

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE

Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART, USB
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21348udfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 Specifications

Tables 1.2 and 1.3 outline the Specifications for R8C/34U Group, R8C/34K Group.

Table 1.2 Specifications for R8C/34U Group, R8C/34K Group (1)

Item	Function	Specification			
CPU	Central processing	R8C CPU core			
	unit	Number of fundamental instructions: 89			
		Minimum instruction execution time:			
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)			
		200 ns (I(XIIV) = 5 MHZ, VCC = 1.8 to 5.5 V)			
		• Multiplier. To Dits \times To Dits \rightarrow 32 Dits • Multiply accumulate instruction: 16 bits \times 16 bits 1.22 bits \rightarrow 32 bits			
		• Multiply-accumulate instruction. To bits \times To bits \pm 52 bits \rightarrow 52 bits			
Momony		Poperation mode. Single-chip mode (address space. 1 mbyte)			
Memory	Data flash	List for R8C/34K Group.			
Power Supply	Voltage detection	Power-on reset			
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage			
Detection		detection 1 selectable)			
I/O Ports	Programmable I/O	CMOS I/O ports: 36, selectable pull-up resistor High current drive ports: 36			
Clock	Clock generation	• 4 circuits: XIN clock oscillation circuit			
CIUCK	circuits	High-speed on-chip oscillator (with frequency adjustment function)			
		I ow-speed on-chip oscillator			
		PLL frequency synthesizer			
		Oscillation stop detection: XIN clock oscillation stop detection function			
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16			
		 Low power consumption modes: 			
		Standard operating mode (XIN clock, PLL frequency synthesizer, high-speed			
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode			
Interrupts		Interrupt Vectors: 69			
		• External: 9 sources (INT × 5, key input × 4)			
		Priority levels: 7 levels			
Watchdog Tim	er	• 14 bits × 1 (with prescaler)			
		Reset start selectable			
		Low-speed on-chip oscillator for watchdog timer selectable			
DTC (Data Tra	nsfer Controller)	• 1 channel			
		Activation sources: 30 Transfer modes: 2 (normal mode, report mode)			
		• Transier modes. 2 (normal mode, repeat mode)			
Timer	Limer RA	8 bits × 1 (with 8-bit prescaler)			
		nimer mode (period timer), pulse output mode (output level inverted every			
		measurement mode			
	Timor PR	9 hits x 1 (with 9 hit procedur)			
		Timer mode (period timer), programmable waveform generation mode (PWM			
		output), programmable one-shot generation mode, programmable wait one-			
		shot generation mode			
	Timer RC	16 bits x 1 (with 4 capture/compare registers)			
		Timer mode (input capture function, output compare function), PWM mode			
		(output 3 pins), PWM2 mode (PWM output pin)			
	Timer RF	16 bits x 1			
		Input capture mode (input × 1)			
		Output compare mode (output × 4)			
Serial	UART0, UART1,	Clock synchronous serial I/O/UART × 3 channel			
Interface	UART3				
	UART2	Clock synchronous serial I/O, UART, multiprocessor communication function			
Synchronous S	Serial	1 (shared with I ² C bus)			
Communication Unit (SSU)					

RENESAS

Figure 1.6 Pin Assignment (Top View) of R8C/34K Group

Tables 1.8 and 1.9 list Pin Functions.

Table 1.8	Pin Functions (1)
-----------	-------------------

Item	Pin Name	I/O Type	Description	
Power supply input	VCC, VSS		Apply 1.8 to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.	
Analog power supply input	AVCC, AVSS	—	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.	
Reset input	RESET	I	Input "L" on this pin resets the MCU.	
MODE	MODE	I	Connect this pin to VCC via a resistor.	
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O.	
XIN clock output	XOUT	I/O	Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. ⁽¹⁾ To use an external clock, input it to the XOUT pin and leave the XIN pin open.	
INT interrupt input	INT0 to INT4	I	INT interrupt input pins.	
Key input interrupt	KIO to KI3	I	Key input interrupt input pins.	
Timer RA	TRAIO	I/O	Timer RA I/O pin.	
	TRAO	0	Timer RA output pin.	
Timer RB	TRBO	0	Timer RB output pin.	
Timer RC	TRCCLK	I	External clock input pin.	
	TRCTRG	Ι	External trigger input pin.	
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins.	
Timer RF	TRFI	I	Timer RF input pins.	
	TRFO00, TRFO10, TRFO01, TRFO02	0	Timer RF output pins.	
Serial interface	CLK0, CLK1, CLK2, CLK3	I/O	Transfer clock I/O pins.	
	RXD0, RXD1, RXD2, RXD3	I	Serial data input pins.	
	TXD0, TXD1, TXD2, TXD3	0	Serial data output pins.	
	CTS2	I	Transmission control input pin.	
	RTS2	0	Reception control output pin.	
SSU	SSI	I/O	Data I/O pin.	
	SCS	I/O	Chip-select signal I/O pin.	
	SSCK	I/O	Clock I/O pin.	
	SSO	I/O	Data I/O pin.	
I ² C bus	SCL	I/O	Clock I/O pin.	
	SDA	I/O	Data I/O pin.	
I: Input O: Ou	tout I/O: Input an	d output		

Note:

I/O: Input and output

1. Refer to the oscillator manufacturer for oscillation characteristics.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Table 4.7	SFR Information	ו (7) ⁽¹⁾
-----------	-----------------	----------------------

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RC Pin Select Register	TRBRCSR	00h
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 1	TRCPSR1	00h
0184h			
0185h			
0186h	Timer Pin Select Register	TIMSR	00h
0187h	Timer RF Output Control Register	TRFOUT	00h
0188h	UART0 Pin Select Register	U0SR	00h
0189h	UART1 Pin Select Register	U1SR	00h
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h
018Dh		INTOD	
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	UUN
0190h			
01910			
019211	SS Bit Counter Register	SSBR	11111000b
019311 0194h	SS Transmit Data Register L / IIC hus Transmit Data Projector (?)	SSTDR / ICDRT	FFh
01055	Se Transmit Data Register L / IIO Dus Transmit Data Register (4)	SSTDRH	FFb
01066	SS Hanshill Data Register L/IIC hus Dessitive Data Deviator (2)		EEb
01901	So Receive Data Register L / IIU bus Receive Data Register (4)		
019/h	SS Receive Data Register H (4)	SSKUKH	
0198h	SS Control Register H / IIC bus Control Register 1 ⁽²⁾	SSCRH/ICCR1	UUN
0199h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b
019Ah	SS Mode Register / IIC bus Mode Register ⁽²⁾	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h
019Ch	SS Status Register / IIC bus Status Register ⁽²⁾	SSSR / ICSR	00h / 0000X000b
019Dh	SS Mode Register 2 / Slave Address Register (2)	SSMR2 / SAR	00h
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A50			
0147h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h			
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	UUh
01B6h	Flash Memory Control Register 2	FMR2	UUh
01B/h			
01BBA			
01BCh			
01BDh			
01BFh			
01BFh			
0.011			

X: Undefined

Notes:

1. The blank areas are reserved and cannot be accessed by users.

2. Selectable by the IICSEL bit in the SSUIICSR register.

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CE5h			XXh
2016h			XXh
2010h			YYh
201711 20E9b	DTC Control Data 22	DTCD22	
20F01	DTC CONTO Data 25	DTCD25	
20F90			
2CFAh			XXn
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			
2DFFh			
2E00h	System Configuration Control Register	SYSCFG	00h
2E01h	, , , , , , , , , , , , , , , , , , , ,		00h
2E02h			
2E03h			
2E00h	System Configuration Status Register 0	SVSSTS0	000000000
2E0411	System Comiguration Status Register 0	0100100	XX00000
2E0011			000000
22000			
2E07h		D) (07070	
2E08h	Device State Control Register 0	DVSTCTR0	00h
2E09h			00h
2E0Ah			
2E0Bh			
2E0Ch			
2E0Dh			
2E0Eh			
2E0Fh			
2E10h			
2E11h			
2F12h			
2E13h			
2E14h	CEIEO Port Register	CEIEO	00b
2E15h			00b
20166			0011
2E100			
2E1711			
2E18h			
2E19h			
2E1Ah			
2E1Bh			
2E1Ch			
2E1Dh			
2E1Eh			
2E1Fh			
2E20h	CFIFO Port Select Register	CFIFOSEL	00h
2E21h	-		00h
2E22h	CFIFO Port Control Register	CFIFOCTR	00h
2E23h			00h
2E201			
202411			
25266			
202011			
2E2/N			
2E28h			
2E29h			
2E2Ah			
2E2Bh			
2E2Ch			
2E2Dh			
2E2Eh			
2E2Fh			

Table 4.12 SFR Information (12)⁽¹⁾

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Currente e l		П			Conditions		Standarc	1	1.1.4.14
Symbol		Р	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage	When U	ISB function	is used		3.0	5.0	5.5	V
		When U	ISB function	is not used		1.8	5.0	5.5	V
UVcc USB Supply Voltage (When UVCC pin is	When U	ISB function	is used	Vcc/AVcc = 3.0 to 3.6 V	_	Vcc/ AVcc (4)	_	V	
	input)	When U	ISB function	is not used	Vcc/AVcc = 1.8 to 5.5 V	_	Vcc/ AVcc (4)	_	V
Vss/AVss	Supply voltage					_	0	—	V
Viн	Input "H" voltage	Other th	ian CMOS ii	nput		0.8 Vcc	—	Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	—	Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	—	Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0.65 Vcc	—	Vcc	V
			(1/O port)	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	—	Vcc	V
				0.5 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.7 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	—	Vcc	V
				Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	—	Vcc	V
				0.7 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	—	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	—	Vcc	V
		Externa	l clock input	(XOUT)		1.2	—	Vcc	V
VIL	Input "L" voltage	Other th	ian CMOS ii	nput		0	—	0.2 Vcc	V
		CMOS	Input level	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.2 Vcc	V
		input swi	input switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.2 Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0	—	0.2 Vcc	V
		(I/O port) Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.4 Vcc	V		
			0.5 Vcc	0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.3 Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	—	0.2 Vcc	V
				$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.55 Vcc	V	
				0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.45 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	—	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	—	0.4	V
IOH(sum)	Peak sum output current	"H"	Sum of all	pins IOH(peak)		—		-160	mA
IOH(sum)	Average sum out current	put "H"	Sum of all	pins IOH(avg)		—		-80	mA
IOH(peak)	Peak output "H" o	current	Drive capa	city Low		—		-10	mA
			Drive capa	city High			<u> </u>	-40	mA
IOH(avg)	Average output "I	H"	Drive capa	city Low		-		-5	mA
	current		Drive capa	city High				-20	mA
IOL(sum)	Peak sum output current	"L"	Sum of all	pins IOL(peak)		—		160	mA
IOL(sum)	Average sum out current	put "L"	Sum of all	pins IOL(avg)		_		80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	city Low		-		10	mA
			Drive capa	city High		-		40	mA
IOL(avg)	Average output "I		Drive capa	city Low		_		5	mA
	current		Drive capa	city High		_		20	mA
f(XIN)	XIN clock input of	scillation	frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_		20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$		<u> </u>	5	MHz
fOCO40M	When used as the	e count source for timer RC ⁽³⁾			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32	—	40	MHz
fOCO-F	fOCO-F frequence	;y			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	—	20	MHz
					$1.8 V \le Vcc < 2.7 V$	—	—	5	MHz
_	System clock free	quency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
-					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$			5	MHz
f(BCLK)	CPU clock freque	ency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
					$1.8 V \le Vcc < 2.7 V$	—		5	MHz
tsu(PLL)	PLL frequency sy	mthesize	r stabilizatio	n wait time	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	<u> </u>	2	ms
					$2.7 V \le VCC < 4.0 V$	—	I —	3	ms

Table 5.2	Recommended	Operating	Conditions ((1))
-----------	-------------	-----------	--------------	-----	---

Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.
 fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.
 Connect Vcc/AVcc for the UVcc pin input.

Symbol	Parameter	Condition	Standard			Linit
Symbol	Falaneter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5.0 V to (Vdet0_0 - 0.1) V	_	6	150	μS
—	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	1.5	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			_	100	μS

Table 5.8	Voltage Detection	0 Circuit Electrical	Characteristics
	Vollage Delection		Gharacteristics

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9 Voltag	e Detection 1 Circui	t Electrical Characteristics
------------------	----------------------	------------------------------

Symbol	Parameter	Condition		Unit		
Symbol	Falanletei	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
—	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	_	0.07	_	V
		Vdet1_6 to Vdet1_F selected	_	0.10	_	V
—	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5.0 V to (Vdet1_0 - 0.1) V		60	150	μS
—	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾				100	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.18Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	umbol Parameter Condition				Standard		
Symbol	i arameter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	output pins are open, other pins are Vss	pins are open, pins are Vss	XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	—	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
		XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3.0	—	mA	
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	2.2	—	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	—	mA	
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	—	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRC = 1	_	1	_	mA	
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	100	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1		3.5	_	μA
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	2.0	5.0	μΑ
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	15	—	μΑ

Table 5.36Serial Interface

Symbol	Parameter		Standard		
Symbol	r alametei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	800		ns	
tw(CKH)	CLKi input "H" width	400	_	ns	
tw(CKL)	CLKi input "L" width	400	_	ns	
td(C-Q)	TXDi output delay time	_	200	ns	
th(C-Q)	TXDi hold time	0	_	ns	
tsu(D-C)	RXDi input setup time	150	_	ns	
th(C-D)	RXDi input hold time	90	—	ns	

i = 0 to 3

Figure 5.23Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.37 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	—	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)		ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.24 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Table 5.3	9 Recomm	enaea	Operatin	g Conditions (1)					_
Symbol		Р	arameter		Conditions		Standarc	1	Unit
Cymbol			arameter		Conditions	Min.	Тур.	Max.	Onit
Vcc/AVcc	Supply voltage	When L	ISB function	is used		3.0	5.0	5.5	V
		When L	ISB function	is not used		1.8	5.0	5.5	V
UVcc	USB Supply Voltage (When UVCC pin is	When L	ISB function	is used	Vcc/AVcc = 3.0 to 3.6 V	—	Vcc/ AVcc (4)	_	V
	input)	When L	ISB function	is not used	Vcc/AVcc = 1.8 to 5.5 V	—	Vcc/ AVcc (4)	—	V
Vss/AVss	Supply voltage					_	0		V
Viн	Input "H" voltage	Other th	nan CMOS ii	nput		0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	—	Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	—	Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	—	Vcc	V
			(i/O port)	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65 Vcc	—	Vcc	V
				0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	—	Vcc	V
				Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.85 Vcc	—	Vcc	V
				0.7 VCC	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	—	Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	—	Vcc	V
		Externa	I clock input	(XOUT)		1.2	—	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ii	nput		0		0.2 Vcc	V
		CMOS	Input level	Input level selection:	$4.0 V \leq Vcc \leq 5.5 V$	0		0.2 Vcc	V
		input	function	0.35 VCC	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	—	0.2 Vcc	V
			(I/O port)		$1.8 V \le Vcc < 2.7 V$	0		0.2 Vcc	V
			(· - I - 7	Input level selection:	$4.0 V \le VCC \le 5.5 V$	0			V
				0.5 VCC	$2.7 V \le VCC < 4.0 V$	0			V
				Land Land a star Care	$1.8 V \le VCC < 2.7 V$	0		0.2 VCC	V
				Input level selection:	$4.0 V \le VCC \le 5.5 V$	0		0.55 VCC	V
				0.7 000	$2.7 V \le VCC < 4.0 V$	0		0.45 VCC	V
		Extorno	Lolook input		$1.6 V \le VCC < 2.7 V$	0		0.35 VCC	V
IOH(sum)	Peak sum output	"H"	Sum of all			-		-160	mA
	current	 out "⊔"	Sum of all					80	m^
IOH(sum)	current		Sumorali					-00	
IOH(peak)	Peak output "H" o	current	Drive capa	city Low				-10	mA
1	A	19	Drive capa	city High		_		-40	mA
IOH(avg)	Average output "I	4"	Drive capa	city LOW				-5	mA
		""	Drive capa			_		-20	mA mA
IOL(sum)	current	L	Sumorali					100	IIIA
IOL(sum)	Average sum out current	put "L"	Sum of all	pins IOL(avg)		—	_	80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	city Low		—	—	10	mA
			Drive capa	city High		—	—	40	mA
IOL(avg)	Average output "I		Drive capa	city Low		—	—	5	mA
-	current		Drive capa	city High			—	20	mA
f(XIN)	XIN clock input of	scillation	frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	—	20	MHz
(000 (0))				(0)	$1.8 V \le Vcc < 2.7 V$	—		5	MHz
TOCO40M	When used as the	e count s	ource for tim	ner RC ⁽³⁾	$2.7 \text{ V} \leq \text{VCC} \leq 5.5 \text{ V}$	32		40	MHZ
tOCO-F	TOCO-F frequenc	У			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
	Oustan, h. h.í				$1.8 V \le VCC < 2.7 V$	—		5	MHZ
-	System clock free	quency			$2.7 \text{ V} \leq \text{VCC} \leq 5.5 \text{ V}$			20	MHz
for all in	ODU ale du for				$1.8 V \le VCC < 2.7 V$			5	IVIHZ
T(BCLK)	CPU CIOCK freque	ency			$2.7 \text{ V} \leq \text{VCC} \leq 5.5 \text{ V}$			20	IVIHZ
teu (DLL)	PLL froquency as	mtheoise	r ctobilizotic	n wait time	$1.0 V \leq VCC \leq 2.7 V$			2	
ISU(PLL)	r ∟∟ nequency sy	mulesize	ะ รเสมแรลปได	in wait unne	$4.0 V \ge V C C \le 5.5 V$	_		2	mo
1					$2.1 \text{ V} \ge \text{V} \cup \text{U} < 4.0 \text{ V}$		ı —	3	1115

Table 5.39	Recommended	Operating	Conditions	(1))
------------	-------------	-----------	------------	-----	---

Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.
 fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.
 Connect Vcc/AVcc for the UVcc pin input.

Table 5.41 Comparator D Liettical Gharacteristics										
Symbol	Parameter	Condition		Standard						
Symbol		Condition	Min.	Тур.	Max.	Unit				
Vref	IVREF1, IVREF3 input reference voltage		0	—	Vcc - 1.4	V				
VI	IVCMP1, IVCMP3 input voltage		-0.3	—	Vcc + 0.3	V				
—	Offset		—	5	100	mV				
td	Comparator output delay time (2)	VI = Vref ± 100 mV	—	0.1	—	μS				
ICMP	Comparator operating current	Vcc = 5.0 V	_	17.5	—	μΑ				

Table 5 41 **Comparator B Electrical Characteristics**

1. Vcc = 2.7 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified. 2. When the digital filter is disabled.

Symbol	Parameter		Condition	Standard			Unit
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
Vih	Input	Input "H" voltage	Figures 5.26 and 5.27	2.0	—	—	V
VIL	characteristics	Input "L" voltage			_	0.8	V
Vdi		Differential input sensitivity		0.2	_	—	V
Vсм		Differential common mode range		0.8	_	2.5	V
Vон	Output characteristics	Output "H" voltage	Figures 5.26 and 5.27 Icн = 200µA	2.8	_	—	V
Vol		Output "L" voltage	Figures 5.26 and 5.27 IcL = 2 mA	_		0.3	V
VCRS		Crossover voltage	Figures 5.26 and 5.27	1.3	—	2.0	V
tR		Rise time	Figures 5.26 and 5.27	4.0	—	20.0	ns
tF		Fall time	Figures 5.26 and 5.27	4.0	—	20.0	ns
t RFM		Rise time / Fall time matching	Figures 5.26 and 5.27 (tR/tF)	90.0		111.1	%
Zdrv		Output resistance	Figures 5.26 and 5.27 Includes Rs = 27Ω	28	_	44.0	Ω
UVCC	UVCC output	Vcc = 4.0 to 5.5V, PXXCON = VDD	USBE = 1	3.0	3.3	3.6	V
	voltage PXXCON = 0			_	Vcc	_	V
Isusp	Consumption curr USB	ent of the Internal power supply for	Vcc = 4.0 to 5.5 V UVcc - Vss 0.33 μF Vcc - Vss 0.1 μF		50		μΑ

Table 5.42 USB Characteristics

Note:

1. Referenced to Vcc = 3.0 to 5.5 V, UVcc = 3.0 V, at Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Figure 5.26 Data Signal Timing Diagram

Figure 5.27 Load Condition

Cumbal	Parameter		Conditions		Standard		Llnit	
Symbol	Palameter		Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time			4	_	—	tCYC ⁽²⁾	
tнı	SSCK clock "H" width	SSCK clock "H" width		0.4		0.6	tsucyc	
tLO	SSCK clock "L" width			0.4		0.6	tsucyc	
trise	SSCK clock rising	Master		—	_	1	tCYC ⁽²⁾	
	time	Slave		—	_	1	μs	
tFALL	SSCK clock falling	Master		—	_	1	tCYC ⁽²⁾	
	time	Slave		—		1	μS	
ts∪	SSO, SSI data input se	etup time		100	_	—	ns	
tн	SSO, SSI data input he	old time		1	_	—	tCYC ⁽²⁾	
t LEAD	SCS setup time	Slave		1tcyc + 50	_		ns	
tlag	SCS hold time	Slave		1tcyc + 50	_	—	ns	
top	SSO, SSI data output	delay time		—	_	1	tCYC ⁽²⁾	
tsa	SSI slave access time		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	_	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	_	1.5tcyc + 200	ns	
tOR	SSI slave out open tim	е	$2.7~V \leq Vcc \leq 5.5~V$	—	_	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	_	1.5tcyc + 200	ns	

Timing Requirements of Synchronous Serial Communication Unit (SSU) Table 5.52

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

Figure 5.32 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Symbol	ol Parameter		Condition		Standard			Linit	
Symbol	Fai	amelei	Conditi	Condition		Тур.	Max.	Ont	
Voн	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	—	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V	
		XOUT		Іон = -200 μА	1.0	_	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 5 mA	—	_	0.5	V	
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V	
		XOUT		IoL = 200 μA	_	_	0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, USB_OVRCURA, USB_VBUS, USB_ID, USB_OVRCURB, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS RESET	Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4		V V	
Ін	Input "H" current	1	VI = 3 V, Vcc = 3.0 V	/	_	_	4.0	μA	
lı∟	Input "L" current		$V_{I} = 0 V, V_{CC} = 3.0 V$	/	_	_	-4.0	μΑ	
RPULLUP	Pull-up resistance		$V_{I} = 0 V, V_{CC} = 3.0 V$	/	42	84	168	kΩ	
Rfxin	Feedback resistance	XIN				0.3	_	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	—	—	V	

Table 5.61 Electrical Characteristics (3) [2.7 V \leq VCC < 4.2 V]

2.7 V ≤ Vcc < 4.2 V, Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 10 MHz, unless otherwise specified.

2. $3.0 \text{ V} \le \text{VCC} < 3.6 \text{ V}$ for the USB associated pins.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V, Topr = 25 °C)

Table 5.63 External Clock Input (XOUT)

Symbol	Parameter		Standard		
			Max.	Offic	
tc(XOUT)	XOUT input cycle time	50	—	ns	
twh(xout)	XOUT input "H" width	24	—	ns	
twl(xout)	XOUT input "L" width	24	—	ns	

Figure 5.39 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.64 TRAIO Input

Symbol	Parameter		Standard		
Symbol	Falantelei	Min.	Max.	Onit	
tc(TRAIO)	TRAIO input cycle time	300	_	ns	
twh(traio)	TRAIO input "H" width	120	_	ns	
twl(traio)	TRAIO input "L" width	120		ns	

Figure 5.40 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.65 TRFI Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tc(TRFI)	TRFI input cycle time	1200 (1)	—	ns
twh(trfi)	TRFI input "H" width	600 (2)	_	ns
twl(trfi)	TRFI input "L" width	600 (2)	_	ns

Notes:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency × 1.5) or above.

Table 5.73Serial Interface

Symbol	Parameter	Standard		Lloit
		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800		ns
tw(CKH)	CLKi input "H" width	400	_	ns
tw(CKL)	CLKi input "L" width	400	_	ns
td(C-Q)	TXDi output delay time	_	200	ns
th(C-Q)	TXDi hold time	0	_	ns
tsu(D-C)	RXDi input setup time	150	_	ns
th(C-D)	RXDi input hold time	90	_	ns

i = 0 to 3

Figure 5.47 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.74 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	—	ns
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	—	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.48 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-898-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Düsseldorf, Germany

 Tel: +49-211-65030, Fax: +44-1628-585-900

 Renesas Electronics (China) Co., Ltd.

 The Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +49-211-65030, Fax: +480-21-6857-7639

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 204, 205, A21A Center, No. 1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +480-10-867-7858 / -7898

 Renesas Electronics Hong Kong Limited

 Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +480-2-867-7858 / -7898

 Renesas Electronics Taiwan Co., Ltd.

 15F, No. 363, Fu Shing North Road, Taipei, Taiwan

 15F, No. 363, Fu Shing North Road, Taipei, Taiwan

 15F, No. 363, F