

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE

Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART, USB
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2134ckdfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.15 list the special function registers. Table 4.16 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset	
0000h	-			
0001h				
0002h				
0003h				
0004h	Processor Mode Register 0	PM0	00h	
0005h	Processor Mode Register 1	PM1	00h	
0006h	System Clock Control Register 0	CM0	00101000b	
0007h	System Clock Control Register 1	CM1	0010000b	
0008h	Module Standby Control Register	MSTCR	00h	
0009h	System Clock Control Register 3	CM3	00h	
000Ah	Protect Register	PRCR	00h	
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾	
000Ch	Oscillation Stop Detection Register	OCD	00000100b	
000Dh	Watchdog Timer Reset Register	WDTR	XXh	
000Eh	Watchdog Timer Start Register	WDTS	XXh	
000Fh	Watchdog Timer Control Register	WDTC	00111111b	
0010h				
0011h				
0012h				
0013h				
0014h				
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping	
0016h				
0017h				
0018h				
0019h				
001Ah				
001Bh				
001Ch	Count Source Protection Mode Register	CSPR	00h	
			1000000b (3)	
001Dh				
001Eh				
001Fh				
0020h				
0021h				
0022h				
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h	
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping	
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h	
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h	
0027h				
0028h	Clock Prescaler Reset Flag	CPSRF	00h	
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping	
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When shipping	
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping	
002Ch				
002Dh				
002Eh	Llink One don Ohin Oneilleten Oretael Denisten O			
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	when shipping	
0030h	Voltage Monitor Circuit Control Register	СМРА	00h	
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	UUN	
00320	Voltage Datest Register 1		000010005	
00330	Voltage Detect Register 2			
0034N	volage Delect Register 2	VCAZ	00n (*)	
			0010000b ⁽⁵⁾	
0035h			0000044.11	
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b	
0037h				
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁴⁾	
			1100X011b ⁽⁵⁾	
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b	

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

- 1. The blank areas are reserved and cannot be accessed by users.
- 2. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer reset does not affect this bit.

3. The CSPROINI bit in the OFS register is set to 0.

4. The LVDAS bit in the OFS register is set to 1.

5. The LVDAS bit in the OFS register is set to 0.

Table 4.4	SFR Information (4) ⁽¹⁾
-----------	------------------------------------

Address	Register	Symbol	After Reset
00C0h	A/D Register 0	AD0	XXh
00C1h			000000XXb
00C2h	A/D Register 1	AD1	XXh
00C3h			000000XXb
00C4h	A/D Register 2	AD2	XXh
00C5h			00000XXb
00C6h	A/D Register 3	AD3	XXh
00C7h		100	000000XXb
0007h	A/D Pagistor 4		XXh
00000	AD Register 4	AD4	200000XXF
000911	A/D Degister E	ADE	
UUCAN	A/D Register 5	AD5	XXN
OUCBh			000000XXb
00CCh	A/D Register 6	AD6	XXh
00CDh			000000XXb
00CEh	A/D Register 7	AD7	XXh
00CFh			00000XXb
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Mode Register	ADMOD	00h
00D5h	A/D Input Select Register	ADINSEL	1100000b
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	······································		
00D9h			
00DAh			
00DRh			
OODCh			
00DDh			
00DEh			
OODEh			
	Part D0 Pagistar	DO	Y Y h
00E0h	Port P0 Register	PU D4	
00E1h	Port P1 Register	P1	XXn
00E2h	Port PU Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h		20	
00E5h	Port P3 Register	P3	XXh
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh	Port P6 Register	P6	XXh
00EDh	Port P7 Register	P7	XXh
00EEh	Port P6 Direction Register	PD6	00h
00EFh	Port P7 Direction Register	PD7	00h
00F0h	Port P8 Register	P8	XXh
00F1h		-	
00F2h	Port P8 Direction Register	PD8	00h
00F3h	······································		
00F4h			
00F5h			
00F6h			
00F7h			
00E8b			
001-011			
00545			
UUFBN			
00FCh			
00FDh			
00FEh			
00FFh			

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CE5h			XXh
2016h			XXh
2010h			YYh
201711 20E9b	DTC Control Data 22	DTCD22	
20F01	DTC CONTO Data 25	DICD23	
20F90			
2CFAh			XXn
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			
2DFFh			
2E00h	System Configuration Control Register	SYSCFG	00h
2E01h	, , , , , , , , , , , , , , , , , , , ,		00h
2E02h			
2E03h			
2E00h	System Configuration Status Register 0	SVSSTS0	000000000
2056	System Comiguration Status Register 0	0100100	XX00000
2E0011			000000
22000			
2E07h		D) (07070	
2E08h	Device State Control Register 0	DVSTCTR0	00h
2E09h			00h
2E0Ah			
2E0Bh			
2E0Ch			
2E0Dh			
2E0Eh			
2E0Fh			
2E10h			
2E11h			
2F12h			
2E13h			
2E14h	CEIEO Port Register	CEIEO	00b
2E15h			00b
20166			0011
2E100			
2E1711			
2E18h			
2E19h			
2E1Ah			
2E1Bh			
2E1Ch			
2E1Dh			
2E1Eh			
2E1Fh			
2E20h	CFIFO Port Select Register	CFIFOSEL	00h
2E21h	-		00h
2E22h	CFIFO Port Control Register	CFIFOCTR	00h
2E23h			00h
2E201			
202411			
25266			
202011			
2E2/N			
2E28h			
2E29h			
2E2Ah			
2E2Bh			
2E2Ch			
2E2Dh			
2E2Eh			
2E2Fh			

Table 4.12 SFR Information (12)⁽¹⁾

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2F00h	USB Module Control Register	USBMC	00X10000b
2F01h	PLL Control Register 0	PLC0	0010X000b
2F02h	PLL Control Register 1	PLC1	00001100b
2F03h	PLL Division Control Register	PLDIV	00001011b
2F04h			
2F05h			
2F06h			
2F07h			
2F08h			
2F09h			
2F0Ah			
2F0Bh			
2F0Ch			
2F0Dh			
2F0Eh			
2F0Fh			
2F10h	USB Pin Select Register 0	USBSR0	00h
2F11h	USB Pin Select Register 1 ⁽²⁾	USBSR1	00h
2F12h	UART3 Pin Select Register	U3SR	00h
2F13h			
2F14h			
2F15h			
2F16h			
2F17h			
2F18h			
2F19h			
2F1Ah			
2F1Bh			
2F1Ch			
2F1Dh			
2F1Eh			
2F1Fh			

Table 4.15 SFR Information (15) ⁽¹⁾

2FFFh X: Undefined

Notes:

1. The blank areas are reserved and cannot be accessed by users.

2. This register is not available in the R8C/34U Group.

Table 4.16 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

1. The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRS. Set appropriate values as KOM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5. Electrical Characteristics

5.1 R8C/34U Group

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version)/	°C
			-40 to 85 (D version)	
Tstg	Storage temperature		-65 to 150	°C

Currents al		П			Conditions		Standarc	1	1.1.4.14
Symbol		Р	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage	When U	ISB function	is used		3.0	5.0	5.5	V
		When U	ISB function	is not used		1.8	5.0	5.5	V
UVcc	USB Supply Voltage (When UVCC pin is	When U	ISB function	is used	Vcc/AVcc = 3.0 to 3.6 V	_	Vcc/ AVcc (4)	_	V
	input)	When U	ISB function	is not used	Vcc/AVcc = 1.8 to 5.5 V	_	Vcc/ AVcc (4)	_	V
Vss/AVss	Supply voltage					_	0	—	V
Viн	Input "H" voltage	Other th	ian CMOS ii	nput		0.8 Vcc	—	Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	—	Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	—	Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0.65 Vcc	—	Vcc	V
			(1/O port)	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	—	Vcc	V
				0.5 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.7 Vcc	—	Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	—	Vcc	V
				Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	—	Vcc	V
				0.7 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	—	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	—	Vcc	V
		Externa	l clock input	(XOUT)		1.2	—	Vcc	V
VIL	Input "L" voltage	Other th	ian CMOS ii	nput		0	—	0.2 Vcc	V
		CMOS	Input level	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.2 Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.2 Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0	—	0.2 Vcc	V
			(I/O port)	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.4 Vcc	V
				0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.3 Vcc	V
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	—	0.2 Vcc	V
				Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	—	0.55 Vcc	V
				0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	—	0.45 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	—	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	—	0.4	V
IOH(sum)	Peak sum output current	"H"	Sum of all	pins IOH(peak)		—		-160	mA
IOH(sum)	Average sum out current	put "H"	Sum of all	pins IOH(avg)		—		-80	mA
IOH(peak)	Peak output "H" o	current	Drive capa	city Low		—		-10	mA
			Drive capa	city High			<u> </u>	-40	mA
IOH(avg)	Average output "I	H"	Drive capa	city Low		-		-5	mA
	current		Drive capa	city High				-20	mA
IOL(sum)	Peak sum output current	"L"	Sum of all	pins IOL(peak)		—		160	mA
IOL(sum)	Average sum out current	put "L"	Sum of all	pins IOL(avg)		_		80	mA
IOL(peak)	Peak output "L" c	urrent	Drive capa	city Low		-		10	mA
			Drive capa	city High		-		40	mA
IOL(avg)	Average output "I		Drive capa	city Low		_		5	mA
	current		Drive capa	city High		_		20	mA
f(XIN)	XIN clock input of	scillation	frequency		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_		20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$		<u> </u>	5	MHz
fOCO40M	When used as the	e count s	ource for tin	ner RC ⁽³⁾	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32	—	40	MHz
fOCO-F	fOCO-F frequence	;y			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	—	20	MHz
					$1.8 V \le Vcc < 2.7 V$	—	—	5	MHz
_	System clock free	quency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
-					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$			5	MHz
f(BCLK)	CPU clock freque	ency			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
					$1.8 V \le Vcc < 2.7 V$	—		5	MHz
tsu(PLL)	PLL frequency sy	mthesize	r stabilizatio	n wait time	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	<u> </u>	2	ms
					$2.7 V \le VCC < 4.0 V$	—	I —	3	ms

Table 5.2	Recommended	Operating	Conditions ((1))
-----------	-------------	-----------	--------------	-----	---

Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.
 fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 to 5.5 V.
 Connect Vcc/AVcc for the UVcc pin input.

Table 5.	4 Comparator B Electrical Cha	acteristics					
Symbol	Paramotor	Condition		Standard			
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit	
Vref	IVREF1, IVREF3 input reference voltage		0	—	Vcc - 1.4	V	
VI	IVCMP1, IVCMP3 input voltage		-0.3	—	Vcc + 0.3	V	
—	Offset		_	5	100	mV	
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	—	μS	
ICMP	Comparator operating current	Vcc = 5.0 V	_	17.5	—	μA	

Table 5.4 **Comparator B Electrical Characteristics**

1. Vcc = 2.7 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified. 2. When the digital filter is disabled.

Symbol	Parameter	Condition	Standard Min. Typ. 1.80 1.90 2.15 2.35 2.70 2.85 3.55 3.80 ling of Vcc from (Vdet0_0 - 0.1) V - 6 :1, Vcc = 5.0 V - 1.5	Standard		Lloit
Symbol	Falaneter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5.0 V to (Vdet0_0 - 0.1) V	_	6	150	μS
—	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	1.5	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾			_	100	μS

Table 5.8	Voltage Detection	0 Circuit Electrical	Characteristics
	Vollage Delection		Gharacteristics

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9 Voltag	e Detection 1 Circui	t Electrical Characteristics
------------------	----------------------	------------------------------

Symbol	Parameter	Condition		Unit		
Symbol	Falanletei	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
—	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	_	0.07	_	V
		Vdet1_6 to Vdet1_F selected	_	0.10	_	V
—	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5.0 V to (Vdet1_0 - 0.1) V		60	150	μS
—	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾				100	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.10	Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
—	Hysteresis width at the rising of Vcc in voltage detection 2 circuit			0.10	_	V
—	Voltage detection 2 circuit response time (2)	At the falling of Vcc from 5.0 V to (Vdet2_0 - 0.1) V	_	20	150	μS
—	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V		1.7		μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾				100	μS

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.11
 Power-on Reset Circuit ⁽²⁾

Symbol	Deremeter	Condition		Llnit			
	Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
	trth	External power Vcc rise gradient	(1)	0		50,000	mV/msec
1							

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

2. tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.5

Power-on Reset Circuit Electrical Characteristics

Table 5.18Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	vmbol Parameter Condition		Standard			Unit	
Symbol	i arameter		Condition		Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	—	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	3.0	—	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	2.2	—	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	—	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	—	7.0	15	mA
	Low-spee on-chip oscillator i Wait mode		XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	100	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1		3.5	_	μA
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	2.0	5.0	μΑ
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	15	—	μΑ

Symbol	Parameter		Condition		Standard			Unit	
Symbol	Fdi	ameter	Condition –		Min.	Тур.	Max.	Unit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High $IOH = -2 \text{ mA}$		Vcc - 0.5	—	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V	
		XOUT		Іон = -200 μА	1.0	_	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	—	_	0.5	V	
			Drive capacity Low	IoL = 1 mA	—	_	0.5	V	
		XOUT		IoL = 200 μA	_	—	0.5	V	
VT+-VT-	Hysteresis	NT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, SCL, SDA, SSO, SSCK, SCS			0.05	0.20		V	
		RESET			0.05	0.20	_	V	
Ін	Input "H" current		VI = 2.2 V, VCC = 2.2	2 V	—	—	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V	/	—	_	-4.0	μA	
RPULLUP	Pull-up resistance		VI = 0 V, VCC = 2.2 V	/	70	140	300	kΩ	
Rfxin	Feedback resistance	XIN				0.3		MΩ	
VRAM	RAM hold voltage		During stop mode		1.8	_	_	V	

Table 5.31	Electrical Characteristics	(5) $[1.8 V \le VCC < 2.7 V]$
------------	-----------------------------------	-------------------------------

1. 1.8 V \leq Vcc < 2.7 V, Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 5 MHz, unless otherwise specified.

Figure 5.25 Ports P0, P1, P3, P4, P6, P7 and P8 Timing Measurement Circuit

Symbol	Parameter	Parameter		Standard			Linit		
Symbol	Falameter		Conc	1110115	Min.	Тур.	Max.	Unit	
—	Resolution		Vref = AVCC		—	_	10	Bit	
—	Absolute accuracy	10-bit mode	$V_{ref} = AV_{CC} = 5.0 V$	AN0 to AN7 input, AN8 to AN11 input			±3	LSB	
			Vref = AVcc = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	_	_	±5	LSB	
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input			±5	LSB	
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	_	_	±5	LSB	
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	_	±2	LSB	
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input			±2	LSB	
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input			±2	LSB	
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input		-	±2	LSB	
φAD	A/D conversion clock		$4.0 \text{ V} \leq \text{Vref} = \text{AVCC} \leq$	≤ 5.5 V ⁽²⁾	2	_	20	MHz	
			3.2 V ≤ Vref = AVcc ≤	≤ 5.5 V ⁽²⁾	2	—	16	MHz	
			2.7 V ≤ Vref = AVcc ≤	≤ 5.5 V ⁽²⁾	2	_	10	MHz	
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	≤ 5.5 V ⁽²⁾	2	_	5	MHz	
—	Tolerance level impedance	е				3	—	kΩ	
tCONV	Conversion time	10-bit mode	$V_{ref} = AV_{CC} = 5.0 V, o$	φAD = 20 MHz	2.2	—		μS	
		8-bit mode	Vref = AVCC = 5.0 V, c	φAD = 20 MHz	2.2		—	μS	
t SAMP	Sampling time		φAD = 20 MHz		0.8		—	μS	
IVref	Vref current		Vcc = 5.0 V, XIN = f1	l = φAD = 20 MHz	-	45		μA	
Vref	Reference voltage				2.2	-	AVcc	V	
VIA	Analog input voltage ⁽³⁾				0	—	Vref	V	
OCVREF	On-chip reference voltage		$2 \text{ MHz} \leq \phi \text{AD} \leq 4 \text{ MH}$	lz	1.19	1.34	1.49	V	

Table 5.40	A/D Converter	Characteristics

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	ol Parameter		Condition	Standard			Llnit
Symbol			Condition	Min.	Тур.	Max.	Unit
Vih	Input	Input "H" voltage	Figures 5.26 and 5.27	2.0	—	—	V
VIL	characteristics	Input "L" voltage			_	0.8	V
Vdi		Differential input sensitivity		0.2	_	—	V
Vсм		Differential common mode range		0.8	_	2.5	V
Vон	Output characteristics	Output "H" voltage	Figures 5.26 and 5.27 Icн = 200µA	2.8	_	—	V
Vol		Output "L" voltage	Figures 5.26 and 5.27 IcL = 2 mA	_		0.3	V
VCRS		Crossover voltage	Figures 5.26 and 5.27	1.3	—	2.0	V
tR		Rise time	Figures 5.26 and 5.27	4.0	—	20.0	ns
tF		Fall time	Figures 5.26 and 5.27	4.0	—	20.0	ns
t RFM		Rise time / Fall time matching	Figures 5.26 and 5.27 (tR/tF)	90.0		111.1	%
Zdrv		Output resistance	Figures 5.26 and 5.27 Includes Rs = 27Ω	28	_	44.0	Ω
UVCC	UVCC output	Vcc = 4.0 to 5.5V, PXXCON = VDD	USBE = 1	3.0	3.3	3.6	V
	voltage	PXXCON = 0		_	Vcc	_	V
Isusp	Consumption current of the Internal power supply for USB		Vcc = 4.0 to 5.5 V UVcc - Vss 0.33 μF Vcc - Vss 0.1 μF		50		μΑ

Table 5.42 USB Characteristics

Note:

1. Referenced to Vcc = 3.0 to 5.5 V, UVcc = 3.0 V, at Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Figure 5.26 Data Signal Timing Diagram

Figure 5.27 Load Condition

SDA input bus-free time

Data input setup time

Data input hold time

Start condition input hold time

Stop condition input setup time

Retransmit start condition input setup time

_

_

_

_

_

5tcyc (2)

3tcyc (2)

3tcyc (2)

3tcyc (2)

1tcyc + 40⁽²⁾

10

Unit

ns ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Symbol	Boromotor	Condition	:	Standard			
	Faranieter	Condition	Min.	Тур.	Max.		
tSCL	SCL input cycle time		12tcyc + 600 (2)	—	_		
t SCLH	SCL input "H" width		3tcyc + 300 (2)	—	—		
tSCLL	SCL input "L" width		5tcyc + 500 (2)	—	—		
tsf	SCL, SDA input fall time		—	—	300		
tSP	SCL, SDA input spike pulse rejection time		—	_	1tcyc (2)		

Table 5.53 Timing Requirements of 14C bus interfac	Table 5.53	s of I ² C bus Interface
--	------------	-------------------------------------

tSDAH Notes:

tBUF

tSTAH

tSTAS

tSTOP

tSDAS

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Figure 5.33 I/O Timing of I²C bus Interface

Symbol	mbol Parameter		Condition		Standard			Linit	
Symbol	Fai	amelei	Condition		Min.	Тур.	Max.		
Voн	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	—	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V	
		XOUT		Іон = -200 μА	1.0	_	Vcc	V	
Vol	Output "L" voltage	utput "L" voltage Other than XOUT		IoL = 5 mA	—	_	0.5	V	
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V	
		XOUT		IoL = 200 μA	_	_	0.5	V	
VT+-VT-	Hysteresis INT0, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, USB_OVRCURA, USB_UBUS, USB_ID, USB_OVRCURB, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS		Vcc = 3.0 V Vcc = 3.0 V		0.1	0.4		V V	
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	/	_	_	4.0	μA	
lı∟	Input "L" current		$V_{I} = 0 V, V_{CC} = 3.0 V$	/	_	_	-4.0	μΑ	
RPULLUP	Pull-up resistance		$V_{I} = 0 V, V_{CC} = 3.0 V$	/	42	84	168	kΩ	
Rfxin	Feedback XIN resistance					0.3	_	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	—	—	V	

Table 5.61 Electrical Characteristics (3) [2.7 V \leq VCC < 4.2 V]

2.7 V ≤ Vcc < 4.2 V, Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 10 MHz, unless otherwise specified.

2. $3.0 \text{ V} \le \text{VCC} < 3.6 \text{ V}$ for the USB associated pins.

Table 5.66Serial Interface

Symbol	Parameter		Standard		
			Max.	Onit	
tc(CK)	CLKi input cycle time	300		ns	
tw(ckh)	CLKi input "H" width	150		ns	
tw(CKL)	CLKi Input "L" width 150 —				
td(C-Q)	TXDi output delay time – 80				
th(C-Q)	TXDi hold time 0			ns	
tsu(D-C)	RXDi input setup time	70	_	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 to 3

Figure 5.42 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.67 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	—	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	—	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.43 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Table 5.69Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition	Standard			Unit	
Symbol		Condition		Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		2.2		mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.7		mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRC = 1		1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μΑ
		Stop mode	XIN clock off, Topr = $25 ^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	2.0	5	μA
			XIN clock off, Topr = $85 \degree C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	15		μA

REVISION HISTORY

R8C/34U Group, R8C/34K Group Datasheet

Pov	Data		Description			
Rev. Dale		Page	Summary			
1.10	Jun 15, 2011	All pages	R8C/34U Group Datasheet (R01DS0039EJ0100) and R8C/34K Group Datasheet (R01DS0040EJ0100): revised and combined into one document			
		2	1.1.2, Table 1.1 added			
		4	Table 1.3 USB Functions: Specification revised (34U Group)			
			Table 1.9 USB: Description revised (34U Group)			
		18	3.1 revised			
		19	3.2 revised			
		32	Table 4.13 revised			
		33	Table 4.14 2ED2h to 2ED7h revised (34U Group)			
		36	Table 5.2 "tsu(PLL): PLL frequency symthesizer stabilization" added			
		64	Table 5.39 "tsu(PLL): PLL frequency symthesizer stabilization" added			

All trademarks and registered trademarks are the property of their respective owners.