

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12xs256j0caar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 1	Device Overview S12XS Family19
Chapter 2	Port Integration Module (S12XSPIMV1)
Chapter 3	Memory Mapping Control (S12XMMCV4)127
Chapter 4	Interrupt (S12XINTV2)151
Chapter 5	Background Debug Module (S12XBDMV2)169
Chapter 6	S12X Debug (S12XDBGV3) Module195
Chapter 7	Security (S12XS9SECV2)
Chapter 8	S12XE Clocks and Reset Generator (S12XECRGV1)237
Chapter 9	Pierce Oscillator (S12XOSCLCPV2)267
Chapter 10	Analog-to-Digital Converter (ADC12B16CV1)271
Chapter 11	Freescale's Scalable Controller Area Network (S12MSCANV3)295
Chapter 12	Periodic Interrupt Timer (S12PIT24B4CV1)
Chapter 13	Pulse-Width Modulator (S12PWM8B8CV1)
Chapter 14	Serial Communication Interface (S12SCIV5)
Chapter 15	Serial Peripheral Interface (S12SPIV5)435
Chapter 16	Timer Module (TIM16B8CV2)461
Chapter 17	Voltage Regulator (S12VREGL3V3V1)489
Chapter 18	256 KByte Flash Module (S12XFTMR256K1V1)507
Chapter 19	128 KByte Flash Module (S12XFTMR128K1V1)557
Chapter 20	64 KByte Flash Module (S12XFTMR64K1V1)607
Appendix A	Electrical Characteristics
Appendix B	Package Information
Appendix C	PCB Layout Guidelines708
Appendix D	Derivative Differences
Appendix E	Detailed Register Address Map713
Appendix F	Ordering Information

1.4.2.5 Run Mode

Although this is not a low-power mode, unused peripheral modules should not be enabled in order to save power.

1.4.3 Freeze Mode

The timer module, pulse width modulator, analog-to-digital converters, and the periodic interrupt timer provide a software programmable option to freeze the module status when the background debug module is active. This is useful when debugging application software. For detailed description of the behavior of the ATD, TIM, PWM, and PIT when the background debug module is active consult the corresponding section.

1.5 Security

The MCU security mechanism prevents unauthorized access to the Flash memory. For a detailed description of the security features refer to the S12XS9SEC section.

1.6 Resets and Interrupts

Consult the CPU12/CPU12X Reference Manual and the S12XINT section for information on exception processing.

NOTE

When referring to the S12XINT section please be aware that the XS family neither features an XGATE nor an MPU module.

1.6.1 Resets

Resets are explained in detail in the Clock Reset Generator (S12XECRG) section.

Vector Address	Reset Source	CCR Mask	Local Enable
\$FFFE	Power-On Reset (POR)	None	None
\$FFFE	Low Voltage Reset (LVR)	None	None
\$FFFE	External pin RESET	None	None
\$FFFE	Illegal Address Reset	None	None
\$FFFC	Clock monitor reset	None	PLLCTL (CME, SCME)
\$FFFA	COP watchdog reset	None	COP rate select

 Table 1-9. Reset Sources and Vector Locations

1.6.2 Vectors

Table 1-10 lists all interrupt sources and vectors in the default order of priority. The interrupt module (S12XINT) provides an interrupt vector base register (IVBR) to relocate the vectors. Associated with each

Port	Offset or Address	Register	Access	Reset Value	Section/Page
н	0x0260	PTH—Port H Data Register	R/W	0x00	2.3.50/2-108
	0x0261	PTIH—Port H Input Register	R	4	2.3.51/2-109
	0x0262	DDRH—Port H Data Direction Register	R/W	0x00	2.3.52/2-109
	0x0263	RDRH—Port H Reduced Drive Register	R/W	0x00	2.3.53/2-110
	0x0264	PERH—Port H Pull Device Enable Register	R/W	0x00	2.3.54/2-110
	0x0265	PPSH—Port H Polarity Select Register	R/W	0x00	2.3.55/2-111
	0x0266	PIEH—Port H Interrupt Enable Register	R/W	0x00	2.3.56/2-111
	0x0267	PIFH—Port H Interrupt Flag Register	R/W	0x00	2.3.57/2-112
J	0x0268	PTJ—Port J Data Register	R/W	0x00	2.3.58/2-112
	0x0269	PTIJ—Port J Input Register	R	4	2.3.59/2-113
	0x026A	DDRJ—Port J Data Direction Register	R/W	0x00	2.3.60/2-113
	0x026B	RDRJ—Port J Reduced Drive Register	R/W	0x00	2.3.61/2-114
	0x026C	PERJ—Port J Pull Device Enable Register	R/W	0xFF	2.3.62/2-114
	0x026D	PPSJ—Port J Polarity Select Register	R/W	0x00	2.3.63/2-115
	0x026E	PIEJ—Port J Interrupt Enable Register	R/W	0x00	2.3.64/2-115
	0x026F	PIFJ—Port J Interrupt Flag Register	R/W	0x00	2.3.65/2-116
AD	0x0270	PT0AD0—Port AD0 Data Register 0	R/W	0x00	2.3.66/2-116
	0x0271	PT1AD0—Port AD0 Data Register 1	R/W	0x00	2.3.67/2-117
	0x0272	DDR0AD0—Port AD0 Data Direction Register 0	R/W	0x00	2.3.68/2-117
	0x0273	DDR1AD0—Port AD0 Data Direction Register 1	R/W	0x00	2.3.69/2-118
	0x0274	RDR0AD0—Port AD0 Reduced Drive Register 0	R/W	0x00	2.3.70/2-118
	0x0275	RDR1AD0—Port AD0 Reduced Drive Register 1	R/W	0x00	2.3.71/2-119
	0x0276	PER0AD0—Port AD0 Pull Up Enable Register 0	R/W	0x00	2.3.72/2-119
	0x0277	PER1AD0—Port AD0 Pull Up Enable Register 1	R/W	0x00	2.3.73/2-120
	0x0278	PIM Reserved	R	0x00	2.3.74/2-120
	: 0x027F				

Table 2-2. Block Memory Map (continued)

¹ Write access not applicable for one or more register bits. Refer to register description.

² Refer to memory map in SoC Guide to determine related module.

³ Mode dependent.

⁴ Read always returns logic level on pins.

2.3.20 Port T Data Direction Register (DDRT)

Write: Anytime

Table 2-18. DDRT Register Field Descriptions

Field	Description
7-6, 4 DDRT	 Port T data direction— This bit determines whether the pin is an input or output. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Else the routed PWM forces the I/O state to be an output for an enabled channel. In these cases the data direction bit will not change. 1 Associated pin configured as output 0 Associated pin configured as input
5 DDRT	 Port T data direction— This bit determines whether the pin is an input or output. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. Else the routed PWM forces the I/O state to be an output for an enabled channel. Else the VREG_API forces the I/O state to be an output if enabled. In these cases the data direction bit will not change. 1 Associated pin configured as output 0 Associated pin configured as input
3-0 DDRT	 Port T data direction— This bit determines whether the pin is an input or output. The TIM forces the I/O state to be an output for a timer port associated with an enabled output compare. In this case the data direction bit will not change. 1 Associated pin configured as output 0 Associated pin configured as input

2.3.21 Port T Reduced Drive Register (RDRT)

Address	0x0243						Access: Us	ser read/write ¹
_	7	6	5	4	3	2	1	0
R W	RDRT7	RDRT6	RDRT5	RDRT4	RDRT3	RDRT2	RDRT1	RDRT0
Reset	0	0	0	0	0	0	0	0
		C :			Nuivo Deviete	- (DODT)		

Figure 2-19. Port T Reduced Drive Register (RDRT)

S12XS Family Reference Manual, Rev. 1.13

3.1.1 Terminology

Table 3-1. Acronyms and Abbreviations

Logic level "1"	Voltage that corresponds to Boolean true state
Logic level "0"	Voltage that corresponds to Boolean false state
0x	Represents hexadecimal number
x	Represents logic level 'don't care'
Byte	8-bit data
word	16-bit data
local address	based on the 64KB Memory Space (16-bit address)
global address	based on the 8MB Memory Space (23-bit address)
Aligned address	Address on even boundary
Mis-aligned address	Address on odd boundary
Bus Clock	System Clock. Refer to CRG Block Guide.
single-chip modes	Normal Single-Chip Mode
	Special Single-Chip Mode
normal modes	Normal Single-Chip Mode
special modes	Special Single-Chip Mode
NS	Normal Single-Chip Mode
SS	Special Single-Chip Mode
Unimplemented areas	Areas which are accessible by the pages (RPAGE, PPAGE, EPAGE) and not implemented
PRR	Port Replacement Registers
PRU	Port Replacement Unit located on the emulator side
MCU	MicroController Unit
NVM	Non-volatile Memory; Flash, Data FLASH or ROM
IFR	Information Row sector located on the top of NVM. For Test purposes.

3.1.2 Features

The main features of this block are:

- Paging capability to support a global 8MB memory address space
- Bus arbitration between the masters CPU, BDM
- Simultaneous accesses to different resources¹ (internal, and peripherals) (see Figure 3-1)
- Resolution of target bus access collision
- MCU operation mode control
- MCU security control
- Separate memory map schemes for each master CPU, BDM
- ROM control bits to enable the on-chip FLASH or ROM selection
- Generation of system reset when CPU accesses an unimplemented address (i.e., an address which does not belong to any of the on-chip modules) in single-chip modes

1. Resources are also called targets.

Memory Mapping Control (S12XMMCV4)

3.3.2.1 Mode Register (MODE)

Address: 0x000B PRR

Figure 3-3. Mode Register (MODE)

Read: Anytime. Write: Only if a transition is allowed (see Figure 3-5).

The MODE bits of the MODE register are used to establish the MCU operating mode.

Table	3-3.	MODE	Field	Descriptions
-------	------	------	-------	--------------

Field	Description
7 MODC	Mode Select Bit — This bit controls the current operating mode during RESET high (inactive). The external mode pin MODC determines the operating mode during RESET low (active). The state of the pin is latched into the respective register bit after the RESET signal goes inactive (see Figure 3-3).
	Write restrictions exist to disallow transitions between certain modes. Figure 3-5 illustrates all allowed mode changes. Attempting non authorized transitions will not change the MODE bits, but it will block further writes to these register bits except in special modes.
	Write accesses to the MODE register are blocked when the device is secured.

Transition done by external pins (MODC)

Transition done by write access to the MODE register

Figure 3-5. Mode Transition Diagram when MCU is Unsecured

S12XS Family Reference Manual, Rev. 1.13

when the opcode is fetched from the memory. This precedes the instruction execution by an indefinite number of cycles due to instruction pipe lining. For a comparator match of an opcode at an odd address when TAG = 0, the corresponding even address must be contained in the comparator register. Thus for an opcode at odd address (n), the comparator register must contain address (n–1).

Once a successful comparator match has occurred, the condition that caused the original match is not verified again on subsequent matches. Thus if a particular data value is verified at a given address, this address may not still contain that data value when a subsequent match occurs.

Comparators C and D can also be used to select an address range to trace from. This is determined by the TRANGE bits in the DBGTCR register. The TRANGE encoding is shown in Table 6-9. If the TRANGE bits select a range definition using comparator D, then comparator D is configured for trace range definition and cannot be used for address bus comparisons. Similarly if the TRANGE bits select a range definition using comparator C is configured for trace range definition and cannot be used for address bus comparisons.

Match[0, 1, 2, 3] map directly to Comparators[A, B, C, D] respectively, except in range modes (see Section 6.3.2.4). Comparator priority rules are described in the trigger priority section (Section 6.4.3.4).

6.4.2.1 Exact Address Comparator Match (Comparators A and C)

With range comparisons disabled, the match condition is an exact equivalence of address/data bus with the value stored in the comparator address/data registers. Further qualification of the type of access (R/W, word/byte) is possible.

Comparators A and C do not feature SZE or SZ control bits, thus the access size is not compared. Table 6-37 lists access considerations without data bus compare. Table 6-36 lists access considerations with data bus comparison. To compare byte accesses DBGxDH must be loaded with the data byte, the low byte must be masked out using the DBGxDLM mask register. On word accesses the data byte of the lower address is mapped to DBGxDH.

Access	Address	DBGxDH	DBGxDL	DBGxDHM	DBGxDLM	Example Valid Match	
Word	ADDR[n]	Data[n]	Data[n+1]	\$FF	\$FF	MOVW #\$WORD ADDR[n]	config1
Byte	ADDR[n]	Data[n]	х	\$FF	\$00	MOVB #\$BYTE ADDR[n]	config2
Word	ADDR[n]	Data[n]	х	\$FF	\$00	MOVW #\$WORD ADDR[n]	config2
Word	ADDR[n]	x	Data[n+1]	\$00	\$FF	MOVW #\$WORD ADDR[n]	config3

Table 6-36. Comparator A and C Data Bus Considerations

Code may contain various access forms of the same address, i.e. a word access of ADDR[n] or byte access of ADDR[n+1] both access n+1. At a word access of ADDR[n], address ADDR[n+1] does not appear on the address bus and so cannot cause a comparator match if the comparator contains ADDR[n]. Thus it is not possible to monitor all data accesses of ADDR[n+1] with one comparator.

To detect an access of ADDR[n+1] through a word access of ADDR[n] the comparator can be configured to ADDR[n], DBGxDL is loaded with the data pattern and DBGxDHM is cleared so only the data[n+1] is compared on accesses of ADDR[n].

Highest	TRIG	Trigger immediately to final state (begin or mid aligned tracing enabled) Trigger immediately to state 0 (end aligned or no tracing enabled)
	Match0 (force or tag hit)	Trigger to next state as defined by state control registers
	Match1 (force or tag hit)	Trigger to next state as defined by state control registers
	Match2 (force or tag hit)	Trigger to next state as defined by state control registers
Lowest	Match3 (force or tag hit)	Trigger to next state as defined by state control registers

Table 6-39. Trigger Priorities

6.4.4 State Sequence Control

Figure 6-22. State Sequencer Diagram

The state sequencer allows a defined sequence of events to provide a trigger point for tracing of data in the trace buffer. Once the S12XDBG module has been armed by setting the ARM bit in the DBGC1 register, then state1 of the state sequencer is entered. Further transitions between the states are then controlled by the state control registers and depend upon a selected trigger mode condition being met. From Final State the only permitted transition is back to the disarmed state0. Transition between any of the states 1 to 3 is not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current state.

Alternatively by setting the TRIG bit in DBGSC1, the state machine can be triggered to state0 or Final State depending on tracing alignment.

Independent of the state sequencer, each comparator channel can be individually configured to generate an immediate breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers. Thus it is possible to generate an immediate breakpoint on selected channels, whilst a state sequencer transition can be initiated by a match on other channels. If a debug session is ended by a trigger on a channel with BRK = 1, the state sequencer transitions through Final State for a clock cycle to state0. This is independent of tracing and breakpoint activity, thus with tracing and breakpoints disabled, the state sequencer enters state0 and the debug module is disarmed.

S12X Debug (S12XDBGV3) Module

6.4.5.3.1 Information Byte Organization

The format of the control information byte is dependent upon the active trace mode as described below. In Normal, Loop1, or Pure PC modes tracing of CPU12X activity, CINF is used to store control information. In Detail Mode, CXINF contains the control information.

CPU12X Information Byte

Figure 6-23. CPU12X Information Byte CINF

Table 6-41. CINF Field Descriptions

Field	Description
7 CSD	 Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination address. This is only used in Normal and Loop1 mode tracing. 0 Source address 1 Destination address
6 CVA	 Vector Indicator — This bit indicates if the corresponding stored address is a vector address. Vector addresses are destination addresses, thus if CVA is set, then the corresponding CSD is also set. This is only used in Normal and Loop1 mode tracing. This bit has no meaning in Pure PC mode. Indexed jump destination address Vector destination address
4 CDV	Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from both sources in Normal, Loop1 and Pure PC modes, to indicate that the CPU12X trace buffer entry is valid.0Trace buffer entry is invalid1Trace buffer entry is valid

CXINF Information Byte

Figure 6-24. Information Byte CXINF

This describes the format of the information byte used only when tracing in Detail Mode. When tracing from the CPU12X in Detail Mode, information is stored to the trace buffer on all cycles except opcode fetch and free cycles. In this case the CSZ and CRW bits indicate the type of access being made by the CPU12X.

Table 6-42. CXINF Field Descriptions

Field	Description
6 CSZ	 Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains valid information when tracing CPU12X activity in Detail Mode. 0 Word Access 1 Byte Access

SEC[1:0] = '10'. All other combinations put the device in a secured mode. The recommended value to put the device in secured state is the inverse of the unsecured state, i.e. SEC[1:0] = '01'.

SEC[1:0]	Security State
00	1 (secured)
01	1 (secured)
10	0 (unsecured)
11	1 (secured)

Tahla	7_/	Security	Rite
lable	7-4.	Security	DILS

NOTE

Please refer to the Flash block guide for actual security configuration (in section "Flash Module Security").

7.1.4 Operation of the Secured Microcontroller

By securing the device, unauthorized access to the EEPROM and Flash memory contents can be prevented. However, it must be understood that the security of the EEPROM and Flash memory contents also depends on the design of the application program. For example, if the application has the capability of downloading code through a serial port and then executing that code (e.g. an application containing bootloader code), then this capability could potentially be used to read the EEPROM and Flash memory contents even when the microcontroller is in the secure state. In this example, the security of the application could be enhanced by requiring a challenge/response authentication before any code can be downloaded.

Secured operation has the following effects on the microcontroller:

S12XE Clocks and Reset Generator (S12XECRGV1)

8.5 Resets

All reset sources are listed in Table 8-16. Refer to MCU specification for related vector addresses and priorities.

Table	8-16.	Reset	Summary
-------	-------	-------	---------

Reset Source	Local Enable
Power on Reset	None
Low Voltage Reset	None
External Reset	None
Illegal Address Reset	None
Clock Monitor Reset	PLLCTL (CME=1, SCME=0)

Freescale's Scalable Controller Area Network (S12MSCANV3)

11.3.3.1.2 IDR0–IDR3 for Standard Identifier Mapping

Module Base + 0x00X0

Figure 11-30. Identifier Register 0 — Standard Mapping

Table 11-31. IDR0 Register Field Descriptions — Standard

Field	Description
7-0 ID[10:3]	Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number. See also ID bits in Table 11-32.

Module Base + 0x00X1

	7	6	5	4	3	2	1	0
R W	ID2	ID1	ID0	RTR	IDE (=0)			
Reset:	x	x	x	x	х	x	x	x

= Unused; always read 'x'

Figure 11-31. Identifier Register 1 — Standard Mapping

Table 11-32. IDR1 Register Field Descriptions

Field	Description
7-5 ID[2:0]	Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number. See also ID bits in Table 11-31.
4 RTR	Remote Transmission Request — This flag reflects the status of the Remote Transmission Request bit in the CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR bit to be sent. 0 Data frame 1 Remote frame
3 IDE	 ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send. 0 Standard format (11 bit) 1 Extended format (29 bit)

TNP[1:0]	Narrow Pulse Width
11	1/4
10	1/32
01	1/16
00	3/16

Table 14-3. IRSCI Transmit Pulse Width

14.3.2.2 SCI Control Register 1 (SCICR1)

Module Base + 0x0002

Read: Anytime, if AMAP = 0.

Write: Anytime, if AMAP = 0.

NOTE

This register is only visible in the memory map if AMAP = 0 (reset condition).

Table 14-4. SCICR1 Field Descriptions

Field	Description
7 LOOPS	 Loop Select Bit — LOOPS enables loop operation. In loop operation, the RXD pin is disconnected from the SCI and the transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must be enabled to use the loop function. 0 Normal operation enabled 1 Loop operation enabled The receiver input is determined by the RSRC bit.
6 SCISWAI	 SCI Stop in Wait Mode Bit — SCISWAI disables the SCI in wait mode. SCI enabled in wait mode SCI disabled in wait mode
5 RSRC	 Receiver Source Bit — When LOOPS = 1, the RSRC bit determines the source for the receiver shift register input. See Table 14-5. 0 Receiver input internally connected to transmitter output 1 Receiver input connected externally to transmitter
4 M	 Data Format Mode Bit — MODE determines whether data characters are eight or nine bits long. 0 One start bit, eight data bits, one stop bit 1 One start bit, nine data bits, one stop bit
3 WAKE	 Wakeup Condition Bit — WAKE determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received data character or an idle condition on the RXD pin. 0 Idle line wakeup 1 Address mark wakeup

Serial Communication Interface (S12SCIV5)

¹ The address bit identifies the frame as an address character. See Section 14.4.6.6, "Receiver Wakeup".

14.4.4 Baud Rate Generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the transmitter. The value from 0 to 8191 written to the SBR12:SBR0 bits determines the bus clock divisor. The SBR bits are in the SCI baud rate registers (SCIBDH and SCIBDL). The baud rate clock is synchronized with the bus clock and drives the receiver. The baud rate clock divided by 16 drives the transmitter. The receiver has an acquisition rate of 16 samples per bit time.

Baud rate generation is subject to one source of error:

• Integer division of the bus clock may not give the exact target frequency.

Table 14-16 lists some examples of achieving target baud rates with a bus clock frequency of 25 MHz.

When IREN = 0 then,

SCI baud rate = SCI bus clock / (16 * SCIBR[12:0])

Bits SBR[12:0]	BitsReceiverTransmitter[12:0]Clock (Hz)Clock (Hz)		Target Baud Rate	Error (%)
41	609,756.1	38,109.8	38,400	.76
81	308,642.0	19,290.1	19,200	.47
163	153,374.2	9585.9	9,600	.16
326	76,687.1	4792.9	4,800	.15
651	38,402.5	2400.2	2,400	.01
1302	19,201.2	1200.1	1,200	.01
2604	9600.6	600.0	600	.00
5208	4800.0	300.0	300	.00

Table 14-16. Baud Rates (Example: Bus Clock = 25 MHz)

NP

NOTE

Care must be taken when expecting data from a master while the slave is in wait or stop mode. Even though the shift register will continue to operate, the rest of the SPI is shut down (i.e., a SPIF interrupt will **not** be generated until exiting stop or wait mode). Also, the byte from the shift register will not be copied into the SPIDR register until after the slave SPI has exited wait or stop mode. In slave mode, a received byte pending in the receive shift register will be lost when entering wait or stop mode. An SPIF flag and SPIDR copy is generated only if wait mode is entered or exited during a transision. If the slave enters wait mode in idle mode and exits wait mode in idle mode, neither a SPIF nor a SPIDR copy will occur.

15.4.7.3 SPI in Stop Mode

Stop mode is dependent on the system. The SPI enters stop mode when the module clock is disabled (held high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode, the transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SPI is exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is not dependent on the SPISWAI bit.

15.4.7.4 Reset

The reset values of registers and signals are described in Section 15.3, "Memory Map and Register Definition", which details the registers and their bit fields.

- If a data transmission occurs in slave mode after reset without a write to SPIDR, it will transmit garbage, or the data last received from the master before the reset.
- Reading from the SPIDR after reset will always read zeros.

15.4.7.5 Interrupts

The SPI only originates interrupt requests when SPI is enabled (SPE bit in SPICR1 set). The following is a description of how the SPI makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt priority are chip dependent.

The interrupt flags MODF, SPIF, and SPTEF are logically ORed to generate an interrupt request.

15.4.7.5.1 MODF

MODF occurs when the master detects an error on the \overline{SS} pin. The master SPI must be configured for the MODF feature (see Table 15-3). After MODF is set, the current transfer is aborted and the following bit is changed:

• MSTR = 0, The master bit in SPICR1 resets.

The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear the interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearing process which is described in Section 15.3.2.4, "SPI Status Register (SPISR)".

Chapter 19 128 KByte Flash Module (S12XFTMR128K1V1)

Revision Number	Revision Date	Sections Affected	Description of Changes
V01.04	03 Jan 2008		- Cosmetic changes
V01.05	19 Dec 2008	19.1/19-557 19.4.2.4/19-592 19.4.2.6/19-594 19.4.2.11/19-59 7 19.4.2.11/19-59 7 19.4.2.11/19-59 7	 Clarify single bit fault correction for P-Flash phrase Add statement concerning code runaway when executing Read Once, Program Once, and Verify Backdoor Access Key commands from Flash block containing associated fields Relate Key 0 to associated Backdoor Comparison Key address Change "power down reset" to "reset" in Section 19.4.2.11
V01.06	25 Sep 2009	19.3.2/19-564 19.3.2.1/19-566 19.4.1.2/19-586 19.6/19-606	The following changes were made to clarify module behavior related to Flash register access during reset sequence and while Flash commands are active: - Add caution concerning register writes while command is active - Writes to FCLKDIV are allowed during reset sequence while CCIF is clear - Add caution concerning register writes while command is active - Writes to FCCOBIX, FCCOBHI, FCCOBLO registers are ignored during reset sequence

Table 19-1. Revision History

19.1 Introduction

The FTMR128K1 module implements the following:

- 128 Kbytes of P-Flash (Program Flash) memory
- 8 Kbytes of D-Flash (Data Flash) memory

The Flash memory is ideal for single-supply applications allowing for field reprogramming without requiring external high voltage sources for program or erase operations. The Flash module includes a memory controller that executes commands to modify Flash memory contents. The user interface to the memory controller consists of the indexed Flash Common Command Object (FCCOB) register which is written to with the command, global address, data, and any required command parameters. The memory controller must complete the execution of a command before the FCCOB register can be written to with a new command.

128 KByte Flash Module (S12XFTMR128K1V1)

Table 19-3). The Verify Backdoor Access Key command must not be executed from the Flash block containing the backdoor comparison key to avoid code runaway.

CCOBIX[2:0]	FCCOB Parameters					
000	0x0C	Not required				
001	Ke	y 0				
010	Key 1					
011	Ke	y 2				
100	Ke	y 3				

Table 19-51. Verify Backdoor Access Key Command FCCOB Requirements

Upon clearing CCIF to launch the Verify Backdoor Access Key command, the Memory Controller will check the FSEC KEYEN bits to verify that this command is enabled. If not enabled, the Memory Controller sets the ACCERR bit in the FSTAT register and terminates. If the command is enabled, the Memory Controller compares the key provided in FCCOB to the backdoor comparison key in the Flash configuration field with Key 0 compared to 0x7F_FF00, etc. If the backdoor keys match, security will be released. If the backdoor keys do not match, security is not released and all future attempts to execute the Verify Backdoor Access Key command are aborted (set ACCERR) until a reset occurs. The CCIF flag is set after the Verify Backdoor Access Key operation has completed.

Table 19-52. Verify Backdoor Access Key Command Error Handling

Register	Error Bit	Error Condition					
FSTAT		Set if CCOBIX[2:0] != 100 at command launch					
		Set if an incorrect backdoor key is supplied					
	ACCERR	Set if backdoor key access has not been enabled (KEYEN[1:0] != 10, see Section 19.3.2.2)					
		Set if the backdoor key has mismatched since the last reset					
	FPVIOL	None					
	MGSTAT1	None					
	MGSTAT0	None					

19.4.2.12 Set User Margin Level Command

The Set User Margin Level command causes the Memory Controller to set the margin level for future read operations of a specific P-Flash or D-Flash block.

Table 19-53. Set User Margin Level Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters					
000	0x0D	Global address [22:16] to identify the Flash block				
001	Margin level setting					

Register	Error Bit	Error Condition				
FSTAT		Set if CCOBIX[2:0] != 101 at command launch				
	ACCERR	Set if command not available in current mode (see Table 20-28)				
		Set if an invalid global address [22:0] is supplied ¹				
		Set if a misaligned phrase address is supplied (global address [2:0] != 000)				
	FPVIOL	Set if the global address [22:0] points to a protected area				
	MGSTAT1	Set if any errors have been encountered during the verify operation				
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation				

Table 20-40. Program P-Flash Command Error Handling

¹ As defined by the memory map for FTMR128K1.

20.4.2.6 Program Once Command

The Program Once command restricts programming to a reserved 64 byte field (8 phrases) in the nonvolatile information register located in P-Flash block 0. The Program Once reserved field can be read using the Read Once command as described in Section 20.4.2.4. The Program Once command must only be issued once since the nonvolatile information register in P-Flash block 0 cannot be erased. The Program Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

CCOBIX[2:0]	FCCOB Parameters					
000	0x07	Not Required				
001	Program Once phrase index (0x0000 - 0x0007)					
010	Program Once word 0 value					
011	Program Once word 1 value					
100	Program Once word 2 value					
101	Program Once word 3 value					

Table 20-41. Program Once Command FCCOB Requirements

Upon clearing CCIF to launch the Program Once command, the Memory Controller first verifies that the selected phrase is erased. If erased, then the selected phrase will be programmed and then verified with read back. The CCIF flag will remain clear, setting only after the Program Once operation has completed.

The reserved nonvolatile information register accessed by the Program Once command cannot be erased and any attempt to program one of these phrases a second time will not be allowed. Valid phrase index values for the Program Once command range from 0x0000 to 0x0007. During execution of the Program Once command, any attempt to read addresses within P-Flash block 0 will return invalid data.

64 KByte Flash Module (S12XFTMR64K1V1)

the DFDIE and SFDIE interrupt enable bits to generate the Flash error interrupt request. For a detailed description of the register bits involved, refer to Section 20.3.2.5, "Flash Configuration Register (FCNFG)", Section 20.3.2.6, "Flash Error Configuration Register (FERCNFG)", Section 20.3.2.7, "Flash Status Register (FSTAT)", and Section 20.3.2.8, "Flash Error Status Register (FERSTAT)".

The logic used for generating the Flash module interrupts is shown in Figure 20-27.

Figure 20-27. Flash Module Interrupts Implementation

20.4.4 Wait Mode

The Flash module is not affected if the MCU enters wait mode. The Flash module can recover the MCU from wait via the CCIF interrupt (see Section 20.4.3, "Interrupts").

20.4.5 Stop Mode

If a Flash command is active (CCIF = 0) when the MCU requests stop mode, the current Flash operation will be completed before the CPU is allowed to enter stop mode.

20.5 Security

The Flash module provides security information to the MCU. The Flash security state is defined by the SEC bits of the FSEC register (see Table 20-10). During reset, the Flash module initializes the FSEC register using data read from the security byte of the Flash configuration field at global address 0x7F_FF0F.

The security state out of reset can be permanently changed by programming the security byte of the Flash configuration field. This assumes that you are starting from a mode where the necessary P-Flash erase and program commands are available and that the upper region of the P-Flash is unprotected. If the Flash security byte is successfully programmed, its new value will take affect after the next MCU reset.

The following subsections describe these security-related subjects:

- Unsecuring the MCU using Backdoor Key Access
- Unsecuring the MCU in Special Single Chip Mode using BDM
- Mode and Security Effects on Flash Command Availability

0x0300–0x0327 Pulse Width Modulator 8-Bit 8-Channel (PWM) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0300	PWME	R W	PWME7	PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
0x0301	PWMPOL	R W	PPOL7	PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
0x0302	PWMCLK	R W	PCLK7	PCLK6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
0x0303	PWMPRCLK	R W	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
0x0304	PWMCAE	R W	CAE7	CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
0x0305	PWMCTL	R W	CON67	CON45	CON23	CON01	PSWAI	PFRZ	0	0
0x0306	PWMTST Test Only	R W	0	0	0	0	0	0	0	0
0x0307	PWMPRSC	R W	0	0	0	0	0	0	0	0
0x0308	PWMSCLA	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0309	PWMSCLB	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x030A	PWMSCNTA	R W	0	0	0	0	0	0	0	0
0x030B	PWMSCNTB	R W	0	0	0	0	0	0	0	0
0x030C	PWMCNT0	R W	Bit 7 0	6 0	5 0	4	3 0	2 0	1 0	Bit 0 0
0x030D	PWMCNT1	R W	Bit 7 0	6 0	5 0	4	3 0	2	1 0	Bit 0 0
0x030E	PWMCNT2	R W	Bit 7 0	6 0	5 0	4	3 0	2	1 0	Bit 0 0
0x030F	PWMCNT3	R W	Bit 7 0	6	5	4	3	2	1	Bit 0 0
0x0310	PWMCNT4	R W	Bit 7 0	6	5	4	3	2	1	Bit 0 0
0x0311	PWMCNT5	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0312	PWMCNT6	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0313	PWMCNT7	R	Bit 7	6	5	4	3	2	1	Bit 0
0x0314	PWMPER0	R	Bit 7	6	5	4	3	2	1	Bit 0
0x0315	PWMPER1	R W	Bit 7	6	5	4	3	2	1	Bit 0
0x0316	PWMPER2	R W	Bit 7	6	5	4	3	2	1	Bit 0

S12XS Family Reference Manual, Rev. 1.13