

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	HCS12X
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12xs128maer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 Device Memory Map

Table 1-1 shows the device register memory map.

Address	Module	Size (Bytes)
0x0000–0x0009	PIM (port integration module)	10
0x000A-0x000B	MMC (memory map control)	2
0x000C-0x000D	PIM (port integration module)	2
0x000E-0x000F	Reserved	2
0x0010–0x0017	MMC (memory map control)	8
0x0018–0x0019	Reserved	2
0x001A-0x001B	Device ID register	2
0x001C-0x001F	PIM (port integration module)	4
0x0020-0x002F	DBG (debug module)	16
0x0030–0x0031	Reserved	2
0x0032–0x0033	PIM (port integration module)	2
0x0034–0x003F	ECRG (clock and reset generator)	12
0x0040-0x006F	TIM (timer module)	48
0x0070-0x00C7	Reserved	88
0x00C8-0x00CF	SCI0 (serial communications interface)	8
0x00D0-0x00D7	SCI1 (serial communications interface)	8
0x00D8-0x00DF	SPI0 (serial peripheral interface)	8
0x00E0-0x00FF	Reserved	32
0x0100–0x0113	FTMR control registers	20
0x0114–0x011F	Reserved	12
0x0120-0x012F	INT (interrupt module)	16
0x0130–0x013F	Reserved	16
0x0140-0x017F	CAN0	64
0x0180-0x023F	Reserved	192
0x0240-0x027F	PIM (port integration module)	64
0x0280-0x02BF	Reserved	64
0x02C0-0x02EF	ATD0 (analog-to-digital converter 12 bit 16-channel)	48
0x02F0-0x02F7	Voltage regulator	8
0x02F8-0x02FF	Reserved	8
0x0300-0x0327	PWM (pulse-width modulator 8 channels)	40
0x0328-0x033F	Reserved	24
0x0340-0x0367	PIT (periodic interrupt timer)	40

Port Integration Module (S12XSPIMV1)

DDR	ю	RDR	PE	PS ¹	IE ²	Function	Pull Device	Interrupt
0	x	x	0	x	0	Input	Disabled	Disabled
0	x	x	1	0	0	Input	Pull Up	Disabled
0	x	x	1	1	0	Input	Pull Down	Disabled
0	x	x	0	0	1	Input	Disabled	Falling edge
0	x	x	0	1	1	Input	Disabled	Rising edge
0	x	x	1	0	1	Input	Pull Up	Falling edge
0	x	x	1	1	1	Input	Pull Down	Rising edge
1	0	0	x	x	0	Output, full drive to 0	Disabled	Disabled
1	1	0	x	x	0	Output, full drive to 1	Disabled	Disabled
1	0	1	x	x	0	Output, reduced drive to 0	Disabled	Disabled
1	1	1	x	x	0	Output, reduced drive to 1	Disabled	Disabled
1	0	0	x	0	1	Output, full drive to 0	Disabled	Falling edge
1	1	0	x	1	1	Output, full drive to 1 Disabled		Rising edge
1	0	1	x	0	1	Output, reduced drive to 0	Disabled	Falling edge
1	1	1	x	1	1	Output, reduced drive to 1	Disabled	Rising edge

¹ Always "0" on Port A, B, E, K, and AD.

² Applicable only on Port P, H, and J.

NOTE

All register bits in this module are completely synchronous to internal clocks during a register read.

NOTE

Figures of port data registers also display the alternative functions if applicable on the related pin as defined in Table 2-1. Names in brackets denote the availability of the function when using a specific routing option.

NOTE

Figures of module routing registers also display the module instance or module channel associated with the related routing bit.

Table 2-21. PPST Register Field Descriptions

Field	Description
7-0 PPST	 Port T pull device select—Configure pull device polarity on input pin This bit selects a pull-up or a pull-down device if enabled on the associated port input pin. 1 A pull-down device selected 0 A pull-up device selected

2.3.24 PIM Reserved Register

Read: Always reads 0x00 Write: Unimplemented

2.3.25 Port T Routing Register (PTTRR)

¹ Read: Anytime Write: Anytime

This register configures the re-routing of PWM and TIM channels on alternative pins.

Port Integration Module (S12XSPIMV1)

2.3.69 Port AD0 Data Direction Register 1 (DDR1AD0)

Table 2-66. DDR1AD0 Register Field Descriptions

Field	Description							
7-0	Port AD0 data direction—							
DDR1AD0	This bit determines whether the associated pin is an input or output.							
	To use the digital input function the ATD Digital Input Enable Register (ATD0DIEN) has to be set to logic level "1".							
	1 Associated pin configured as output							
	0 Associated pin configured as input							

2.3.70 Port AD0 Reduced Drive Register 0 (RDR0AD0)

Table 2-67. RDR0AD0 Register Field Descriptions

Field	Description
7-0 RDR0AD0	Port AD0 reduced drive —Select reduced drive for output pin This bit configures the drive strength of the associated output pin as either full or reduced. If a pin is used as input this bit has no effect. The reduced drive function is independent of which function is being used on a particular pin.
	1 Reduced drive selected (approx. 1/5 of the full drive strength) 0 Full drive strength enabled

Memory Mapping Control (S12XMMCV4)

3.4 Functional Description

The MMC block performs several basic functions of the S12X sub-system operation: MCU operation modes, priority control, address mapping, select signal generation and access limitations for the system. Each aspect is described in the following subsections.

3.4.1 MCU Operating Mode

• Normal single-chip mode

There is no external bus in this mode. The MCU program is executed from the internal memory and no external accesses are allowed.

• Special single-chip mode

This mode is generally used for debugging single-chip operation, boot-strapping or security related operations. The active background debug mode is in control of the CPU code execution and the BDM firmware is waiting for serial commands sent through the BKGD pin. There is no external bus in this mode.

3.4.2 Memory Map Scheme

3.4.2.1 CPU and BDM Memory Map Scheme

The BDM firmware lookup tables and BDM register memory locations share addresses with other modules; however they are not visible in the global memory map during user's code execution. The BDM memory resources are enabled only during the READ_BD and WRITE_BD access cycles to distinguish between accesses to the BDM memory area and accesses to the other modules. (Refer to BDM Block Guide for further details).

When the MCU enters active BDM mode, the BDM firmware lookup tables and the BDM registers become visible in the local memory map in the range 0xFF00-0xFFFF (global address 0x7F_FF00 - 0x7F_FFFF) and the CPU begins execution of firmware commands or the BDM begins execution of hardware commands. The resources which share memory space with the BDM module will not be visible in the global memory map during active BDM mode.

Please note that after the MCU enters active BDM mode the BDM firmware lookup tables and the BDM registers will also be visible between addresses 0xBF00 and 0xBFFF if the PPAGE register contains value of 0xFF.

Background Debug Module (S12XBDMV2)

within a few percent of the actual target speed and the communication protocol can easily tolerate speed errors of several percent.

As soon as the SYNC request is detected by the target, any partially received command or bit retrieved is discarded. This is referred to as a soft-reset, equivalent to a time-out in the serial communication. After the SYNC response, the target will consider the next negative edge (issued by the host) as the start of a new BDM command or the start of new SYNC request.

Another use of the SYNC command pulse is to abort a pending ACK pulse. The behavior is exactly the same as in a regular SYNC command. Note that one of the possible causes for a command to not be acknowledged by the target is a host-target synchronization problem. In this case, the command may not have been understood by the target and so an ACK response pulse will not be issued.

5.4.10 Instruction Tracing

When a TRACE1 command is issued to the BDM in active BDM, the CPU exits the standard BDM firmware and executes a single instruction in the user code. Once this has occurred, the CPU is forced to return to the standard BDM firmware and the BDM is active and ready to receive a new command. If the TRACE1 command is issued again, the next user instruction will be executed. This facilitates stepping or tracing through the user code one instruction at a time.

If an interrupt is pending when a TRACE1 command is issued, the interrupt stacking operation occurs but no user instruction is executed. Once back in standard BDM firmware execution, the program counter points to the first instruction in the interrupt service routine.

Be aware when tracing through the user code that the execution of the user code is done step by step but all peripherals are free running. Hence possible timing relations between CPU code execution and occurrence of events of other peripherals no longer exist.

Do not trace the CPU instruction BGND used for soft breakpoints. Tracing the BGND instruction will result in a return address pointing to BDM firmware address space.

When tracing through user code which contains stop or wait instructions the following will happen when the stop or wait instruction is traced:

The CPU enters stop or wait mode and the TRACE1 command can not be finished before leaving the low power mode. This is the case because BDM active mode can not be entered after CPU executed the stop instruction. However all BDM hardware commands except the BACKGROUND command are operational after tracing a stop or wait instruction and still being in stop or wait mode. If system stop mode is entered (all bus masters are in stop mode) no BDM command is operational.

As soon as stop or wait mode is exited the CPU enters BDM active mode and the saved PC value points to the entry of the corresponding interrupt service routine.

In case the handshake feature is enabled the corresponding ACK pulse of the TRACE1 command will be discarded when tracing a stop or wait instruction. Hence there is no ACK pulse when BDM active mode is entered as part of the TRACE1 command after CPU exited from stop or wait mode. All valid commands sent during CPU being in stop or wait mode or after CPU exited from stop or wait mode will have an ACK pulse. The handshake feature becomes disabled only when system stop mode has been reached. Hence

6.3.2.6 Debug Count Register (DBGCNT)

Read: Anytime

Write: Never

Table 6-16. DBGCNT Field Descriptions

Field	Description
6–0 CNT[6:0]	Count Value — The CNT bits [6:0] indicate the number of valid data 64-bit data lines stored in the Trace Buffer. Table 6-17 shows the correlation between the CNT bits and the number of valid data lines in the Trace Buffer. When the CNT rolls over to zero, the TBF bit in DBGSR is set and incrementing of CNT will continue in end- trigger or mid-trigger mode. The DBGCNT register is cleared when ARM in DBGC1 is written to a one. The DBGCNT register is cleared by power-on-reset initialization but is not cleared by other system resets. Thus should a reset occur during a debug session, the DBGCNT register still indicates after the reset, the number of valid trace buffer entries stored before the reset occurred. The DBGCNT register is not decremented when reading from the trace buffer.

Table 6-17. CNT Decoding Table

TBF (DBGSR)	CNT[6:0]	Description
0	0000000	No data valid
0	0000001	32 bits of one line valid
0	0000010 0000100 0000110 1111100	1 line valid 2 lines valid 3 lines valid 62 lines valid
0	1111110	63 lines valid
1	0000000	64 lines valid; if using Begin trigger alignment, ARM bit will be cleared and the tracing session ends.
1	0000010 1111110	64 lines valid, oldest data has been overwritten by most recent data

6.3.2.7 Debug State Control Registers

There is a dedicated control register for each of the state sequencer states 1 to 3 that determines if transitions from that state are allowed, depending upon comparator matches or tag hits, and defines the

6.4.5.3 Trace Buffer Organization

Referring to Table 6-40. ADRH, ADRM, ADRL denote address high, middle and low byte respectively. INF bytes contain control information (R/W, S/D etc.). The numerical suffix indicates which tracing step. The information format for Loop1 Mode and PurePC Mode is the same as that of Normal Mode. Whilst tracing in Normal or Loop1 modes each array line contains 2 data entries, thus in this case the DBGCNT[0] is incremented after each separate entry. In Detail mode DBGCNT[0] remains cleared whilst the other DBGCNT bits are incremented on each trace buffer entry.

When a COF occurs a trace buffer entry is made and the corresponding CDV bit is set.

Single byte data accesses in Detail Mode are always stored to the low byte of the trace buffer (CDATAL) and the high byte is cleared. When tracing word accesses, the byte at the lower address is always stored to trace buffer byte3 and the byte at the higher address is stored to byte2.

Mode	8-Byte Wide Word Buffer										
	7	6	5	4	3	2	1	0			
			1								
S12XCPU	CXINF1	CADRH1	CADRM1	CADRL1	CDATAH1	CDATAL1					
Detail	CXINF2	CADRH2	CADRM2	CADRL2	CDATAH2	CDATAL2					
CPU12X	CINF1	CPCH1	CPCM1	CPCL1	CINF0	CPCH0	CPCM0	CPCL0			
Other Modes	CINF3	CPCH3	CPCM3	CPCL3	CINF2	CPCH2	CPCM2	CPCL2			

Table 6-40. Trace Buffer Organization

S12XE Clocks and Reset Generator (S12XECRGV1)

8.3 Memory Map and Registers

This section provides a detailed description of all registers accessible in the S12XECRG.

8.3.1 Module Memory Map

Figure 8-2 gives an overview on all S12XECRG registers.

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0		
0x0000	SYNR	R W	VCOFR	Q[1:0]		SYNDIV[5:0]						
0x0001	REFDV	R W	REFFR	Q[1:0]		REFDIV[5:0]						
0x0002	02 POSTDIV		0	0	0		ſ	POSTDIVI4:	01			
0/10002		W							~]			
0x0003	CRGFLG	R	RTIF	PORF	LVRF	LOCKIF	LOCK	ILAF	SCMIF	SCM		
		W		-								
0x0004	CRGINT	R	RTIE	0	0	LOCKIE	0	0	SCMIE	0		
		W										
0x0005	CLKSEL W	CLKSEL F	R	R	PLESE	PSTP	XCLKS	0		0	RTIWAI	COPWAI
0.00000		W										
0x0006	PLLCTL	R W	CME	PLLON	FM1	FM0	FSTWKP	PRE	PCE	SCME		
0x0007	RTICTL	R W	RTDEC	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0		
02000	СОРСТІ	R	WCOR	DOBCK	0	0	0	CP2		CPO		
0x0008			WCOF	RODUR	WRTMASK			UNZ	UKT	GRU		
0×0000		R	0	0	0	0	0	0	0	0		
0x0009	IONDIT	W										
0x0004	стсті ²	R	0	0	0	0	0	0	0	0		
UXUUUA	CICIL	W										
0v000B		R	0	0	0	0	0	0	0	0		
UXUUUB		W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
2. FORBYP and CTCTL are intended for factory test purposes only.												

= Unimplemented or Reserved

Figure 8-2. CRG Register Summary

NOTE

Register Address = Base Address + Address Offset, where the Base Address is defined at the MCU level and the Address Offset is defined at the module level.

10.1.3 Block Diagram

Figure 11-28. Identifier Register 2 (IDR2) — Extended Identifier Mapping

Field	Description
7-0 ID[14:7]	Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.

Table 11-29. IDR2 Register Field Descriptions — Extended

Module Base + 0x00X3

	7	6	5	4	3	2	1	0
R W	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
Reset:	х	х	х	х	х	х	х	х

Figure 11-29. Identifier Register 3 (IDR3) — Extended Identifier Mapping

Table 11-30. IDR3 Register Field Descriptions — Extended

Field	Description
7-1 ID[6:0]	Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.
0 RTR	 Remote Transmission Request — This flag reflects the status of the remote transmission request bit in the CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR bit to be sent. 0 Data frame 1 Remote frame

Syntax	Description
SYNC_SEG	System expects transitions to occur on the CAN bus during this period.
Transmit Point	A node in transmit mode transfers a new value to the CAN bus at this point.
Sample Point	A node in receive mode samples the CAN bus at this point. If the three samples per bit option is selected, then this point marks the position of the third sample.

Table 11-36. Time Segment Syntax

The synchronization jump width (see the Bosch CAN 2.0A/B specification for details) can be programmed in a range of 1 to 4 time quanta by setting the SJW parameter.

The SYNC_SEG, TSEG1, TSEG2, and SJW parameters are set by programming the MSCAN bus timing registers (CANBTR0, CANBTR1) (see Section 11.3.2.3, "MSCAN Bus Timing Register 0 (CANBTR0)" and Section 11.3.2.4, "MSCAN Bus Timing Register 1 (CANBTR1)").

Table 11-37 gives an overview of the Bosch CAN 2.0A/B specification compliant segment settings and the related parameter values.

NOTE

It is the user's responsibility to ensure the bit time settings are in compliance with the CAN standard.

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronization Jump Width	SJW
5 10	4 9	2	1	12	0 1
4 11	3 10	3	2	13	0 2
5 12	4 11	4	3	14	03
6 13	5 12	5	4	14	03
7 14	6 13	6	5	14	03
8 15	7 14	7	6	14	03
9 16	8 15	8	7	14	03

Table 11-37. Bosch CAN 2.0A/B Compliant Bit Time Segment Settings

11.4.4 Modes of Operation

11.4.4.1 Normal System Operating Modes

The MSCAN module behaves as described within this specification in all normal system operating modes. Write restrictions exist for some registers.

Voltage Regulator (S12VREGL3V3V1)

17.3.2.2 Control Register (VREGCTRL)

The VREGCTRL register allows the configuration of the VREG_3V3 low-voltage detect features.

0x02F1

Figure 17-2. Control Register (VREGCTRL)

Table 17-5. VREGCTRL Field Descriptions

Field	Description
2 LVDS	 Low-Voltage Detect Status Bit — This read-only status bit reflects the input voltage. Writes have no effect. Input voltage V_{DDA} is above level V_{LVID} or RPM or shutdown mode. Input voltage V_{DDA} is below level V_{LVIA} and FPM.
1 LVIE	Low-Voltage Interrupt Enable Bit 0 Interrupt request is disabled. 1 Interrupt will be requested whenever LVIF is set.
0 LVIF	 Low-Voltage Interrupt Flag — LVIF is set to 1 when LVDS status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (LVIE = 1), LVIF causes an interrupt request. 0 No change in LVDS bit. 1 LVDS bit has changed. Note: On entering the Reduced Power Mode the LVIF is not cleared by the VREG_3V3.

256 KByte Flash Module (S12XFTMR256K1V1)

Upon clearing CCIF to launch the Set Field Margin Level command, the Memory Controller will set the field margin level for the targeted block and then set the CCIF flag. Valid margin level settings for the Set Field Margin Level command are defined in Table 18-57.

CCOB (CCOBIX=001)	Level Description
0x0000	Return to Normal Level
0x0001	User Margin-1 Level ¹
0x0002	User Margin-0 Level ²
0x0003	Field Margin-1 Level ¹
0x0004	Field Margin-0 Level ²

¹ Read margin to the erased state

² Read margin to the programmed state

Register	Error Bit	Error Condition
	ACCERR	Set if CCOBIX[2:0] != 001 at command launch
		Set if command not available in current mode (see Table 18-28)
		Set if an invalid global address [22:16] is supplied
FSTAT		Set if an invalid margin level setting is supplied
	FPVIOL	None
	MGSTAT1	None
	MGSTAT0	None

CAUTION

Field margin levels must only be used during verify of the initial factory programming.

NOTE

Field margin levels can be used to check that Flash memory contents have adequate margin for data retention at the normal level setting. If unexpected results are encountered when checking Flash memory contents at field margin levels, the Flash memory contents should be erased and reprogrammed.

18.4.2.14 Erase Verify D-Flash Section Command

The Erase Verify D-Flash Section command will verify that a section of code in the D-Flash is erased. The Erase Verify D-Flash Section command defines the starting point of the data to be verified and the number of words.

Table 20-16. FERSTAT Field Descriptions

Field	Description
1 DFDIF	 Double Bit Fault Detect Interrupt Flag — The setting of the DFDIF flag indicates that a double bit fault was detected in the stored parity and data bits during a Flash array read operation or that a Flash array read operation was attempted on a Flash block that was under a Flash command operation. The DFDIF flag is cleared by writing a 1 to DFDIF. Writing a 0 to DFDIF has no effect on DFDIF. 0 No double bit fault detected 1 Double bit fault detected or an invalid Flash array read operation attempted
0 SFDIF	Single Bit Fault Detect Interrupt Flag — With the IGNSF bit in the FCNFG register clear, the SFDIF flag indicates that a single bit fault was detected in the stored parity and data bits during a Flash array read operation or that a Flash array read operation was attempted on a Flash block that was under a Flash command operation. The SFDIF flag is cleared by writing a 1 to SFDIF. Writing a 0 to SFDIF has no effect on SFDIF. 0 No single bit fault detected and corrected or an invalid Flash array read operation attempted

20.3.2.9 P-Flash Protection Register (FPROT)

Offset Module Base + 0x0008

The FPROT register defines which P-Flash sectors are protected against program and erase operations.

Figure 20-13. Flash Protection Register (FPROT)

The (unreserved) bits of the FPROT register are writable with the restriction that the size of the protected region can only be increased (see Section 20.3.2.9.1, "P-Flash Protection Restrictions," and Table 20-21).

During the reset sequence, the FPROT register is loaded with the contents of the P-Flash protection byte in the Flash configuration field at global address 0x7F_FF0C located in P-Flash memory (see Table 20-3) as indicated by reset condition 'F' in Figure 20-13. To change the P-Flash protection that will be loaded during the reset sequence, the upper sector of the P-Flash memory must be unprotected, then the P-Flash protection byte must be reprogrammed. If a double bit fault is detected while reading the P-Flash phrase containing the P-Flash protection byte during the reset sequence, the FPOPEN bit will be cleared and remaining bits in the FPROT register will be set to leave the P-Flash memory fully protected.

Trying to alter data in any protected area in the P-Flash memory will result in a protection violation error and the FPVIOL bit will be set in the FSTAT register. The block erase of a P-Flash block is not possible if any of the P-Flash sectors contained in the same P-Flash block are protected.

Field	Description
7 FPOPEN	 Flash Protection Operation Enable — The FPOPEN bit determines the protection function for program or erase operations as shown in Table 20-18 for the P-Flash block. When FPOPEN is clear, the FPHDIS and FPLDIS bits define unprotected address ranges as specified by the corresponding FPHS and FPLS bits When FPOPEN is set, the FPHDIS and FPLDIS bits enable protection for the address range specified by the corresponding FPHS and FPLDIS bits enable protection for the address range specified by the corresponding FPHS and FPLS bits
6 RNV[6]	Reserved Nonvolatile Bit — The RNV bit should remain in the erased state for future enhancements.
5 FPHDIS	Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a protected/unprotected area in a specific region of the P-Flash memory ending with global address 0x7F_FFFF.0 Protection/Unprotection enabled 1 Protection/Unprotection disabled
4–3 FPHS[1:0]	Flash Protection Higher Address Size — The FPHS bits determine the size of the protected/unprotected area in P-Flash memory as shown inTable 20-19. The FPHS bits can only be written to while the FPHDIS bit is set.
2 FPLDIS	Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a protected/unprotected area in a specific region of the P-Flash memory beginning with global address 0x7F_8000. 0 Protection/Unprotection enabled 1 Protection/Unprotection disabled
1–0 FPLS[1:0]	Flash Protection Lower Address Size — The FPLS bits determine the size of the protected/unprotected area in P-Flash memory as shown in Table 20-20. The FPLS bits can only be written to while the FPLDIS bit is set.

Table 20-17. FPROT Field Descriptions

Table 20-18. P-Flash Protection Function

FPOPEN	FPHDIS	FPLDIS	Function ¹
1	1	1	No P-Flash Protection
1	1	0	Protected Low Range
1	0	1	Protected High Range
1	0	0	Protected High and Low Ranges
0	1	1	Full P-Flash Memory Protected
0	1	0	Unprotected Low Range
0	0	1	Unprotected High Range
0	0	0	Unprotected High and Low Ranges

¹ For range sizes, refer to Table 20-19 and Table 20-20.

Table 20-19. P-Flash Protection Higher Address Range

FPHS[1:0]	Global Address Range	Protected Size
00	0x7F_F800-0x7F_FFFF	2 Kbytes
01	0x7F_F000-0x7F_FFFF	4 Kbytes
10	0x7F_E000-0x7F_FFFF	8 Kbytes
11	0x7F_C000-0x7F_FFFF	16 Kbytes

64 KByte Flash Module (S12XFTMR64K1V1)

CCOBIX[2:0]	Byte	FCCOB Parameter Fields (NVM Command Mode)
011	н	Data 1 [15:8]
	LO	Data 1 [7:0]
100	н	Data 2 [15:8]
100	LO	Data 2 [7:0]
101	н	Data 3 [15:8]
	LO	Data 3 [7:0]

Table 20-24. FCCOB - NVM Command Mode (Typical Usage)

20.3.2.12 Flash Reserved0 Register (FRSV0)

This Flash register is reserved for factory testing.

All bits in the FRSV0 register read 0 and are not writable.

20.3.2.13 Flash Reserved1 Register (FRSV1)

This Flash register is reserved for factory testing.

All bits in the FRSV1 register read 0 and are not writable.

20.3.2.14 Flash ECC Error Results Register (FECCR)

The FECCR registers contain the result of a detected ECC fault for both single bit and double bit faults. The FECCR register provides access to several ECC related fields as defined by the ECCRIX index bits in the FECCRIX register (see Section 20.3.2.4). Once ECC fault information has been stored, no other

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
0x00C8	SCI0BDH ¹	R W	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8							
0x00C9	SCI0BDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0							
0x00CA	SCI0CR11	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT							
0,00000	SCI045D12	R		0	0	0	0		DEDDIE								
000000	UL& SCIUASR12		KAEDGIF						DERRIF	DKUIF							
0,00000		001040042						R	R		0	0	0	0	0		BKDIE
0x0009	SCIUACKI	W	KAEDGIE						DERRIE	DKDIE							
		R	0	0	0	0	0		DEDDMO	PKDEE							
UXUUCA	SCIUACKZ	W							DERRIVIU	DRDFE							
0x00CB	SCI0CR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK							
0,00000	SCI08D4	R	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF							
UXUUCC	SCIUSRI	W															
020000	SCI0882	R		0	0					RAF							
000000	30103R2	W	AWAF			IAFUL	KAFUL	DRAIS	IADIK								
0.0000		R	R8	то	0	0	0	0	0	0							
UXUUCE	SCIUDRE	W		10													
		R	R7	R6	R5	R4	R3	R2	R1	R0							
UXUUCF	SCIUDRL	W	T7	T6	T5	T4	T3	T2	T1	Т0							

0x00C8–0x00CF Asynchronous Serial Interface (SCI0) Map

Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to zero Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to one 1

2

0x00D0–0x00D7 Asynchronous Serial Interface (SCI1) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x00D0	SCI1BDH ¹	R W	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8		
0x00D1	SCI1BDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0		
0x00D2	SCI1CR1 ¹	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT		
0x00D0	SCI1ASR1 ²	R	RXEDGIF	0	0	0	0	BERRV	BERRIF	BKDIF		
		W										
0x00D1	SCI1ACR1 ²	R	RXEDGIE	0	0	0	0	0	BERRIE	BKDIE		
OXCOD 1	V		ST CONACICI		IVLEDUIE						DERIVE	BRBIE
020002	SCI1ACP22	R	0	0	0	0	0	BEDDM1	BEDDMO	BKDEE		
070002	OUTAONZ	W						DEIXIVIT	DERIVIO	DIGHT		
0x00D3	SCI1CR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK		
0.00004		R	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF		
0x00D4	SCI1SR1	W										

Detailed Register Address Map

0x0240–0x027F Port Integration Module (PIM) Map 5 of 5

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0276 PER0AI		R	PER0AD0							
	FERUADU	W	7	6	5	4	3	2	1	0
0.0077	PER1AD0	R	PER1AD0							
0X0211		W	7	6	5	4	3	2	1	0
0x0278- 0x027F	Reserved	R	0	0	0	0	0	0	0	0
		W								

0x0280–0x02BF Reserved Register Space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0280-	Reserved	R	0	0	0	0	0	0	0	0
0x02BF	Reserveu	W								

0x02C0-0x02EF Analog-to-Digital Converter 12-Bit 16-Channel (ATD0) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x02C0	ATD0CTL0	R	0	0	0	0	WRAP3	WRAP2	WRAP1	WRAP0
		W								
0x02C1	ATD0CTL1	R W	ETRIG SEL	SRES1	SRES0	SMP_DIS	ETRIG CH3	ETRIG CH2	ETRIG CH1	ETRIG CH0
0×0202		R	0	AFEC			FTRIGP	ETRIGE	ASCIE	
070202	AI DOOT LZ	W		////0					//OOIL	
0x02C3	ATD0CTL3	R W	DJM	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
0x02C4	ATD0CTL4	R W	SMP2	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
0x0205		R	0	50	SCAN	мнит	CD	00	CB	C 4
070203	AIDOCIES	W				MOLI			CD	07
0x02C6	ATD0STAT0	R	SCF	0	ETORF	FIFOR	CC3	CC2	CC1	CC0
		W							-	-
0x02C7	Reserved	R	0	0	0	0	0	0	0	0
0x02C8	ATD0CMPEH	W	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8
0x02C9	ATD0CMPEL	R W	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0
	ATDOSTAT2H	R	CCF15	CCF14	CCF13	CCF12	CCF11	CCF10	CCF9	CCF8
0.020/1	/// 000 // // 211	W								
0x02CB	ATD0STAT2L	R	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
		W								
0x02CC	ATD0DIENH	к W	IEN15	IEN14	IEN13	IEN12	IEN11	IEN10	IEN9	IEN8
0x02CD	ATD0DIENL	R W	IEN7	IEN6	IEN5	IEN4	IEN3	IEN2	IEN1	IEN0
0x02CE	ATD0CMPHTH	R W	CMPHT15	CMPHT14	CMPHT13	CMPHT12	CMPHT11	CMPHT10	CMPHT9	CMPHT8

0x0300–0x0327 Pulse Width Modulator 8-Bit 8-Channel (PWM) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0300	PWME	R W	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
0x0301	PWMPOL	R W	PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
0x0302	PWMCLK	R W	PCLK7	PCLK6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
0x0303	PWMPRCLK	R W	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
0x0304	PWMCAE	R W	CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
0x0305	PWMCTL	R W	CON67	CON45	CON23	CON01	PSWAI	PFRZ	0	0
0x0306	PWMTST Test Only	R W	0	0	0	0	0	0	0	0
0x0307	PWMPRSC	R W	0	0	0	0	0	0	0	0
0x0308	PWMSCLA	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0309	PWMSCLB	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x030A	PWMSCNTA	R W	0	0	0	0	0	0	0	0
0x030B	PWMSCNTB	R W	0	0	0	0	0	0	0	0
0x030C	PWMCNT0	R W	Bit 7 0	6 0	5 0	4	3 0	2 0	1 0	Bit 0 0
0x030D	PWMCNT1	R W	Bit 7 0	6 0	5 0	4	3 0	2	1 0	Bit 0 0
0x030E	PWMCNT2	R W	Bit 7 0	6 0	5 0	4	3 0	2	1 0	Bit 0 0
0x030F	PWMCNT3	R W	Bit 7 0	6	5	4	3	2	1	Bit 0 0
0x0310	PWMCNT4	R W	Bit 7 0	6	5	4	3	2	1	Bit 0 0
0x0311	PWMCNT5	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0312	PWMCNT6	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0313	PWMCNT7	R	Bit 7	6	5	4	3	2	1	Bit 0
0x0314	PWMPER0	R	Bit 7	6	5	4	3	2	1	Bit 0
0x0315	PWMPER1	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0316	PWMPER2	R W	Bit 7	6	5	4	3	2	1	Bit 0