

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Last Time Buy
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART, USB
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2134cknfp-v0

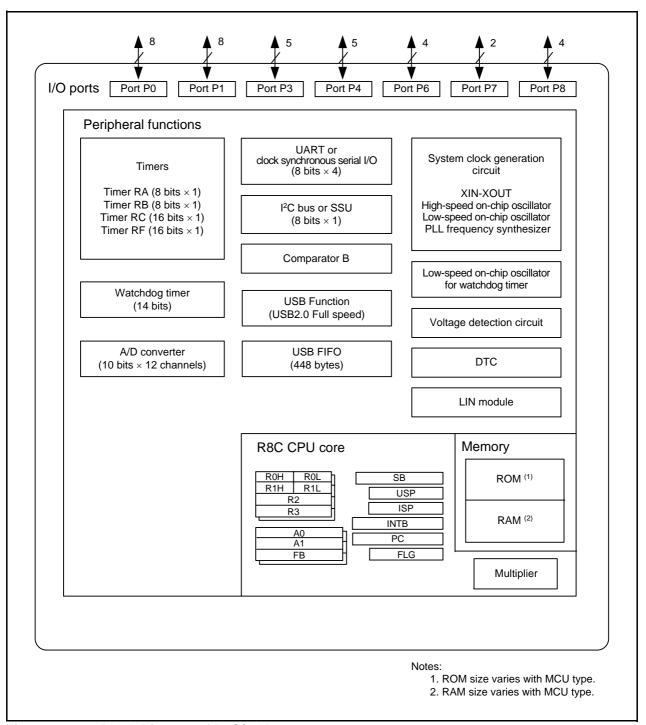


Figure 1.4 Block Diagram of R8C/34K Group

1.4 Pin Assignment

Figure 1.5 and Figure 1.6 show Pin Assignment (Top View) of Each Group. Tables 1.6 and 1.7 outline the Pin Name Information by Pin Number.

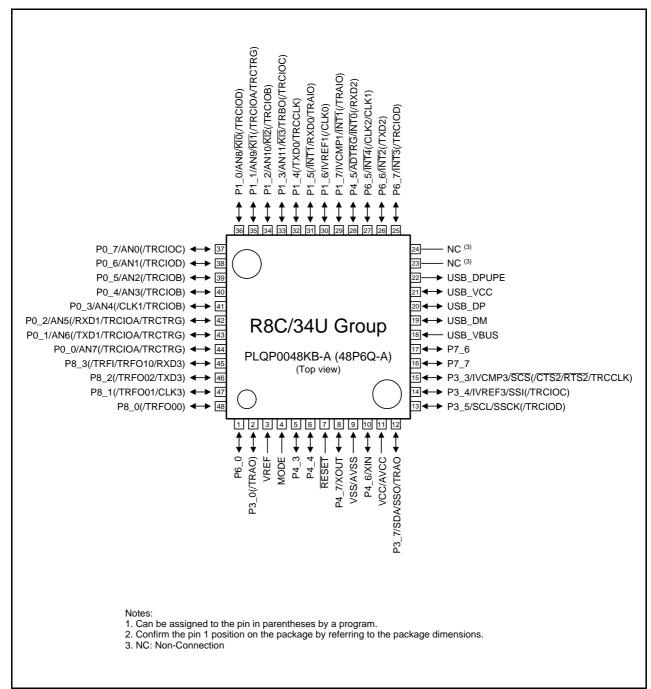


Figure 1.5 Pin Assignment (Top View) of R8C/34U Group

Table 1.9 Pin Functions (2)

Item	Pin Name	I/O Type	Description
USB	USB_DP/USB_DM	I/O	D+/D- I/O pins of the USB on-chip transceiver. Connect these pins to the D+/D- pin of the USB bus.
	USB_VBUS	I	USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. Whether VBUS is connected or disconnected can be detected during operation as a function.
	USB_VBUSEN (1)	0	VBUS (5 V) supply enable signal for external power supply chip.
	USB_OVRCURA (1)/ USB_OVRCURB (1)	I	External overcurrent detection signal should be connected to these pins. VBUS comparator signals should be connected to these pins when the USB host power supply chip is connected.
	USB_DPUPE	0	1.5 k Ω pull-up resistor control signal for USB D+ signal when operating as a function controller.
	USB_VCC	I/O	USB power supply pin.
	USB_DPRPD (1)/ USB_DRPD (1)	0	15 k Ω pull-down resistor control signals for USB D+ and D-signals when operating as a host.
	USB_ID (1)	I	ID input signal for microAB connector should be connected when operating on OTG.
	USB_EXICEN (1)	0	Low-power control signal for external power supply (OTG) chip. Connect this pin to the OTG power supply IC to be connected externally.
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter.
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter.
	ADTRG	I	AD external trigger input pin.
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins.
	IVREF1, IVREF3	I	Comparator B reference voltage input pins.
I/O port	P0_0 to P0_7, P1_0 to P1_7, P3_0, P3_3 to P3_5, P3_7, P4_3 to P4_7, P6_0, P6_5 to P6_7, P7_6, P7_7, P8_0 to P8_3	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.

I: Input

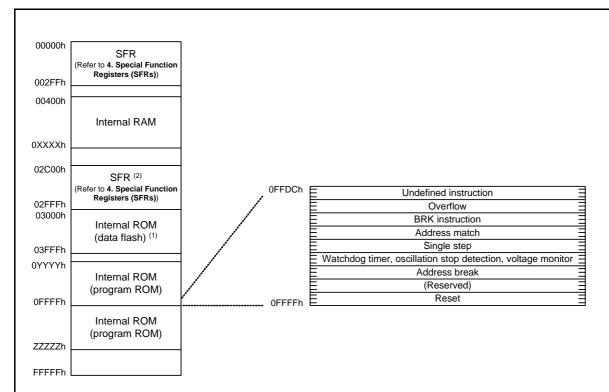
O: Output

I/O: Input and output

Note:

1. This pin is not available in the R8C/34U Group.

3.2 **R8C/34K Group**


Figure 3.2 is a Memory Map of R8C/34K Group. The R8C/34K Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. A 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 8-Kbyte internal RAM area is allocated addresses 00400h to 023FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

- 1. The data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte).
- 2. The SFR areas for the DTC and other modules are allocated to addresses 02C00h to 02FFFh.
- 3. The blank areas are reserved and cannot be accessed by users.

Part Number	Internal ROM			Internal RAM		
Fait Number	Size	Address 0YYYYh	Address ZZZZZh	Size	Address 0XXXXh	
R5F21348KNFP, R5F21348KDFP	04 1/1	0.40001-	40555	0.1/1	000554	
R5F21348KNXXXFP, R5F21348KDXXXFP	64 Kbytes	04000h	13FFFh	8 Kbytes	023FFh	
R5F2134CKNFP, R5F2134CKDFP	100 Khutaa	04000h	22555	10 Khutaa	02BFFh	
R5F2134CKNXXXFP, R5F213CKDXXXFP	128 Kbytes	ytes 04000h	23FFFh	10 Kbytes	UZBFFN	

Figure 3.2 Memory Map of R8C/34K Group

SFR Information (2) (1) Table 4.2

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
003Dh			
003Eh			
003En			
0040h	ELLIN BOLLE CONTROL	51155)//0	100000000
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	XXXXX000b
0042h			
0043h			
0044h			
0045h			
0046h	INT4 Interrupt Control Register	INT4IC	XX00X000b
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h			
0049h	USB RESUME Interrupt Control Register	USBRSMIC	XXXXX000b
0043H	OOB RESONE Interrupt Control Register	CODICONIC	XXXXXXXXXXX
004An	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU Interrupt Control Register/IIC bus Interrupt Control Register (2)	SSUIC/IICIC	XXXXX000b
0050h	Timer RF Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXXX000b
	Timer KA interrupt Control Register	TRAIC	**************************************
0057h		70010	2000000
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh	Timer RF Interrupt Control Register	TRFIC	XXXXX000b
005Ch	Timer RF Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fh	Timer RF Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h	Time it Cupture interrupt control register	6,416	70000000
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h	<u> </u>		
006Ah			
006Bh	USB INT Interrupt Control Register	USBINTIC	XXXXX000b
006Ch	UART3 Transmit Interrupt Control Register	S3RIC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
006Dh	UART3 Receive Interrupt Control Register	S3TIC	XXXXX000b
006Eh			
006Fh			
0070h			
0071h			
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h	5		
0075h	 		
0075h			
0077h			
ハハフひん			
0078h			
0079h			
0079h			
0079h 007Ah 007Bh			
0079h 007Ah 007Bh 007Ch			
0079h 007Ah 007Bh			

- X: Undefined
 Notes:

 1. The blank areas are reserved and cannot be accessed by users.
 2. Selectable by the IICSEL bit in the SSUIICSR register.

SFR Information (14) (1) **Table 4.14**

Address	Register	Symbol	After Reset
2E70h	i togistis:	G)	7 ii.e. Preser
2E71h			
2E72h			
2E73h			
2E74h			
2E75h			
2E76h	Pipe 4 Control Register	PIPE4CTR	00h
2E77h	The Tonkier Register	1 11 Z 10 11K	00h
2E78h	Pipe 5 Control Register	PIPE5CTR	00h
2E79h	Pipe 3 Control Register	FIFLSCIK	00h
2E7Ah	Pipe 6 Control Register	PIPE6CTR	00h
2E7Bh	Fipe o Control Register	FIFLOCIK	00h
2E7Ch	Pipe 7 Control Register	PIPE7CTR	00h
2E7Dh	Pipe / Control Register	PIPE/CIK	
2E7Eh			00h
2E7Fh			
2E80h		l	
:		T	1
2E8Fh		-	
2E90h		1	
2E91h		1	
2E92h			
2E93h		1	
2E94h			
2E95h		-	
2E96h			
2E97h			
2E98h			
2E99h			
2E9Ah			
2E9Bh	Bi 4T C O C F II B C	DIDEATRE	001
2E9Ch	Pipe 4 Transaction Counter Enable Register	PIPE4TRE	00h
2E9Dh			00h
2E9Eh	Pipe 4 Transaction Counter Register	PIPE4TRN	00h
2E9Fh			00h
2EA0h	Pipe 5 Transaction Counter Enable Register	PIPE5TRE	00h
2EA1h			00h
2EA2h	Pipe 5 Transaction Counter Register	PIPE5TRN	00h
2EA3h			00h
2EA4h			
2EA5h			
2EA6h			
2EA7h			
2EA8h			
2EA9h			
2EAAh			
2EABh			
2EACh			
2EADh			
:			
2ECFh			
2ED0h	Device Address 0 Configuration Register (2)	DEVADD0	00h
2ED1h			00h
2ED2h	Device Address 1 Configuration Register (2)	DEVADD1	00h
2ED3h		1	00h
2ED4h	Device Address 2 Configuration Register (2)	DEVADD2	00h
2ED5h			00h
2ED6h	Device Address 3 Configuration Register (2)	DEVADD3	00h
2ED7h	1	1	00h
2ED8h	Device Address 4 Configuration Register (2)	DEVADD4	00h
2ED9h		1	00h
2EDAh	Device Address 5 Configuration Register (2)	DEVADD5	00h
2EDBh		1	00h
2EDCh		1	
2EDDh			
:	<u> </u>	1	1
2EFFh			
		1	<u> </u>

X: Undefined

- The blank areas are reserved and cannot be accessed by users.
 This register is not available in the R8C/34U Group.

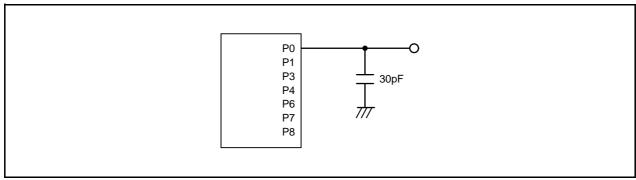


Figure 5.1 Ports P0, P1, P3, P4, P6, P7 and P8 Timing Measurement Circuit

Timing Requirements of Synchronous Serial Communication Unit (SSU) **Table 5.15**

Cumbal	Dorometer		Conditions		1.120		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle tim	ie		4	_	_	tcyc (2)
tHI	SSCK clock "H" width	1		0.4	_	0.6	tsucyc
tLO	SSCK clock "L" width	1		0.4	_	0.6	tsucyc
trise	SSCK clock rising	Master		_	_	1	tcyc (2)
	time	Slave		_	_	1	μS
tFALL	SSCK clock falling	Master		_	_	1	tcyc (2)
	time	Slave		_	_	1	μS
tsu	SSO, SSI data input	setup time		100	_	_	ns
tн	SSO, SSI data input	hold time		1	_	_	tcyc (2)
tLEAD	SCS setup time	Slave		1tcyc + 50	_	_	ns
tLAG	SCS hold time	Slave		1tcyc + 50	_	_	ns
top	SSO, SSI data outpu	t delay time		_	_	1	tcyc (2)
tsa	SSI slave access tim	е	2.7 V ≤ Vcc ≤ 5.5 V	_	_	1.5tcyc + 100	ns
				_	_	1.5tcyc + 200	ns
tor	SSI slave out open ti	me	2.7 V ≤ Vcc ≤ 5.5 V	_	_	1.5tcyc + 100	ns
			1.8 V ≤ Vcc < 2.7 V	_	_	1.5tcyc + 200	ns

^{1.} Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Table 5.16 Timing Requirements of I²C bus Interface

Symbol	Parameter	Condition	9	Unit		
		Condition	Min.	Тур.	Max.	Uniit
tscl	SCL input cycle time		12tcyc + 600 (2)	_	_	ns
tsclh	SCL input "H" width		3tcyc + 300 (2)	_	_	ns
tscll	SCL input "L" width		5tcyc + 500 (2)	_	_	ns
tsf	SCL, SDA input fall time		_	_	300	ns
tsp	SCL, SDA input spike pulse rejection time		_		1tcyc (2)	ns
tBUF	SDA input bus-free time		5tcyc (2)		_	ns
tstah	Start condition input hold time		3tcyc (2)	_	_	ns
tstas	Retransmit start condition input setup time		3tcyc (2)	_	_	ns
tstop	Stop condition input setup time		3tcyc (2)	_	_	ns
tsdas	Data input setup time		1tcyc + 40 (2)	_	_	ns
tsdah	Data input hold time		10	_	_	ns

- 1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. 1tcyc = 1/f1(s)

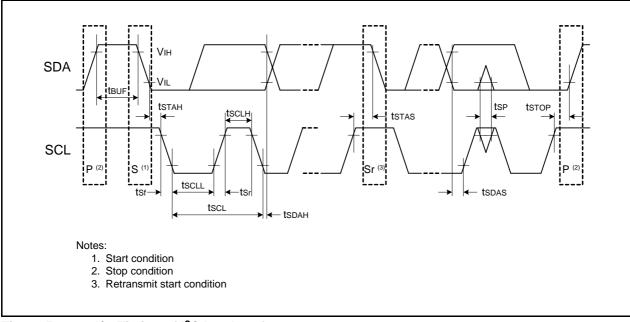


Figure 5.9 I/O Timing of I²C bus Interface

Table 5.32 Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V] (Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Doromotor	Parameter Condition	;	Standar	d	Unit	
Symbol	Farameter		Condition	Min.	Тур.	Max.	Offic
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	2.2	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.7	_	mA
on-chip		XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRC = 1	_	1	_	mA	
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	300	μА	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μА
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μА	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μА
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μА
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		15		μА

Table 5.36 Serial Interface

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi input cycle time	800	_	ns	
tw(ckh)	CLKi input "H" width	400	_	ns	
tw(ckl)	CLKi input "L" width	400	_	ns	
td(C-Q)	TXDi output delay time	_	200	ns	
th(C-Q)	TXDi hold time	0	_	ns	
tsu(D-C)	RXDi input setup time	150	_	ns	
th(C-D)	RXDi input hold time	90	_	ns	

i = 0 to 3

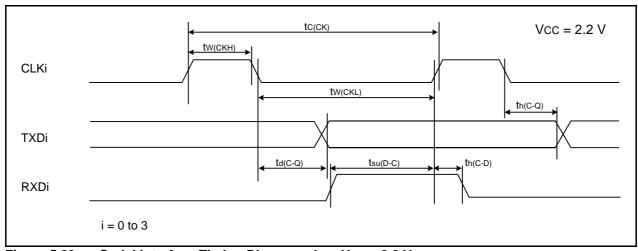


Figure 5.23 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.37 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	_	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	_	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

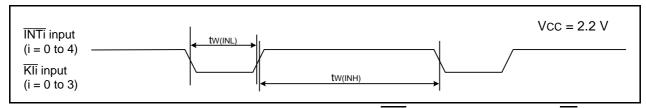


Figure 5.24 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

5.2 R8C/34K Group

Table 5.38 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version)/ -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Symbol	Parameter	Conditions		Unit		
Symbol		Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance (2)		10,000 (3)	_	_	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		_	160	1500	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	300	1500	μS
	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	1	S
	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		_		5 + CPU clock × 3 cycles	ms
	Interval from erase start/restart until following suspend request		0		_	μS
_	Time from suspend until erase restart		_		30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30 + CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		-20 ⁽⁷⁾	_	85	°C
_	Data hold time (8)	Ambient temperature = 55 °C	20	_	_	year

Table 5.44 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

- 1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. -40 °C for D version.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

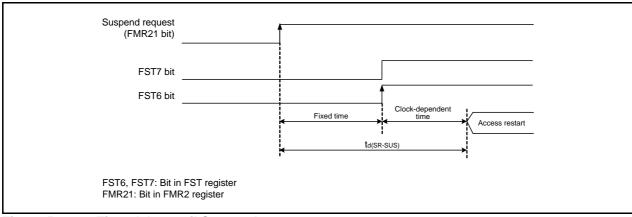


Figure 5.28 Time delay until Suspend

Table 5.45 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faranteter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5.0 V to (Vdet0_0 - 0.1) V	_	6	150	μS
_	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	1.5	_	μА
td(E-A)	Waiting time until voltage detection circuit operation starts (3)			_	100	μS

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version).
- 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.
- 4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdeto.

Table 5.46 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Utill
Vdet1	Voltage detection level Vdet1_0 (2)	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 (2)	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 (2)	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	_	0.07	_	V
		Vdet1_6 to Vdet1_F selected	_	0.10	_	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5.0 V to (Vdet1_0 - 0.1) V	— 60 150		150	μS
	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μА
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		_	_	100	μS

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version).
- 2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.
- 3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Timing Requirements of Synchronous Serial Communication Unit (SSU) **Table 5.52**

Cumbal	Parameter		Conditions			1.121	
Symbol			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time			4	_	_	tcyc (2)
tHI	SSCK clock "H" width	1		0.4	_	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	_	0.6	tsucyc
trise	SSCK clock rising	Master		_	_	1	tcyc (2)
	time	Slave		_	_	1	μS
tFALL	SSCK clock falling time	Master		_	_ 1		tcyc (2)
		Slave		_	_	1	μS
tsu	SSO, SSI data input	setup time		100	_	_	ns
tн	SSO, SSI data input	hold time		1	_	_	tcyc (2)
tLEAD	SCS setup time	Slave		1tcyc + 50	_	_	ns
tLAG	SCS hold time	Slave		1tcyc + 50	_	_	ns
top	SSO, SSI data outpu	t delay time		_	_	1	tcyc (2)
tsa	SSI slave access time		2.7 V ≤ Vcc ≤ 5.5 V	_	_	1.5tcyc + 100	ns
			1.8 V ≤ Vcc < 2.7 V	_	_	1.5tcyc + 200	ns
tor	SSI slave out open ti	SSI slave out open time		_	_	1.5tcyc + 100	ns
			1.8 V ≤ Vcc < 2.7 V	_	_	1.5tcyc + 200	ns

^{1.} Vcc = 1.8 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

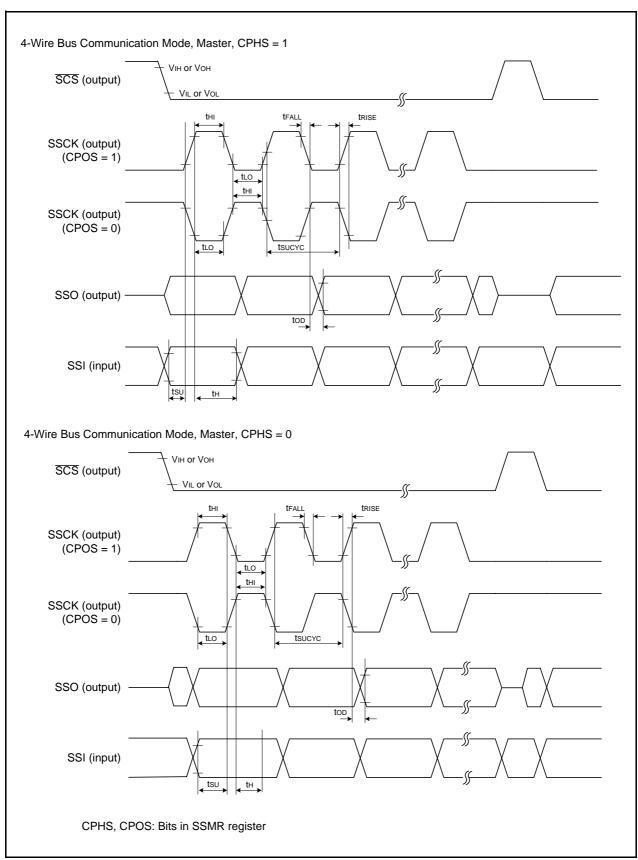


Figure 5.30 I/O Timing of Synchronous Serial Communication Unit (SSU) (Master)

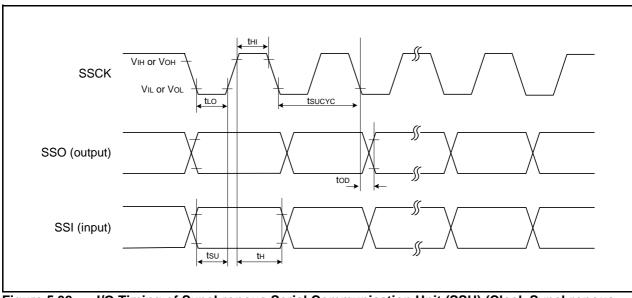


Figure 5.32 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Table 5.54 Electrical Characteristics (1) [4.2 V \leq VCC \leq 5.5 V]

Symbol	Parameter		Condition		Standard			Unit
Symbol		raiailletei	Condition	Min.	Тур.	Max.	Offic	
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	lон = −20 mA	Vcc - 2.0	_	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = −5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	IOH = -200 μA	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	_	_	2.0	V
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	_	_	2.0	V
		XOUT	Vcc = 5 V	IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO,TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRFI, USB_OVRCURA, USB_USB_ID, USB_OVRCURB, TRCTRG, TRCCLK, ADTRG, RXDO, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS			0.1	1.2		V
lін	Input "H" cu		VI = 5 V, VCC = 5.0 V		_	_	5.0	μΑ
lıL	Input "L" current		VI = 0 V, VCC = 5.0 V		_	_	-5.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, VCC = 5.0 V		25	50	100	kΩ
RfXIN	Feedback resistance	XIN			_	0.3		ΜΩ
VRAM	RAM hold v	voltage	During stop mode		1.8	_	_	V

^{1.} $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$, $\text{Topr} = -20 \text{ to } 85 ^{\circ}\text{C}$ (N version)/-40 to $85 ^{\circ}\text{C}$ (D version), and f(XIN) = 20 MHz, unless otherwise specified.

Table 5.55 Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
Symbol	i arameter			Min. Typ.		Max.	Offic
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.5	15	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.3	12.5	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	100	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μА
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μА
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	15	_	μА

Table 5.68 Electrical Characteristics (5) [1.8 V \leq VCC < 2.7 V]

Symbol	Parameter		Condition		Standard			Unit
Syllibol	Fai	ametei	Condition		Min.	Тур.	Max.	Offic
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = −2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = −1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		$IOH = -200 \mu A$	1.0	_	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	_	_	0.5	V
			Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		IOL = 200 μA	_	_	0.5	V
VT+-VT-	Hysteresis	NTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCIOD, TRCIOD, TRCIOB, TRCLK, ADTRG, RXD0, RXD1, RXD2, RXD3, CLK0, CLK1, CLK2, CLK3, CTS2, SSI, SCL, SDA, SSO, SSCK, SCS			0.05	0.20		V
Iн	Input "H" current	ILLOCI	VI = 2.2 V, VCC = 2.2	2 \/	_		4.0	μА
liL	Input "L" current		$V_1 = 0 \text{ V}, \text{ VCC} = 2.2 \text{ V}$		_		-4.0	μΑ
RPULLUP	Pull-up resistance		$V_1 = 0 \text{ V}, \text{ VCC} = 2.2 \text{ V}$		70	140	300	kΩ
RfXIN	Feedback resistance	XIN	1. 31, 100 = 2.2	•	_	0.3	_	MΩ
VRAM	RAM hold voltage		During stop mode		1.8	_	_	V

^{1. 1.8} V ≤ Vcc < 2.7 V, Topr = −20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 5 MHz, unless otherwise specified.