

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE

Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART, USB
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21348udfp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Differences between Groups

Table 1.1 lists the Differences between Groups.

Table 1.1 Differences between Groups

Item	R8C/34U Group	R8C/34K Group
Memory (ROM/RAM)	32 KB/4 KB, 64 KB/8 KB	64 KB/8 KB, 128 KB/10 KB
USB Functions	Peripheral function	Host/peripheral function

1.1.3 Specifications

Tables 1.2 and 1.3 outline the Specifications for R8C/34U Group, R8C/34K Group.

Table 1.2 Specifications for R8C/34U Group, R8C/34K Group (1)

Item	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (I(XIIV) = 5 MHZ, VCC = 1.8 to 5.5 V)
		• Multiplier. To Dits \times To Dits \rightarrow 32 Dits • Multiply accumulate instruction: 16 bits \times 16 bits 1.22 bits \rightarrow 32 bits
		• Multiply-accumulate instruction. To bits \times To bits \pm 52 bits \rightarrow 52 bits
Momony		Poperation mode. Single-chip mode (address space. 1 mbyte)
Memory	Data flash	List for R8C/34K Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	CMOS I/O ports: 36, selectable pull-up resistor High current drive ports: 36
Clock	Clock generation	• 4 circuits: XIN clock oscillation circuit
CIUCK	circuits	High-speed on-chip oscillator (with frequency adjustment function)
		I ow-speed on-chip oscillator
		PLL frequency synthesizer
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (XIN clock, PLL frequency synthesizer, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts		Interrupt Vectors: 69
		• External: 9 sources (INT × 5, key input × 4)
		Priority levels: 7 levels
Watchdog Timer		• 14 bits × 1 (with prescaler)
		Reset start selectable
		Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	• 1 channel
		Activation sources: 30 Transfer modes: 2 (normal mode, report mode)
		• Transier modes. 2 (normal mode, repeat mode)
Timer	Limer RA	8 bits × 1 (with 8-bit prescaler)
		nimer mode (period timer), pulse output mode (output level inverted every
		measurement mode
	Timor PR	9 hits x 1 (with 9 hit procedur)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RF	16 bits x 1
		Input capture mode (input × 1)
		Output compare mode (output × 4)
Serial	UART0, UART1,	Clock synchronous serial I/O/UART × 3 channel
Interface	UART3	
	UART2	Clock synchronous serial I/O, UART, multiprocessor communication function
Synchronous S	Serial	1 (shared with I ² C bus)
Communication Unit (SSU)		

RENESAS

Item	Function	Specification			
I ² C bus		1 (shared with SSU)			
LIN Module		Hardware LIN: 1 (timer RA, UART0)			
USB Functions	R8C/34U Group R8C/34K Group	 Hardware LIN: 1 (timer RA, UAR IU) USB 2.0 specification compliant, Full speed (12 Mbps) supported USB function controller and USB transceiver incorporated 5 pipes provided with individual FIFO Arbitrary EP numbers can be specified for PIPE4 to 7 FIFO size (total 448 bytes: DCP (EP0) = 64 bytes; PIPE4 and PIPE5 = 128 bytes (64-byte double buffer), PIPE6 and PIPE7 = 64 bytes Supported transfer: DCP = Control transfer IN/OUT, PIPE4 and PIPE5 = Bulk transfer IN/OUT, PIPE6 and PIPE7 = Interrupt transfer IN/OUT USB 2.0 specification compliant, Full speed (12 Mbps) supported 			
		 USB Device Controller (UDC), transceiver for USB2.0 are incorporated, and on-chip USB transceiver 5 pipes provided with individual FIFO Arbitrary EP numbers can be specified for PIPE4 to 7 USB OTG (On-The-Go) operation is possible FIFO size (total 448 bytes): DCP (EP0) = 64 bytes, PIPE4 and PIPE5 = 128 bytes (64-byte double buffer), PIPE6 and PIPE7 = 64 bytes Supported transfer: DCP = Control transfer IN/OUT, PIPE4 and PIPE5 = Bulk transfer IN/OUT, PIPE6 and PIPE7 = Interrupt transfer IN/OUT When the host controller is selected Automatic scheduling for SOF and packet transmissions Programmable intervals for interrupt transfers 			
A/D Converter		10-bit resolution \times 12 channels, includes sample and hold function, with sweep mode			
Comparator B		2 circuits			
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) Program security: ROM code protect, ID code check Debug functions: On-chip debug, on-board flash rewrite function Background operation (BGO) function (data flash) 			
Operating Frequency/Supply		f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V)(USB not used) f(XIN) = 5 MHz (VCC = 1.8 to 5.5 V)(USB not used)			
Current consumption		Typ. 7.0 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 4.0 μ A (VCC = 3.0 V, wait mode) Typ. 2.0 μ A (VCC = 3.0 V, stop mode)			
Operating Amb	vient Temperature	 −20 to 85°C (N version) −40 to 85°C (D version) 			
Package		48-pin LQFP Package code: PLQP0048KB-A (previous code: 48P6Q-A)			

Table 1.3	Specifications for R8C/34U Group, R8C/34K Group (2)
-----------	---

Din			I/O Pin Functions for Peripheral Modules						
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	USB	A/D Converter, Comparator B
41		P0_3		(TRCIOB)	(CLK1)				AN4
42		P0_2		(TRCIOA/ TRCTRG)	(RXD1)				AN5
43		P0_1		(TRCIOA/ TRCTRG)	(TXD1)				AN6
44		P0_0		(TRCIOA/ TRCTRG)					AN7
45		P8_3		(TRFO10/ TRFI)	(RXD3)				
46		P8_2		(TRFO02)	(TXD3)				
47		P8_1		(TRF001)	(CLK3)				
48		P8_0		(TRF000)					

 Table 1.7
 Pin Name Information by Pin Number (2)

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			-
003Ch			
002Dh			
003011			
003Eh			
003Fh			
0040h			
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	XXXXX000b
0042h			1
0043h			-
0044h			
0045h			-
004511	INTA Interment Operators De nieten	INITAIO	XX00X000F
0046h		IN 14IC	
0047h	Timer RC Interrupt Control Register	TRUC	XXXXXUUUD
0048h			
0049h	USB RESUME Interrupt Control Register	USBRSMIC	XXXXX000b
004Ah			
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
	A/D Conversion Interrupt Control Register		
00461			
004F11	Sou interrupt Control Register/IIC bus interrupt Control Register (4)	33010/11010	
0050h	Imer RF Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INTIC	XX00X000b
0054h	INT3 Interrupt Control Pogister	INTRIC	XX00X000b
005Ah	Timer DE Interrupt Control Register	TREIC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
00501	Timer RF Interrupt Control Register		
00501	Inter RF Compare o Interrupt Control Register		
005Dh	INTO Interrupt Control Register	INTUIC	
005Eh	UAR 12 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fh	Timer RF Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			1
0069h			+
006Ah			+
006Bh	USB INT Interrunt Control Register	USBINTIC	
006Ch	UIART3 Transmit Interrupt Control Register	S3RIC	XXXXX000b
00606	UIART3 Receive Interrunt Control Register	Satic	
	onario neceive interrupt control negister	00110	
		+	
0070h			_
0071h		MONDUC	
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			1
007Ah			1
007Bh			+
007Ch			+
007Dh			+
007Eh			+
007FII		1	1

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined
Notes:

The blank areas are reserved and cannot be accessed by users.
Selectable by the IICSEL bit in the SSUIICSR register.

Address	Register	Symbol	After Reset
2F00h	USB Module Control Register	USBMC	00X10000b
2F01h	PLL Control Register 0	PLC0	0010X000b
2F02h	PLL Control Register 1	PLC1	00001100b
2F03h	PLL Division Control Register	PLDIV	00001011b
2F04h			
2F05h			
2F06h			
2F07h			
2F08h			
2F09h			
2F0Ah			
2F0Bh			
2F0Ch			
2F0Dh			
2F0Eh			
2F0Fh			
2F10h	USB Pin Select Register 0	USBSR0	00h
2F11h	USB Pin Select Register 1 ⁽²⁾	USBSR1	00h
2F12h	UART3 Pin Select Register	U3SR	00h
2F13h			
2F14h			
2F15h			
2F16h			
2F17h			
2F18h			
2F19h			
2F1Ah			
2F1Bh			
2F1Ch			
2F1Dh			
2F1Eh			
2F1Fh			

Table 4.15 SFR Information (15) ⁽¹⁾

2FFFh X: Undefined

Notes:

1. The blank areas are reserved and cannot be accessed by users.

2. This register is not available in the R8C/34U Group.

Table 4.16 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

1. The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRS. Set appropriate values as KOM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter		Conditions		Standard			Lloit
Symbol	i aldineter		Condutorio		Min.	Тур.	Max.	Onit
—	Resolution		Vref = AVCC			—	10	Bit
_	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	—	_	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input			±5	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	_	_	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	—	_	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	—	_	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	—		±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	_		±2	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	—		±2	LSB
φAD	A/D conversion clock		4.0 V \leq Vref = AVcc \leq 5.5 V $^{(2)}$		2	_	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	≤ 5.5 V ⁽²⁾	2	—	16	MHz
			2.7 V ≤ Vref = AVcc ≤	≤ 5.5 V ⁽²⁾	2	_	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq 5.5 \text{ V}^{(2)}$		2	_	5	MHz
—	Tolerance level impedanc	e				3		kΩ
tCONV	Conversion time	10-bit mode	Vref = AVCC = 5.0 V, o	φAD = 20 MHz	2.2	_		μS
		8-bit mode	Vref = AVCC = 5.0 V, c	φAD = 20 MHz	2.2		—	μS
t SAMP	Sampling time		$\phi AD = 20 MHz$		0.8			μs
IVref	Vref current		Vcc = 5.0 V, XIN = f1	1 = φAD = 20 MHz		45		μA
Vref	Reference voltage				2.2		AVcc	V
VIA	Analog input voltage ⁽³⁾				0	—	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \leq \phi \text{AD} \leq 4 \text{ MH}$	lz	1.19	1.34	1.49	V

Table 5.3	A/D Converter	Characteristics
Table J.J	A/D COnverter	Gilaracieristics

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.16	Timing Requirements of I ² C bus Interface	
------------	---	--

Symbol	Parameter	Condition			Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit	
tscl	SCL input cycle time		12tcyc + 600 (2)	—	—	ns	
t SCLH	SCL input "H" width		3tcyc + 300 (2)	—	—	ns	
tSCLL	SCL input "L" width		5tcyc + 500 (2)	—	—	ns	
tsf	SCL, SDA input fall time		—	—	300	ns	
tsp	SCL, SDA input spike pulse rejection time		—	—	1tcyc (2)	ns	
tBUF	SDA input bus-free time		5tcyc (2)	—	—	ns	
t STAH	Start condition input hold time		3tcyc (2)	—	—	ns	
t STAS	Retransmit start condition input setup time		3tcyc (2)	—	—	ns	
t STOP	Stop condition input setup time		3tcyc (2)	—	—	ns	
tSDAS	Data input setup time		1tcyc + 40 (2)	—	—	ns	
t SDAH	Data input hold time		10	—	—	ns	

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. $1t_{CYC} = 1/f_{1}(s)$

Table 5.36Serial Interface

Symbol	Parameter		Standard		
Symbol	r alametei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	800		ns	
tw(CKH)	CLKi input "H" width	400	_	ns	
tw(CKL)	CLKi input "L" width		_	ns	
td(C-Q)	TXDi output delay time	_	200	ns	
th(C-Q)	TXDi hold time	0	_	ns	
tsu(D-C)	RXDi input setup time	150	_	ns	
th(C-D)	RXDi input hold time	90	—	ns	

i = 0 to 3

Figure 5.23Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.37 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	—	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)		ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.24 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Table 5.3	9 Recomm	enaea	Operatin	g Conditions (1)					_
Symbol		Р	arameter		Conditions		Standarc	1	Unit
Cymbol			arameter		Conditions	Min.	Тур.	Max.	Onit
Vcc/AVcc	Supply voltage	When L	ISB function	is used		3.0	5.0	5.5	V
		When L	ISB function	is not used		1.8	5.0	5.5	V
UVcc	USB Supply Voltage (When UVCC pin is	When L	ISB function	is used	Vcc/AVcc = 3.0 to 3.6 V	—	Vcc/ AVcc (4)	_	V
	input)	When L	ISB function	is not used	Vcc/AVcc = 1.8 to 5.5 V	—	Vcc/ AVcc (4)	—	V
Vss/AVss	Supply voltage					_	0		V
Viн	Input "H" voltage	Other th	nan CMOS ii	nput		0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	—	Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	—	Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	—	Vcc	V
			(i/O port)	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65 Vcc	—	Vcc	V
				0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	—	Vcc	V
				Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.85 Vcc	—	Vcc	V
				0.7 VCC	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	—	Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	—	Vcc	V
		Externa	I clock input	(XOUT)		1.2	—	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ii	nput		0		0.2 Vcc	V
		CMOS	Input level	Input level selection:	$4.0 V \leq Vcc \leq 5.5 V$	0		0.2 Vcc	V
		input	function	0.35 VCC	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	—	0.2 Vcc	V
			(I/O port)		$1.8 V \le Vcc < 2.7 V$	0		0.2 Vcc	V
			(· - I - 7	Input level selection:	$4.0 V \le VCC \le 5.5 V$	0			V
				0.5 VCC	$2.7 V \le VCC < 4.0 V$	0			V
				Land Land a star Care	$1.8 V \le VCC < 2.7 V$	0		0.2 VCC	V
				Input level selection:	$4.0 V \le VCC \le 5.5 V$	0		0.55 VCC	V
				0.7 000	$2.7 V \le VCC < 4.0 V$	0		0.45 VCC	V
		Extorno	Lolook input		$1.6 V \le VCC < 2.7 V$	0		0.35 VCC	V
IOH(sum)	Peak sum output	"H"	Sum of all			-		-160	mA
	current	 out "⊔"	Sum of all					80	m^
IOH(sum)	current		Sumorali					-00	
IOH(peak)	Peak output "H" o	current	Drive capa	city Low				-10	mA
1	A	19	Drive capa	city High		_		-40	mA
IOH(avg)	Average output "I	4"	Drive capa	city LOW				-5	mA
		""	Drive capa			_		-20	mA mA
IOL(sum)	current	L	Sumorali					100	IIIA
IOL(sum)	Average sum out current	put "L"	Sum of all	pins IOL(avg)		—	_	80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	city Low		—	—	10	mA
			Drive capa	city High		—	—	40	mA
IOL(avg)	Average output "I		Drive capa	city Low		—	—	5	mA
-	current		Drive capa	city High			—	20	mA
f(XIN)	XIN clock input of	scillation	frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	—	20	MHz
(000 (0))				(0)	$1.8 V \le Vcc < 2.7 V$	—		5	MHz
TOCO40M	When used as the	e count s	ource for tim	ner RC ⁽³⁾	$2.7 \text{ V} \leq \text{VCC} \leq 5.5 \text{ V}$	32		40	MHZ
tOCO-F	TOCO-F frequenc	У			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
	Oustan, h. h.í				$1.8 V \le VCC < 2.7 V$	—		5	MHZ
-	System clock free	quency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
for all in	ODU ale du for				$1.8 V \le VCC < 2.7 V$			5	IVIHZ
T(BCLK)	CPU CIOCK freque	ency			$2.7 \text{ V} \leq \text{VCC} \leq 5.5 \text{ V}$			20	IVIHZ
teu (DLL)	PLL froquency as	mtheoire	r ctobilizotic	n wait time	$1.0 V \leq VCC \leq 2.7 V$			2	
ISU(PLL)	r ∟∟ nequency sy	mulesize	ะ รเสมแรลปได	in wait unne	$4.0 V \ge V C C \le 5.5 V$	_		2	mo
1					$2.1 \text{ V} \ge \text{V} \cup \text{U} < 4.0 \text{ V}$		ı —	3	1115

Table 5.39	Recommended	Operating	Conditions	(1))
------------	-------------	-----------	------------	-----	---

Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.
 fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.
 Connect Vcc/AVcc for the UVcc pin input.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	lin. Typ. Max.		Offic
—	Program/erase endurance (2)		1,000 ⁽³⁾	—	—	times
—	Byte program time		_	80	500	μs
—	Block erase time		_	0.3	—	S
td(SR-SUS)	Time delay from suspend request until suspend		—	_	5 + CPU clock × 3 cycles	ms
—	Interval from erase start/restart until following suspend request		0	_	—	μS
_	Time from suspend until erase restart		_	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7	_	5.5	V
—	Read voltage		1.8	_	5.5	V
—	Program, erase temperature		0		60	°C
—	Data hold time (7)	Ambient temperature = 55 °C	20		—	year

Table 5.43 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and T_{opr} = 0 to 60 °C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Unit		
Symbol	Falametei	Conditions	Min.	Тур. Мах.		Onit
—	Program/erase endurance (2)		10,000 (3)	—	—	times
—	Byte program time (program/erase endurance ≤ 1,000 times)		—	160	1500	μS
—	Byte program time (program/erase endurance > 1,000 times)		_	300	1500	μS
—	Block erase time (program/erase endurance \leq 1,000 times)		_	0.2	1	S
	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		_		5 + CPU clock × 3 cycles	ms
	Interval from erase start/restart until following suspend request		0		_	μS
—	Time from suspend until erase restart		—	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8		5.5	V
_	Program, erase temperature		-20 (7)		85	°C
_	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20		_	year

Table 5.44 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. -40 °C for D version.

8. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Paramotor	Condition			Unit	
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Orint
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
—	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5.0 V to (Vdet0_0 - 0.1) V	_	6	150	μs
—	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	1.5	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾				100	μS

Table 5.45 Voltage Detection 0 Circuit Electrical Characteristics

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

 Table 5.46
 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	T arameter	Condition	Min.	Тур.	Max.	Onit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
—	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	_	0.07	—	V
		Vdet1_6 to Vdet1_F selected		0.10	—	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5.0 V to (Vdet1_0 - 0.1) V		60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		_		100	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

RENESAS

Figure 5.32 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Symbol	Parameter		Condition		Standard			Unit
Symbol		Falameter	Condition		Min.	Тур.	Max.	Offic
Vон	Output "H"	Other than XOUT	Drive capacity High $Vcc = 5 V$	Iон = -20 mA	Vcc - 2.0	_	Vcc	V
	voltage		Drive capacity Low $Vcc = 5 V$	Iон = -5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High $Vcc = 5 V$	lo∟ = 20 mA	—	_	2.0	V
	voltage		Drive capacity Low $Vcc = 5 V$	IoL = 5 mA	—	_	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO,TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, USB_OVRCURA, USB_VBUS, USB_ID, USB_OVRCURB, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS RESET			0.1	1.2	_	v V
Ін	Input "H" cu	irrent	$V_{I} = 5 V, V_{CC} = 5.0 V$		_	_	5.0	μA
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		_		-5.0	μΑ
Rpullup	Pull-up resi	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	—	MΩ
VRAM	RAM hold v	voltage	During stop mode		1.8		_	V

Table 5.54	Electrical Character	istics (1) [4.2 V \leq Vcc	C ≤ 5.5 V]
------------	----------------------	------------------------------	------------

4.2 V ≤ Vcc ≤ 5.5 V, T_{opr} = −20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Por	amotor	Condition		Standard			Unit
Symbol	Fai	amelei	Conditi		Min.	Тур.	Max.	Unit
Voн	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	—	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 5 mA	—	_	0.5	V
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		IoL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, USB_OVRCURA, USB_VBUS, USB_ID, USB_OVRCURB, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS RESET	Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4		V V
Ін	Input "H" current	1	VI = 3 V, Vcc = 3.0 V	/	_	_	4.0	μA
lı∟	Input "L" current		$V_{I} = 0 V, V_{CC} = 3.0 V$	/	_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		$V_1 = 0 V, V_{CC} = 3.0 V$		42	84	168	kΩ
Rfxin	Feedback resistance	XIN				0.3	_	MΩ
Vram	RAM hold voltage		During stop mode		1.8	—	—	V

Table 5.61 Electrical Characteristics (3) [2.7 V \leq VCC < 4.2 V]

2.7 V ≤ Vcc < 4.2 V, Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 10 MHz, unless otherwise specified.

2. $3.0 \text{ V} \le \text{VCC} < 3.6 \text{ V}$ for the USB associated pins.

Symbol	Parameter		Condition		Standard			Linit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Іон = -2 mA	Vcc - 0.5	—	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	_	_	0.5	V
			Drive capacity Low	Io∟ = 1 mA	_	_	0.5	V
		XOUT		IoL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	NT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS			0.05	0.20		V
		RESET			0.05	0.20	_	V
Ін	Input "H" current		VI = 2.2 V, Vcc = 2.2 V		_	_	4.0	μA
lı∟	Input "L" current		VI = 0 V, VCC = 2.2 V		_	_	-4.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 V		70	140	300	kΩ
Rfxin	Feedback resistance	XIN				0.3		MΩ
Vram	RAM hold voltage		During stop mode		1.8	—	—	V

Table 5.68 Electrical Characteristics (5) [1.	$.8 V \le VCC < 2.7 V$]
---	--------------------------

1. 1.8 V \leq Vcc < 2.7 V, Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 5 MHz, unless otherwise specified.

