

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s12xs64j1mae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pack	age Ter	minal			Function	ction Internal Pull Power Resistor		Description				
LQFP 112	QFP 80	LQFP 64	Pin	2nd Func.	3rd Func.	4th Func.	5th Func.	Supply	CTRL	Reset State	Description	
106	76	61	VSSX1	_	—	_	—	_	_	—	—	
107	77	62	VDDX1	_	_		—	_	_	_	_	
108	-	-	PK7	_	_	—	—	V _{DDX}	PUCR	Up	Port K I/O	
109	78	63	PP7	KWP7	PWM7		_	V _{DDX}	PERP/PPSP	Disabled	Port P I/O, interrupt, PWM channel	
110	-	-	PP6	KWP6	PWM6			V _{DDX}	PERP/PPSP	Disabled	Port P I/O, interrupt, PWM channel	
111	79	64	PP5	KWP5	PWM5		_	V _{DDX}	PERP/PPSP	Disabled	Port P I/O, interrupt, PWM channel	
112	80	-	PP4	KWP4	PWM4	_	-	V _{DDX}	PERP/PPSP	Disabled	Port P I/O, interrupt, PWM channel	

 Table 1-6. Pin-Out Summary¹ (continued)

1 Table shows a superset of pin functions. Not all functions are available on all derivatives

2 For compatibility to XE family

 $\frac{1}{3}$ VRL and VSSA share single pin on 64 package option

40

Vector Address ¹	Interrupt Source		Local Enable	STOP Wake up	WAIT Wake up
Vector base + \$BA	FLASH Fault Detect		FCNFG2 (SFDIE, DFDIE)	No	No
Vector base + \$B8	FLASH	l bit	FCNFG (CCIE)	No	Yes
Vector base + \$B6	CAN0 wake-up	I bit	CANORIER (WUPIE)	Yes	Yes
Vector base + \$B4	CAN0 errors	l bit	CANORIER (CSCIE, OVRIE)	No	Yes
Vector base + \$B2	CAN0 receive	I bit	CANORIER (RXFIE)	No	Yes
Vector base + \$B0	CAN0 transmit	I bit	CAN0TIER (TXEIE[2:0])	No	Yes
Vector base + \$AE to Vector base + \$90		Rese	rved		
Vector base + \$8E	Port P Interrupt I bit PIEP (PIEP7-PIEP0)		Yes	Yes	
Vector base+ \$8C	PWM emergency shutdown	I bit	PWMSDN (PWMIE)	No	Yes
Vector base + \$8A to Vector base + \$82		Rese	rved		
Vector base + \$80	Low-voltage interrupt (LVI)	I bit	VREGCTRL (LVIE)	No	Yes
Vector base + \$7E	Autonomous periodical interrupt (API)	I bit	VREGAPICTRL (APIE)	Yes	Yes
Vector base + \$7C	High Temperature Interrupt (HTI)		VREGHTCL (HTIE)	No	Yes
Vector base + \$7A	Periodic interrupt timer channel 0		PITINTE (PINTE0)	No	Yes
Vector base + \$78	Periodic interrupt timer channel 1		PITINTE (PINTE1)	No	Yes
Vector base + \$76	Periodic interrupt timer channel 2	l bit	PITINTE (PINTE2)	No	Yes
Vector base + \$74	Periodic interrupt timer channel 3	l bit	PITINTE (PINTE3)	No	Yes
Vector base + \$72 to Vector base + \$40		Rese	rved		
Vector base + \$3E	ATD0 Compare Interrupt	I bit	ATD0CTL2 (ACMPIE)	Yes	Yes
Vector base + \$3C to Vector base + \$14		Rese	rved	_	
Vector base + \$12	System Call Interrupt (SYS)	—	None	—	—
Vector base + \$10	Spurious interrupt	_	None	_	_

Table 1-10. Interrupt Vector Locations (Sheet 2 of 2)

1 16 bits vector address based

1.6.3 Effects of Reset

When a reset occurs, MCU registers and control bits are initialized. Refer to the respective block sections for register reset states.

On each reset, the Flash module executes a reset sequence to load Flash configuration registers.

S12XS Family Reference Manual, Rev. 1.13

Port Integration Module (S12XSPIMV1)

2.3.7 PIM Reserved Registers

¹ Read: Always reads 0x00 Write: Unimplemented

2.3.8 Port E Data Register (PORTE)

Address 0x0008 (PRR) Access: User read/write¹ 7 6 5 4 3 2 0 1 R PE1 PE0 PE2 PE7 PE6 PE5 PE4 PE3 W Altern. **XCLKS** ECLK IRQ XIRQ Function ECLKX2 ____ ____ ____ _ ____ 2 2 Reset 0 0 0 0 0 0 = Unimplemented or Reserved

Figure 2-6. Port E Data Register (PORTE)

¹ Read: Anytime, the data source depends on the data direction value Write: Anytime

² These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated pin values.

Memory Mapping Control (S12XMMCV4)

The two fixed 4KB pages (0xFE, 0xFF) contain unimplemented area in the range not occupied by RAM if RAMSIZE is less than 8KB (Refer to Section 3.4.2.3, "Implemented Memory Map).

Interrupt (S12XINTV2)

4.4.1 S12X Exception Requests

The CPU handles both reset requests and interrupt requests. The XINT module contains registers to configure the priority level of each I bit maskable interrupt request which can be used to implement an interrupt priority scheme. This also includes the possibility to nest interrupt requests. A priority decoder is used to evaluate the priority of a pending interrupt request.

4.4.2 Interrupt Prioritization

After system reset all interrupt requests with a vector address lower than or equal to (vector base + 0x00F2) are enabled, are set up to be handled by the CPU and have a pre-configured priority level of 1. Exceptions to this rule are the non-maskable interrupt requests and the spurious interrupt vector request at (vector base + 0x0010) which cannot be disabled, are always handled by the CPU and have a fixed priority levels. A priority level of 0 effectively disables the associated I bit maskable interrupt request.

If more than one interrupt request is configured to the same interrupt priority level the interrupt request with the higher vector address wins the prioritization.

The following conditions must be met for an I bit maskable interrupt request to be processed.

- 1. The local interrupt enabled bit in the peripheral module must be set.
- 2. The setup in the configuration register associated with the interrupt request channel must meet the following conditions:
 - a) The XGATE request enable bit must be 0 to have the CPU handle the interrupt request.
 - b) The priority level must be set to non zero.
 - c) The priority level must be greater than the current interrupt processing level in the condition code register (CCR) of the CPU (PRIOLVL[2:0] > IPL[2:0]).
- 3. The I bit in the condition code register (CCR) of the CPU must be cleared.
- 4. There is no access violation interrupt request pending.
- 5. There is no SYS, SWI, BDM, TRAP, or $\overline{\text{XIRQ}}$ request pending.

NOTE

All non I bit maskable interrupt requests always have higher priority than I bit maskable interrupt requests. If an I bit maskable interrupt request is interrupted by a non I bit maskable interrupt request, the currently active interrupt processing level (IPL) remains unaffected. It is possible to nest non I bit maskable interrupt requests, e.g., by nesting SWI or TRAP calls.

4.4.2.1 Interrupt Priority Stack

The current interrupt processing level (IPL) is stored in the condition code register (CCR) of the CPU. This way the current IPL is automatically pushed to the stack by the standard interrupt stacking procedure. The new IPL is copied to the CCR from the priority level of the highest priority active interrupt request channel which is configured to be handled by the CPU. The copying takes place when the interrupt vector is fetched. The previous IPL is automatically restored by executing the RTI instruction.

SSF[2:0]	Current State
000	State0 (disarmed)
001	State1
010 State2	
011	State3
100	Final State
101,110,111	Reserved

Table 6-7. SSF[2:0] — State Sequence Flag Bit Encoding

6.3.2.3 Debug Trace Control Register (DBGTCR)

Address: 0x0022

Figure 6-5. Debug Trace Control Register (DBGTCR)

Read: Anytime

Write: Bits 7:6 only when S12XDBG is neither secure nor armed. Bits 5:0 anytime the module is disarmed.

WARNING

DBGTCR[7] is reserved. Setting this bit maps the tracing to an unimplemented bus, thus preventing proper operation.

Table 6-8. DBGTCR Field Descriptions

Field	Description
6 TSOURCE	 Trace Source Control Bits — The TSOURCE enables the tracing session. If the MCU system is secured, this bit cannot be set and tracing is inhibited. 0 No tracing selected 1 Tracing selected
5–4 TRANGE	Trace Range Bits — The TRANGE bits allow filtering of trace information from a selected address range when tracing from the CPU12X in Detail Mode. To use a comparator for range filtering, the corresponding COMPE bits must remain cleared. If the COMPE bit is not clear then the comparator will also be used to generate state sequence triggers. See Table 6-9.
3–2 TRCMOD	Trace Mode Bits — See Section 6.4.5.2 for detailed Trace Mode descriptions. In Normal Mode, change of flow information is stored. In Loop1 Mode, change of flow information is stored but redundant entries into trace memory are inhibited. In Detail Mode, address and data for all memory and register accesses is stored. See Table 6-10.
1–0 TALIGN	Trigger Align Bits — These bits control whether the trigger is aligned to the beginning, end or the middle of a tracing session. See Table 6-11.

SC[3:0]	Description
0010	Any match triggers to Final State
0011	Match0 triggers to State1 Other matches have no effect
0100	Match0 triggers to State2 Other matches have no effect
0101	Match0 triggers to Final StateMatch1 triggers to State1Other matches have no effect
0110	Match1 triggers to State1 Other matches have no effect
0111	Match1 triggers to State2 Other matches have no effect
1000	Match1 triggers to Final State Other matches have no effect
1001	Match2 triggers to State2 Match0 triggers to Final State Other matches have no effect
1010	Match1 triggers to State1 Match3 triggers to State2 Other matches have no effect
1011	Match3 triggers to State2 Match1 triggers to Final State Other matches have no effect
1100	Match2 triggers to Final State Other matches have no effect
1101	Match3 triggers to Final State Other matches have no effect
1110	Reserved. (No match triggers state sequencer transition)
1111	Reserved. (No match triggers state sequencer transition)

Table 6-24. State3 — Sequencer Next State Selection

The trigger priorities described in Table 6-39 dictate that in the case of simultaneous matches, the match on the lower channel number (0,1,2,3) has priority. The SC[3:0] encoding ensures that a match leading to final state has priority over all other matches.

6.3.2.7.4 Debug Match Flag Register (DBGMFR)

Figure 6-12. Debug Match Flag Register (DBGMFR)

Read: If COMRV[1:0] = 11

Write: Never

DBGMFR is visible at 0x0027 only with COMRV[1:0] = 11. It features four flag bits each mapped directly to a channel. Should a match occur on the channel during the debug session, then the corresponding flag is set and remains set until the next time the module is armed by writing to the ARM bit. Thus the contents are retained after a debug session for evaluation purposes. These flags cannot be cleared by software, they are cleared only when arming the module. A set flag does not inhibit the setting of other flags. Once a flag is set, further triggers on the same channel have no affect.

6.3.2.8 Comparator Register Descriptions

Each comparator has a bank of registers that are visible through an 8-byte window in the S12XDBG module register address map. Comparators A and C consist of 8 register bytes (3 address bus compare registers, two data bus mask registers and a control register).

S12X Debug (S12XDBGV3) Module

6.4.3 Trigger Modes

Trigger modes are used as qualifiers for a state sequencer change of state. The control logic determines the trigger mode and provides a trigger to the state sequencer. The individual trigger modes are described in the following sections.

6.4.3.1 Forced Trigger On Comparator Match

If a forced trigger comparator match occurs, the trigger immediately initiates a transition to the next state sequencer state whereby the corresponding flags in DBGSR are set. The state control register for the current state determines the next state for each trigger. Forced triggers are generated as soon as the matching address appears on the address bus, which in the case of opcode fetches occurs several cycles before the opcode execution. For this reason a forced trigger at an opcode address precedes a tagged trigger at the same address by several cycles.

6.4.3.2 Trigger On Comparator Related Taghit

If a CPU12X taghit occurs, a transition to another state sequencer state is initiated and the corresponding DBGSR flags are set. For a comparator related taghit to occur, the S12XDBG must first generate tags based on comparator matches. When the tagged instruction reaches the execution stage of the instruction queue a taghit is generated by the CPU12X. The state control register for the current state determines the next state for each trigger.

6.4.3.3 TRIG Immediate Trigger

Independent of comparator matches it is possible to initiate a tracing session and/or breakpoint by writing the TRIG bit in DBGC1 to a logic "1". If configured for begin or mid aligned tracing, this triggers the state sequencer into the Final State, if configured for end alignment, setting the TRIG bit disarms the module, ending the session. If breakpoints are enabled, a forced breakpoint request is issued immediately (end alignment) or when tracing has completed (begin or mid alignment).

6.4.3.4 Trigger Priorities

In case of simultaneous triggers, the priority is resolved according to Table 6-39. The lower priority trigger is suppressed. It is thus possible to miss a lower priority trigger if it occurs simultaneously with a trigger of a higher priority. The trigger priorities described in Table 6-39 dictate that in the case of simultaneous matches, the match on the lower channel number (0,1,2,3) has priority. The SC[3:0] encoding ensures that a match leading to final state has priority over all other matches in each state sequencer state. When configured for range modes a simultaneous match of comparators A and C generates an active match0 whilst match2 is suppressed.

If a write access to DBGC1 with the ARM bit position set occurs simultaneously to a hardware disarm from an internal trigger event, then the ARM bit is cleared due to the hardware disarm.

Priority	Source	Action

Table 6-39. Trigger Priorities

S12XE Clocks and Reset Generator (S12XECRGV1)

8.5 Resets

All reset sources are listed in Table 8-16. Refer to MCU specification for related vector addresses and priorities.

Table	8-16.	Reset	Summary
-------	-------	-------	---------

Reset Source	Local Enable
Power on Reset	None
Low Voltage Reset	None
External Reset	None
Illegal Address Reset	None
Clock Monitor Reset	PLLCTL (CME=1, SCME=0)

11.4 Functional Description

11.4.1 General

This section provides a complete functional description of the MSCAN.

11.4.2 Message Storage

Figure 11-39. User Model for Message Buffer Organization

S12XS Family Reference Manual Rev. 1.13

Pulse-Width Modulator (S12PWM8B8CV1)

Each channel counter can be read at anytime without affecting the count or the operation of the PWM channel.

Any value written to the counter causes the counter to reset to \$00, the counter direction to be set to up, the immediate load of both duty and period registers with values from the buffers, and the output to change according to the polarity bit. When the channel is disabled (PWMEx = 0), the counter stops. When a channel becomes enabled (PWMEx = 1), the associated PWM counter continues from the count in the PWMCNTx register. This allows the waveform to continue where it left off when the channel is re-enabled. When the channel is disabled, writing "0" to the period register will cause the counter to reset on the next selected clock.

NOTE

If the user wants to start a new "clean" PWM waveform without any "history" from the old waveform, the user must write to channel counter (PWMCNTx) prior to enabling the PWM channel (PWMEx = 1).

Generally, writes to the counter are done prior to enabling a channel in order to start from a known state. However, writing a counter can also be done while the PWM channel is enabled (counting). The effect is similar to writing the counter when the channel is disabled, except that the new period is started immediately with the output set according to the polarity bit.

NOTE

Writing to the counter while the channel is enabled can cause an irregular PWM cycle to occur.

The counter is cleared at the end of the effective period (see Section 13.4.2.5, "Left Aligned Outputs" and Section 13.4.2.6, "Center Aligned Outputs" for more details).

Table 13-10. I	PWM Timer	Counter	Conditions
----------------	-----------	---------	------------

Counter Clears (\$00)	Counter Counts	Counter Stops
When PWMCNTx register written to any value	When PWM channel is enabled (PWMEx = 1). Counts from last value in	When PWM channel is disabled (PWMEx = 0)
Effective period ends	PWMCNTx.	

13.4.2.5 Left Aligned Outputs

The PWM timer provides the choice of two types of outputs, left aligned or center aligned. They are selected with the CAEx bits in the PWMCAE register. If the CAEx bit is cleared (CAEx = 0), the corresponding PWM output will be left aligned.

In left aligned output mode, the 8-bit counter is configured as an up counter only. It compares to two registers, a duty register and a period register as shown in the block diagram in Figure 13-19. When the PWM counter matches the duty register the output flip-flop changes state causing the PWM waveform to also change state. A match between the PWM counter and the period register resets the counter and the output flip-flop, as shown in Figure 13-19, as well as performing a load from the double buffer period and duty register to the associated registers, as described in Section 13.4.2.3, "PWM Period and Duty". The counter counts from 0 to the value in the period register -1.

Table 16-21. PAFLG Field Descriptions

Field	Description
1 PAOVF	Pulse Accumulator Overflow Flag — Set when the 16-bit pulse accumulator overflows from 0xFFFF to 0x0000. Clearing this bit requires writing a one to this bit in the PAFLG register while TEN bit of TSCR1 or PAEN bit of PACTL register is set to one.
0 PAIF	Pulse Accumulator Input edge Flag — Set when the selected edge is detected at the IOC7 input pin.In event mode the event edge triggers PAIF and in gated time accumulation mode the trailing edge of the gate signal at the IOC7 input pin triggers PAIF. Clearing this bit requires writing a one to this bit in the PAFLG register while TEN bit of TSCR1 or PAEN bit of
	PACTL register is set to one. Any access to the PACNT register will clear all the flags in this register when TFFCA bit in register TSCR(0x0006) is set.

16.3.2.17 Pulse Accumulators Count Registers (PACNT)

Module Base + 0x0022

Module Base + 0x0023

	7	6	5	4	3	2	1	0
R W	PACNT7	PACNT6	PACNT5	PACNT4	PACNT3	PACNT2	PACNT1	PACNT0
Reset	0	0	0	0	0	0	0	0

Figure 16-27. Pulse Accumulator Count Register Low (PACNTL)

Read: Anytime

Write: Anytime

These registers contain the number of active input edges on its input pin since the last reset.

When PACNT overflows from 0xFFFF to 0x0000, the Interrupt flag PAOVF in PAFLG (0x0021) is set.

Full count register access should take place in one clock cycle. A separate read/write for high byte and low byte will give a different result than accessing them as a word.

NOTE

Reading the pulse accumulator counter registers immediately after an active edge on the pulse accumulator input pin may miss the last count because the input has to be synchronized with the bus clock first.

Voltage Regulator (S12VREGL3V3V1)

17.3.2.2 Control Register (VREGCTRL)

The VREGCTRL register allows the configuration of the VREG_3V3 low-voltage detect features.

0x02F1

Figure 17-2. Control Register (VREGCTRL)

Table 17-5. VREGCTRL Field Descriptions

Field	Description
2 LVDS	 Low-Voltage Detect Status Bit — This read-only status bit reflects the input voltage. Writes have no effect. Input voltage V_{DDA} is above level V_{LVID} or RPM or shutdown mode. Input voltage V_{DDA} is below level V_{LVIA} and FPM.
1 LVIE	Low-Voltage Interrupt Enable Bit 0 Interrupt request is disabled. 1 Interrupt will be requested whenever LVIF is set.
0 LVIF	 Low-Voltage Interrupt Flag — LVIF is set to 1 when LVDS status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (LVIE = 1), LVIF causes an interrupt request. 0 No change in LVDS bit. 1 LVDS bit has changed. Note: On entering the Reduced Power Mode the LVIF is not cleared by the VREG_3V3.

256 KByte Flash Module (S12XFTMR256K1V1)

OSCCLK (M	Frequency Hz)	FDIV[6:0]	OSCCLK (M	OSCCLK Frequency (MHz)			
MIN ¹	MAX ²		MIN ¹	MAX ²			
1.60	2.10	0x01	33.60	34.65	0x20		
2.40	3.15	0x02	34.65	35.70	0x21		
3.20	4.20	0x03	35.70	36.75	0x22		
4.20	5.25	0x04	36.75	37.80	0x23		
5.25	6.30	0x05	37.80	38.85	0x24		
6.30	7.35	0x06	38.85	39.90	0x25		
7.35	8.40	0x07	39.90	40.95	0x26		
8.40	9.45	0x08	40.95	42.00	0x27		
9.45	10.50	0x09	42.00	43.05	0x28		
10.50	11.55	0x0A	43.05	44.10	0x29		
11.55	12.60	0x0B	44.10	45.15	0x2A		
12.60	13.65	0x0C	45.15	46.20	0x2B		
13.65	14.70	0x0D	46.20	47.25	0x2C		
14.70	15.75	0x0E	47.25	48.30	0x2D		
15.75	16.80	0x0F	48.30	49.35	0x2E		
16.80	17.85	0x10	49.35	50.40	0x2F		
17.85	18.90	0x11					
18.90	19.95	0x12					
19.95	21.00	0x13					
21.00	22.05	0x14					
22.05	23.10	0x15					
23.10	24.15	0x16					
24.15	25.20	0x17					
25.20	26.25	0x18					
26.25	27.30	0x19					
27.30	28.35	0x1A					
28.35	29.40	0x1B					
29.40	30.45	0x1C					
30.45	31.50	0x1D					
31.50	32.55	0x1E					
32.55	33.60	0x1F					

Table 18-7. FDIV vs OSCCLK Frequency

¹ FDIV shown generates an FCLK frequency of >0.8 MHz

² FDIV shown generates an FCLK frequency of 1.05 MHz

Figure 18-25. Flash Reserved4 Register (FRSV4)

All bits in the FRSV4 register read 0 and are not writable.

18.4 Functional Description

18.4.1 Flash Command Operations

Flash command operations are used to modify Flash memory contents.

The next sections describe:

Offset Module Base + 0x0013

- How to write the FCLKDIV register that is used to generate a time base (FCLK) derived from OSCCLK for Flash program and erase command operations
- The command write sequence used to set Flash command parameters and launch execution
- Valid Flash commands available for execution

18.4.1.1 Writing the FCLKDIV Register

Prior to issuing any Flash program or erase command after a reset, the user is required to write the FCLKDIV register to divide OSCCLK down to a target FCLK of 1 MHz. Table 18-7 shows recommended values for the FDIV field based on OSCCLK frequency.

NOTE

Programming or erasing the Flash memory cannot be performed if the bus clock runs at less than 1 MHz. Setting FDIV too high can destroy the Flash memory due to overstress. Setting FDIV too low can result in incomplete programming or erasure of the Flash memory cells.

When the FCLKDIV register is written, the FDIVLD bit is set automatically. If the FDIVLD bit is 0, the FCLKDIV register has not been written since the last reset. If the FCLKDIV register has not been written, any Flash program or erase command loaded during a command write sequence will not execute and the ACCERR bit in the FSTAT register will set.

128 KByte Flash Module (S12XFTMR128K1V1)

Address & Name		7	6	5	4	3	2	1	0
0x0010	R	NV7	NV6	NV5	NV4	NV3	NV2	NV1	NV0
FOPT	W								
0x0011	R	0	0	0	0	0	0	0	0
FRSV2	W								
0x0012	R	0	0	0	0	0	0	0	0
FRSV3	W								
0x0013	R	0	0	0	0	0	0	0	0
FRSV4	W								
		= Unimplemented or Reserved							

Figure 19-4. FTMR128K1 Register Summary (continued)

19.3.2.1 Flash Clock Divider Register (FCLKDIV)

The FCLKDIV register is used to control timed events in program and erase algorithms.

Figure 19-5. Flash Clock Divider Register (FCLKDIV)

All bits in the FCLKDIV register are readable, bits 6–0 are write once and bit 7 is not writable.

Table 19-6. FCLKDIV Field Descriptions

Field	Description
7 FDIVLD	Clock Divider Loaded 0 FCLKDIV register has not been written 1 FCLKDIV register has been written since the last reset
6–0 FDIV[6:0]	Clock Divider Bits — FDIV[6:0] must be set to effectively divide OSCCLK down to generate an internal Flash clock, FCLK, with a target frequency of 1 MHz for use by the Flash module to control timed events during program and erase algorithms. Table 19-7 shows recommended values for FDIV[6:0] based on OSCCLK frequency. Please refer to Section 19.4.1, "Flash Command Operations," for more information.

128 KByte Flash Module (S12XFTMR128K1V1)

¹ Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 19.5.

19.3.2.3 Flash CCOB Index Register (FCCOBIX)

The FCCOBIX register is used to index the FCCOB register for Flash memory operations.

Offset Module Base + 0x0002

Figure 19-7. FCCOB Index Register (FCCOBIX)

CCOBIX bits are readable and writable while remaining bits read 0 and are not writable.

Table 19-11. FCCOBIX Field Descriptions

Field	Description
2–0 CCOBIX[1:0]	Common Command Register Index — The CCOBIX bits are used to select which word of the FCCOB register array is being read or written to. See Section 19.3.2.11, "Flash Common Command Object Register (FCCOB)," for more details.

19.3.2.4 Flash ECCR Index Register (FECCRIX)

The FECCRIX register is used to index the FECCR register for ECC fault reporting.

Offset Module Base + 0x0003

Figure 19-8. FECCR Index Register (FECCRIX)

ECCRIX bits are readable and writable while remaining bits read 0 and are not writable.

Table 19-12. FECCRIX Field Descriptions

Field	Description
2-0	ECC Error Register Index— The ECCRIX bits are used to select which word of the FECCR register array is
ECCRIX[2:0]	being read. See Section 19.3.2.14, "Flash ECC Error Results Register (FECCR)," for more details.

128 KByte Flash Module (S12XFTMR128K1V1)

19.4.1.3 Valid Flash Module Commands

FOND	Command	Unsecured				Secured			
FCMD		NS ¹	NX ²	SS ³	ST ⁴	NS ⁵	NX ⁶	SS ⁷	ST ⁸
0x01	Erase Verify All Blocks	*	*	*	*	*	*	*	*
0x02	Erase Verify Block	*	*	*	*	*	*	*	*
0x03	Erase Verify P-Flash Section	*	*	*	*	*			
0x04	Read Once	*	*	*	*	*			
0x06	Program P-Flash	*	*	*	*	*			
0x07	Program Once	*	*	*	*	*			
0x08	Erase All Blocks			*	*			*	*
0x09	Erase Flash Block	*	*	*	*	*			
0x0A	Erase P-Flash Sector	*	*	*	*	*			
0x0B	Unsecure Flash			*	*			*	*
0x0C	Verify Backdoor Access Key	*				*			
0x0D	Set User Margin Level	*	*	*	*	*			
0x0E	Set Field Margin Level			*	*				
0x10	Erase Verify D-Flash Section	*	*	*	*	*			
0x11	Program D-Flash	*	*	*	*	*			
0x12	Erase D-Flash Sector	*	*	*	*	*			

Table 19-28. Flash Commands by Mode

¹ Unsecured Normal Single Chip mode.

² Unsecured Normal Expanded mode.

³ Unsecured Special Single Chip mode.

⁴ Unsecured Special Mode.

- ⁵ Secured Normal Single Chip mode.
- ⁶ Secured Normal Expanded mode.
- ⁷ Secured Special Single Chip mode.
- ⁸ Secured Special Mode.

19.4.1.4 P-Flash Commands

Table 19-29 summarizes the valid P-Flash commands along with the effects of the commands on the P-Flash block and other resources within the Flash module.

Electrical Characteristics

Num	Rating	Symbol	Min	Мах	Unit
1	I/O, regulator and analog supply voltage	V _{DD35}	-0.3	6.0	V
2	Digital logic supply voltage ²	V _{DD}	-0.3	2.16	V
3	PLL supply voltage ²	V _{DDPLL}	-0.3	2.16	V
4	NVM supply voltage ²	V _{DDF}	-0.3	3.6	V
5	Voltage difference V _{DDX} to V _{DDA}	Δ_{VDDX}	-6.0	0.3	V
6	Voltage difference V _{SSX} to V _{SSA}	Δ_{VSSX}	-0.3	0.3	V
7	Digital I/O input voltage	V _{IN}	-0.3	6.0	V
8	Analog reference	$V_{RH,} V_{RL}$	-0.3	6.0	V
9	EXTAL, XTAL	V _{ILV}	-0.3	2.16	V
11	Instantaneous maximum current Single pin limit for all digital I/O pins ³	I _D	-25	+25	mA
12	Instantaneous maximum current Single pin limit for EXTAL, XTAL ⁴	I _{DL}	-25	+25	mA
14	Maximum current Single pin limit for power supply pins	I _{DV}	-100	+100	mA
15	Storage temperature range	T _{stg}	-65	155	°C

Table A-1.	Absolute	Maximum	Ratings ¹
------------	----------	---------	----------------------

Beyond absolute maximum ratings device might be damaged. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX} , or V_{SSA} and V_{DDA} . Those pins are internally clamped to V_{SSPLL} and V_{DDPLL} . 2

3

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 stress test qualification for automotive grade integrated circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

A.3 NVM, Flash

A.3.1 Timing Parameters

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. When attempting to program or erase the NVM modules at a lower frequency, a full program or erase transition is not assured.

The program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV register. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in Table A-18 are calculated for maximum f_{NVMOP} and maximum f_{NVMBUS} unless otherwise shown. The maximum times are calculated for minimum f_{NVMOP}

A.3.1.1 Erase Verify All Blocks (Blank Check) (FCMD=0x01)

The time it takes to perform a blank check is dependent on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per phrase to verify plus a setup of the command. Assuming that no non blank location is found, then the erase verify all blocks is given by.

$$t_{check} = 33500 \cdot \frac{1}{f_{NVMBUS}}$$

A.3.1.2 Erase Verify Block (Blank Check) (FCMD=0x02)

The time it takes to perform a blank check is dependent on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per phrase to verify plus a setup of the command. Assuming that no non blank location is found, then the erase verify time for a single 256K NVM array is given by

$$t_{\rm check} = 33500 \cdot \frac{1}{f_{\rm NVMBUS}}$$

For a 128K NVM or D-Flash array the erase verify time is given by

$$t_{check} = 17200 \cdot \frac{1}{f_{NVMBUS}}$$

A.3.1.3 Erase Verify P-Flash Section (FCMD=0x03)

The maximum time depends on the number of phrases being verified (N_{VP})

$$t_{check} = (752 + N_{VP}) \cdot \frac{1}{f_{NVMBUS}}$$