/G/B[0]	R/G/B[2]	Y/C[2]	G[5]	Y[2]	Y[2]	Y[4]
IPUx_CSIx_ DATA15	B[3], R[0]	R[0],G[1],B[0]	R/G/B[1]	R/G/B[3]	Y/C[3]	R[0]	Y[3]	Y[3]	Y[5]
IPUx_CSIx_ DATA16	B[4], R[1]	R[1],G[2],B[1]	R/G/B[2]	R/G/B[4]	Y/C[4]	R[1]	Y[4]	Y[4]	Y[6]
IPUx_CSIx_ DATA17	G[0], R[2]	R[2],G[3],B[2]	R/G/B[3]	R/G/B[5]	Y/C[5]	R[2]	Y[5]	Y[5]	Y[7]
IPUx_CSIx_ DATA18	G[1], R[3]	R[3],G[4],B[3]	R/G/B[4]	R/G/B[6]	Y/C[6]	R[3]	Y[6]	Y[6]	Y[8]
IPUx_CSIx_ DATA19	G[2], R[4]	R[4],G[5],B[4]	R/G/B[5]	R/G/B[7]	Y/C[7]	R[4]	Y[7]	Y[7]	Y[9]

¹ IPUx_CSIx stands for IPUx_CSI0 or IPUx_CSI1.

² The MSB bits are duplicated on LSB bits implementing color extension.

³ The two MSB bits are duplicated on LSB bits implementing color extension.

⁴ YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).

⁵ RGB 16 bits—Supported in two ways: (1) As a "generic data" input, with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol.

⁶ YCbCr 16 bits—Supported as a "generic-data" input, with no on-the-fly processing.

⁷ YCbCr 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).

⁸ YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).

4.11.10.2 Sensor Interface Timings

There are three camera timing modes supported by the IPU.

4.11.10.2.1 BT.656 and BT.1120 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards.

This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPUx_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPUx_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPUx_CSIx_DATA_EN bus.

i.MX 6Solo/6DualLite	6Solo/6DualLite LCD								
	RGB, RGB/TV Signal Allocation (Example)							Comment ^{1,2}	
Port Name (x=0, 1)	Signal Name (General)	16-bit RGB	18-bit RGB	24 Bit RGB	8-bit YCrCb ³	16-bit YCrCb	20-bit YCrCb		
IPUx_DISPx_DAT07	DAT[7]	G[2]	G[1]	B[7]	Y/C[7]	C[7]	C[7]	—	
IPUx_DISPx_DAT08	DAT[8]	G[3]	G[2]	G[0]		Y[0]	C[8]	—	
IPUx_DISPx_DAT09	DAT[9]	G[4]	G[3]	G[1]		Y[1]	C[9]		
IPUx_DISPx_DAT10	DAT[10]	G[5]	G[4]	G[2]		Y[2]	Y[0]		
IPUx_DISPx_DAT11	DAT[11]	R[0]	G[5]	G[3]	—	Y[3]	Y[1]	_	
IPUx_DISPx_DAT12	DAT[12]	R[1]	R[0]	G[4]	—	Y[4]	Y[2]	_	
IPUx_DISPx_DAT13	DAT[13]	R[2]	R[1]	G[5]	—	Y[5]	Y[3]	_	
IPUx_DISPx_DAT14	DAT[14]	R[3]	R[2]	G[6]	—	Y[6]	Y[4]	_	
IPUx_DISPx_DAT15	DAT[15]	R[4]	R[3]	G[7]		Y[7]	Y[5]		
IPUx_DISPx_DAT16	DAT[16]	—	R[4]	R[0]		—	Y[6]		
IPUx_DISPx_DAT17	DAT[17]	_	R[5]	R[1]			Y[7]	—	
IPUx_DISPx_DAT18	DAT[18]	—	—	R[2]	_		Y[8]	—	
IPUx_DISPx_DAT19	DAT[19]	_		R[3]			Y[9]	—	
IPUx_DISPx_DAT20	DAT[20]	—	—	R[4]		—	—		
IPUx_DISPx_DAT21	DAT[21]	—	—	R[5]		—	—		
IPUx_DISPx_DAT22	DAT[22]	—	—	R[6]	—	—	—	_	
IPUx_DISPx_DAT23	DAT[23]	—	—	R[7]	—	—	—	_	
DIx_DISP_CLK		PixCLK				_			
DIx_PIN1				_				May be required for anti-tearing	
DIx_PIN2				HSYNC				—	
DIx_PIN3		VSYNC					VSYNC out		

Table 61.	Video Signal	Cross-Reference	(continued)
-----------	--------------	------------------------	-------------

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit			
	Model Parameters used for Driver Load switching performance evaluation								
C _{PAD}	Equivalent Single ended I/O PAD capacitance.	_	_	_	1	pF			
C _{PIN}	Equivalent Single ended Package + PCB capacitance.	_	_	—	2	pF			
L _S	Equivalent wire bond series inductance	—	—	—	1.5	nH			
R _S	Equivalent wire bond series resistance	—	—	—	0.15	Ω			
RL	Load resistance	_	80	100	125	Ω			

Table 66. Electrical and Timing Information (continued)

4.11.12.6 High-Speed Clock Timing

Figure 68. DDR Clock Definition

4.11.12.7 Forward High-Speed Data Transmission Timing

The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 69:

Figure 69. Data to Clock Timing Definitions

п	Parameter ^{1,2}	All Freq	Unit	
			Мах	Onic
SJ10	JTAG_TCK low to JTAG_TDO data valid	—	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	—	44	ns
SJ12	JTAG_TRST_B assert time	100	—	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns

Table 69. JTAG Timing (continued)

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.17 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 70 and Figure 85 and Figure 86 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

Characteristics	Symbol	Timing Para	Unit	
	Symbol	Min	Max	Unit
SPDIF_IN Skew: asynchronous inputs, no specs apply	—	_	0.7	ns
SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling			1.5 24.2 31.3	ns
SPDIF_OUT output (Load = 30pf) Skew Transition rising Transition falling 			1.5 13.6 18.0	ns
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	—	ns
SPDIF_SR_CLK high period	srckph	16.0	—	ns
SPDIF_SR_CLK low period	srckpl	16.0	—	ns
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0	—	ns
SPDIF_ST_CLK high period	stclkph	16.0	—	ns
SPDIF_ST_CLK low period	stclkpl	16.0	—	ns

Table 70. SPDIF Timing Parameters

Figure 86. SPDIF_ST_CLK Timing Diagram

4.11.18 SSI Timing Parameters

This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous interfaces are summarized in Table 71.

Port	Signal Nomenclature	Type and Access
AUDMUX port 1	SSI 1	Internal
AUDMUX port 2	SSI 2	Internal
AUDMUX port 3	AUD3	External—AUD3 I/O
AUDMUX port 4	AUD4	External—EIM or CSPI1 I/O through IOMUXC
AUDMUX port 5	AUD5	External—EIM or SD1 I/O through IOMUXC
AUDMUX port 6	AUD6	External—EIM or DISP2 through IOMUXC
AUDMUX port 7	SSI 3	Internal

Table 71. AUDMUX Port Allocation

NOTE

The terms WL and BL used in the timing diagrams and tables refer to Word Length (WL) and Bit Length (BL).

Package Information and Contact Assignments

6.2.2 21 x 21 mm Supplies Contact Assignments and Functional Contact Assignments

Table 86 shows supplies contact assignments for the 21 x 21 mm package.

Table 86. 21 x 21 mr	n Supplies	Contact Assignments
----------------------	------------	---------------------

Supply Rail Name	Ball(s) Position(s)	Remark		
CSI_REXT	D4	—		
DRAM_VREF	AC2	_		
DSI_REXT	G4	_		
GND	A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5, E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15, H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2, L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18, N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12, R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12, U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11, W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7, AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4, AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25			
HDMI_REF	J1			
HDMI_VP	L7	_		
HDMI_VPH	M7	_		
NVCC_CSI	N7	Supply of the camera sensor interface		
NVCC_DRAM	R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18	Supply of the DDR interface		
NVCC_EIM	K19, L19, M19	Supply of the EIM interface		
NVCC_ENET	R19	Supply of the ENET interface		
NVCC_GPIO	Р7	Supply of the GPIO interface		
NVCC_JTAG	J7	Supply of the JTAG tap controller interface		
NVCC_LCD	P19	Supply of the LCD interface		
NVCC_LVDS2P5	V7	Supply of the LVDS display interface and DDR pre-drivers		
NVCC_MIPI	К7	Supply of the MIPI interface		
NVCC_NANDF	G15	Supply of the raw NAND Flash memories interface		
NVCC_PLL_OUT	E8	—		
NVCC_RGMII	G18	Supply of the ENET interface		
NVCC_SD1	G16	Supply of the SD card interface		
NVCC_SD2	G17	Supply of the SD card interface		
NVCC_SD3	G14	Supply of the SD card interface		

Package Information and Contact Assignments

			Out of Reset Condition ¹				
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²
DRAM_D52	AB22	NVCC_DRAM	DDR	ALT0	DRAM_DATA52	Input	100 kΩ pull-up
DRAM_D53	AC23	NVCC_DRAM	DDR	ALT0	DRAM_DATA53	Input	100 kΩ pull-up
DRAM_D54	AD25	NVCC_DRAM	DDR	ALT0	DRAM_DATA54	Input	100 kΩ pull-up
DRAM_D55	AC25	NVCC_DRAM	DDR	ALT0	DRAM_DATA55	Input	100 kΩ pull-up
DRAM_D56	AB25	NVCC_DRAM	DDR	ALT0	DRAM_DATA56	Input	100 kΩ pull-up
DRAM_D57	AA21	NVCC_DRAM	DDR	ALT0	DRAM_DATA57	Input	100 kΩ pull-up
DRAM_D58	Y25	NVCC_DRAM	DDR	ALT0	DRAM_DATA58	Input	100 kΩ pull-up
DRAM_D59	Y22	NVCC_DRAM	DDR	ALT0	DRAM_DATA59	Input	100 kΩ pull-up
DRAM_D60	AB23	NVCC_DRAM	DDR	ALT0	DRAM_DATA60	Input	100 kΩ pull-up
DRAM_D61	AA23	NVCC_DRAM	DDR	ALT0	DRAM_DATA61	Input	100 kΩ pull-up
DRAM_D62	Y23	NVCC_DRAM	DDR	ALT0	DRAM_DATA62	Input	100 kΩ pull-up
DRAM_D63	W25	NVCC_DRAM	DDR	ALT0	DRAM_DATA63	Input	100 kΩ pull-up
DRAM_D4	AC1	NVCC_DRAM	DDR	ALT0	DRAM_DATA04	Input	100 kΩ pull-up
DRAM_D5	AD1	NVCC_DRAM	DDR	ALT0	DRAM_DATA05	Input	100 kΩ pull-up
DRAM_D6	AB4	NVCC_DRAM	DDR	ALT0	DRAM_DATA06	Input	100 kΩ pull-up
DRAM_D7	AE4	NVCC_DRAM	DDR	ALT0	DRAM_DATA07	Input	100 k Ω pull-up
DRAM_D8	AD5	NVCC_DRAM	DDR	ALT0	DRAM_DATA08	Input	100 k Ω pull-up
DRAM_D9	AE5	NVCC_DRAM	DDR	ALT0	DRAM_DATA09	Input	100 k Ω pull-up
DRAM_DQM0	AC3	NVCC_DRAM	DDR	ALT0	DRAM_DQM0	Output	Low
DRAM_DQM1	AC6	NVCC_DRAM	DDR	ALT0	DRAM_DQM1	Output	Low
DRAM_DQM2	AB8	NVCC_DRAM	DDR	ALT0	DRAM_DQM2	Output	Low
DRAM_DQM3	AE10	NVCC_DRAM	DDR	ALT0	DRAM_DQM3	Output	Low
DRAM_DQM4	AB18	NVCC_DRAM	DDR	ALT0	DRAM_DQM4	Output	Low
DRAM_DQM5	AC20	NVCC_DRAM	DDR	ALT0	DRAM_DQM5	Output	Low
DRAM_DQM6	AD24	NVCC_DRAM	DDR	ALT0	DRAM_DQM6	Output	Low
DRAM_DQM7	Y21	NVCC_DRAM	DDR	ALT0	DRAM_DQM7	Output	Low
DRAM_RAS	AB15	NVCC_DRAM	DDR	ALT0	DRAM_RAS	Output	Low
DRAM_RESET	Y6	NVCC_DRAM	DDR	ALT0	DRAM_RESET	Output	Low
DRAM_SDBA0	AC15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA0	Output	Low
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA1	Output	Low
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	DRAM_SDBA2	Output	Low
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE0	Output	Low
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE1	Output	Low
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK0_P	Output	Low
DRAM_SDCLK_0_B	AE15	NVCC_DRAM	—	_	DRAM_SDCLK0_N	—	_
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK1_P	Output	Low

Table 87. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

			Out of Reset Condition ¹				
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²
SD4_DAT4	E18	NVCC_NANDF	GPIO	ALT5	GPIO2_IO12	Input	100 kΩ pull-up
SD4_DAT5	C19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO13	Input	100 kΩ pull-up
SD4_DAT6	B20	NVCC_NANDF	GPIO	ALT5	GPIO2_IO14	Input	100 kΩ pull-up
SD4_DAT7	D19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO15	Input	100 kΩ pull-up
TAMPER	E11	VDD_SNVS_IN	GPIO	ALT0	SNVS_TAMPER	Input	100 k Ω pull-down
TEST_MODE	E12	VDD_SNVS_IN	GPIO	ALT0	TCU_TEST_MODE	Input	100 k Ω pull-down
USB_H1_DN	F10	VDDUSB_CAP	—	_	USB_H1_DN		—
USB_H1_DP	E10	VDDUSB_CAP	—	_	USB_H1_DP		—
USB_OTG_CHD_B	B8	VDDUSB_CAP	—	_	USB_OTG_CHD_B		—
USB_OTG_DN	B6	VDDUSB_CAP	—	_	USB_OTG_DN		—
USB_OTG_DP	A6	VDDUSB_CAP	—	_	USB_OTG_DP		—
XTALI	A7	NVCC_PLL_OUT	—	_	XTALI		—
XTALO	B7	NVCC_PLL_OUT	—	_	XTALO	—	—

Table 87. 21 x 21 mm Functional Contact Assignments (continued)

¹ The state immediately after reset and before ROM firmware or software has executed.

² Variance of the pull-up and pull-down strengths are shown in the tables as follows:

• Table 22, "GPIO DC Parameters," on page 39

• Table 23, "LPDDR2 I/O DC Electrical Parameters," on page 40

• Table 24, "DDR3/DDR3L I/O DC Electrical Characteristics," on page 41

³ ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RGMII mode uses either GPIO_16 or RGMII_TX_CTL as a clock source. For more information on these clocks, see the device Reference Manual and the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

Table 88. Signals with Differing Before Reset and After Reset States

Ball Name	Before Reset State			
	Input/Output	Value		
EIM_A16	Input	PD (100K)		
EIM_A17	Input	PD (100K)		
EIM_A18	Input	PD (100K)		
EIM_A19	Input	PD (100K)		
EIM_A20	Input	PD (100K)		
EIM_A21	Input	PD (100K)		
EIM_A22	Input	PD (100K)		
EIM_A23	Input	PD (100K)		
EIM_A24	Input	PD (100K)		