

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l451rci6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

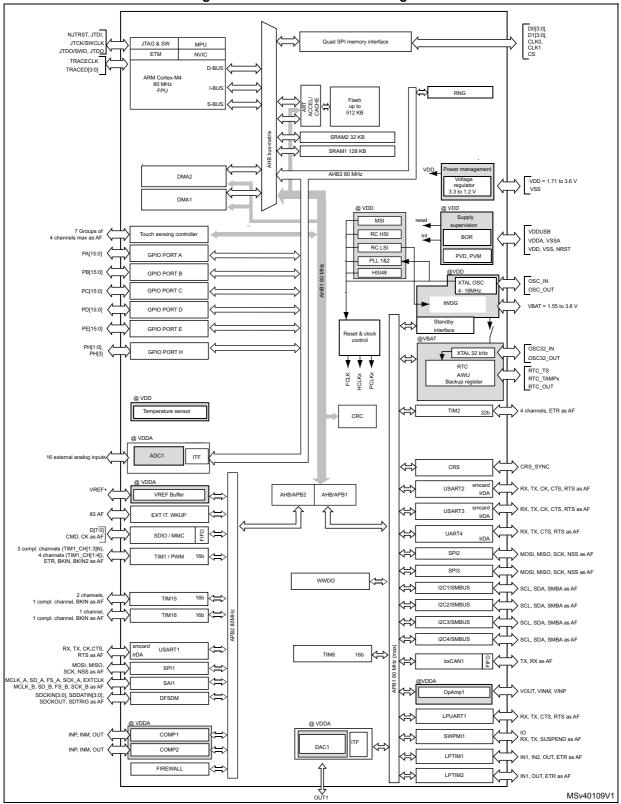
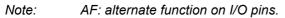



Figure 1. STM32L451xx block diagram

3.4 Embedded Flash memory

STM32L451xx devices feature up to 512 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 256 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Area	Protection level	U	ser executio	on	Debug, boot from RAM or boot from system memory (loader)				
	level	Read	Write	Erase	Read	Write	Erase		
Main	1	Yes	Yes	Yes	No	No	No		
memory	2	Yes	Yes	Yes	N/A	N/A	N/A		
System	1	Yes	No	No	Yes	No	No		
memory	2	Yes	No	No	N/A	N/A	N/A		
Option	1	Yes	Yes	Yes	Yes	Yes	Yes		
bytes	2	Yes	No	No	N/A	N/A	N/A		
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾		
registers	2	Yes	Yes	N/A	N/A	N/A	N/A		
SRAM2	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾		
SNAIVIZ	2	Yes	Yes	Yes	N/A	N/A	N/A		

Table 3. Access status versus readout protection level and execution modes

1. Erased when RDP change from Level 1 to Level 0.

- Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity.
- Proprietary code readout protection (PCROP): a part of the flash memory can be
 protected against read and write from third parties. The protected area is execute-only:
 it can only be reached by the STM32 CPU, as an instruction code, while all other
 accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
 The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
 allows to select if the PCROP area is erased or not when the RDP protection is
 changed from Level 1 to Level 0.

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L451xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V_{CORF}) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The V_{CORE} can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L451xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.

3.11 Clocks and startup

The clock controller (see *Figure 4*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **RC48 with clock recovery system (HSI48)**: internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

4 Pinouts and pin description

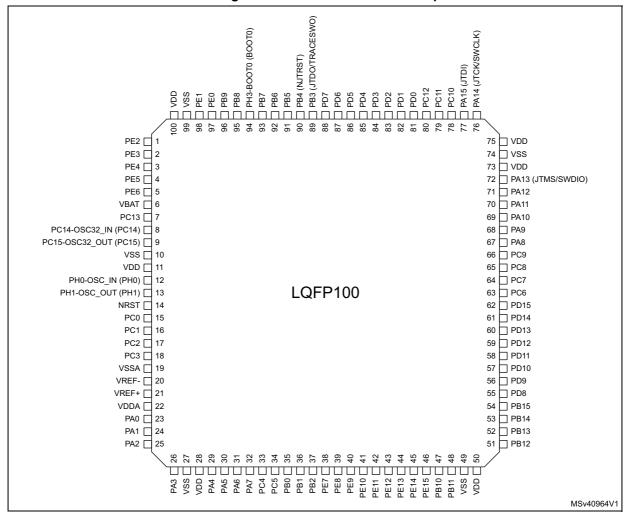


Figure 6. STM32L451Vx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

Pinouts	
and pin	
1 descriptior	

STM32L451xx

			Tabl	e 17. Alternate	function AF0 to	o AF7 ⁽¹⁾ (conti	nued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PC0	-	LPTIM1_IN1	I2C4_SCL	-	I2C3_SCL	-	-	-
	PC1	TRACED0	LPTIM1_OUT	I2C4_SDA	-	I2C3_SDA	-	-	-
	PC2	-	LPTIM1_IN2	-	-	-	SPI2_MISO	DFSDM1_ CKOUT	-
	PC3	-	LPTIM1_ETR	-	-	-	SPI2_MOSI	-	-
	PC4	-	-	-	-	-	-	-	USART3_TX
	PC5	-	-	-	-	-	-	-	USART3_RX
	PC6	-	TIM3	TIM3_CH1	-	-	-	DFSDM1_ CKIN3	-
Port C	PC7	-	-	TIM3_CH2	-	-	-	DFSDM1_ DATIN3	-
	PC8	-	-	TIM3_CH3	-	-	-	-	-
	PC9	-	-	TIM3_CH4	-	-	-	-	-
	PC10	TRACED1	-	-	-	-	-	SPI3_SCK	USART3_TX
	PC11	-	-	-	-	-	-	SPI3_MISO	USART3_RX
	PC12	TRACED3	-	-	-	-	-	SPI3_MOSI	USART3_CK
	PC13	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-

DS11910 Rev 4

72/201

5

Table 19. STM32L451xx memory map and peripheral register boundary addresses⁽¹⁾ ______(continued)

Bus	Boundary address	Size(bytes)	Peripheral
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 1400 - 0x4000 27FF	5 KB	Reserved
APB1	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
AFDI	0x4000 0800- 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

1. The gray color is used for reserved boundary addresses.

		Tabi	e 37. Ci	unent	consun	iption i	i Stop t	,					
Symbol	Parameter	Conditions	ТҮР				MAX ⁽¹⁾					Unit	
Symbol	Falameter	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C 125 °C	125 °C	Unit
I _{DD_ALL} (Stop 0)	Supply current in Stop 0 mode, RTC disabled	1.8 V	125	150	240	390	645	145	190	350	600	1150	
		2.4 V	125	150	240	390	645	150	195	355	605	1150	μA
		3 V	125	150	245	395	650	155	195	360	610	1150	
		3.6 V	125	155	245	400	655	155	200	365	615	1150 ⁽²⁾	

Table 37. Current consumption in Stop 0

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

N

Symbol	Parameter	Conditions			ТҮР				MAX ⁽¹⁾					Ur
Symbol	Farameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	165	275	950	2600	6550	-	-	-	-	-	
	Supply current	RTC clocked by LSE	2.4 V	235	370	1150	3100	7650	-	-	-	-	-	1
	in Shutdown mode (backup registers retained) RTC	bypassed at 32768 Hz	3 V	325	485	1450	3750	9050	-	-	-	-	-	1
I _{DD_ALL} (Shutdown			3.6 V	445	655	1900	4800	11500	-	-	-	-	-] _ n
with RTC)		RTC clocked by LSE quartz ⁽²⁾ in low drive mode	1.8 V	290	410	1050	2550	6700	-	-	-	-	-	1 ''
,			2.4 V	375	515	1250	3050	7800	-	-	-	-	-	1
	enabled		3 V	480	645	1550	3700	8800	-	-	-	-	-	1
			3.6 V	625	840	1950	4950	11500	-	-	-	-	-	1
I _{DD_ALL} wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	1.00	-	-	-	-	-	-	-	-	-	m

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.

Symbol	Parameter	Conditions			ТҮР						MAX ⁽¹⁾			Unit
Cymbol	Falanetei	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	3.00	-	-	-	-	-	-	-	-	-	
		RTC disabled	2.4 V	4.00	-	-	-	-	-	-	-	-	-	
			3 V	5.00	-	-	-	-	-	-	-	-	-	
I _{DD VBAT}	Backup domain		3.6 V	11.0	-	-	-	-	-	-	-	-	-	nA
I _{DD_VBAT} (VBAT)	supply current		1.8 V	145	165	285	550	-	-	-	-	-	-	ПА
			2.4 V	205	235	370	670	-	-	-	-	-	-	
			3 V	285	315	470	820	-	-	-	-	-	-	
			3.6 V	375	430	715	1350	-	-	-	-	-	-	

1. Guaranteed by characterization results, unless otherwise specified.

DS11910 Rev 4

108/201

STM32L451xx

Symbol	Parameter		Conditions	Тур	Мах	Unit	
		Danga 1	Wakeup clock MSI = 48 MHz	7.93	9.1		
	Wake up time from Stop 2	Range 1	Wakeup clock HSI16 = 16 MHz	7.32	8.5		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	8.25	9.4		
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	7.32	8.4		
			Wakeup clock MSI = 4 MHz	11.43	13.3		
t _{WUSTOP2}	Wake up time from Stop 2 mode to Run mode in	Dense 1	Wakeup clock MSI = 48 MHz	5.23	6	μs	
		Range 1	Wakeup clock HSI16 = 16 MHz	6.33	7.1		
			Wakeup clock MSI = 24 MHz	5.78	6.5		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	6.33	7.1		
			Wakeup clock MSI = 4 MHz 11		12.9		
	Wakeup time from Standby	Dense 1	Wakeup clock MSI = 8 MHz	16.13	18.2		
twustby	mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	24.06	26.6	μs	
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	16.09	18.2		
SRAM2	with CDAMO to Due mode		Wakeup clock MSI = 4 MHz	24	26.6	μs	
t _{WUSHDN}	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	255.38	316.41	μs	

Table 42. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Table 43. Regulator modes transition times⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode $^{\left(2\right) }$	Code run with MSI 2 MHz	5	7	
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range $2^{(3)}$	Code run with MSI 24 MHz	20	40	μs

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

Table 44. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wakeup time needed to calculate the	Stop 0 mode	-	1.7	
t _{WUUSART} t _{WULPUART}	maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI16	Stop 1 mode and Stop 2 mode	-	8.5	μs

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.


The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 19*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	-	250	-	-	ns

Table 46. Low-speed external user cloc	k characteristics ⁽¹⁾
--	----------------------------------

1. Guaranteed by design.

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
100	Accuracy of the HSI48 oscillator	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85 °C	-	-	±3 ⁽³⁾	%
ACC _{HSI48_REL} over temperature (factory calibrated)		V_{DD} = 1.65 V to 3.6 V, T _A = -40 to 125 °C	-	-	±4.5 ⁽³⁾	- 70
	HSI48 oscillator frequency drift	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	%
D _{VDD} (HSI48)	with V _{DD}	V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾	70
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

Table 51. HSI48 oscillator characteristics⁽¹⁾

1. V_{DD} = 3 V, T_A = -40 to 125°C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Jitter measurement are performed without clock source activated in parallel.

6.3.10 Flash memory characteristics

Table 54. Flash memory characteristics					
Symbol	Parameter	Conditions	Тур	Max	Unit
t _{prog}	64-bit programming time	-	81.69	90.76	μs
+	one row (32 double	normal programming	2.61	2.90	
^t prog_row	word) programming time	fast programming	1.91	2.12	
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms
^l prog_page	programming time	fast programming	15.29	16.98	
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47	
+	one bank (512 Kbyte)	normal programming	5.35	5.95	s
t _{prog_bank}	programming time	fast programming	3.91	4.35	5
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms
	Average consumption	Write mode	3.4	-	
	from V _{DD}	Erase mode	3.4	-	mA
I _{DD}	Maximum aurrant (naak)	Write mode	7 (for 2 µs)	-	mA
	Maximum current (peak)	Erase mode	7 (for 41 µs)	-	

Table 54. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	1 kcycle ⁽²⁾ at T _A = 105 °C	15		
+	t _{RET} Data retention	1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
' RET		10 kcycles ⁽²⁾ at T _A = 55 °C	30	Tears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 55. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single F		-	5	5.4	
ET	Total		ended	Slow channel (max speed)	-	4	5	
	unadjusted error		Differential	Fast channel (max speed)	-	4	5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			olligic	Fast channel (max speed)	-	2	4	
EO	Offset		ended	Slow channel (max speed)	-	2	4	
EO	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	4	4.5	
EG	Gainenor		Differential	Fast channel (max speed)	-	3	4	LSB
		Differential	Slow channel (max speed)	-	3	4		
		rential rity ADC clock frequency ≤ Differential Fast channe	Single	Fast channel (max speed)	-	1	1.5	
ED	Differential		Slow channel (max speed)	-	1	1.5		
ED	ED linearity error		Differential	Fast channel (max speed)	-	1	1.2	1
		26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	Differential	Slow channel (max speed)	-	1	1.2	
		3.6 V,	Single	Fast channel (max speed)	-	2.5	3	
EL	Integral	Voltage scaling Range 2	ended	Slow channel (max speed)	-	2.5	3	
EL	linearity error		Differential	Fast channel (max speed)	-	2	2.5	
			Differential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.2	10.5	-	bits
ENOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	63	65	-	
	Signal-to- noise and		ended	Slow channel (max speed)	63	65	-	
distortion		Differential	Fast channel (max speed)	65	66	-		
	ratio		Differential	Slow channel (max speed)	65	66	-	d٦
			Single	Fast channel (max speed)	64	65	-	dB
CNID	Signal-to-		ended	Slow channel (max speed)	64	65	-	
SNR	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

Table 72. ADC accuracy	v - limited test conditio	ns 4 ⁽¹⁾⁽²⁾⁽³⁾
Table 12. ADC accuracy	y - miniteu test conultio	113 4

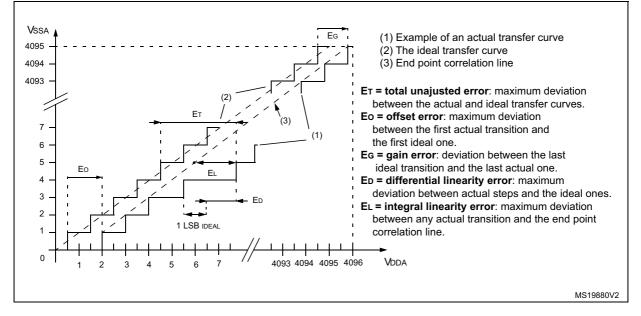
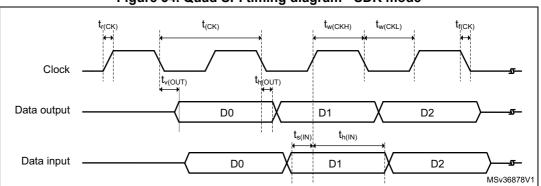

	Table 72. Abc accuracy - initied test conditions 4. A A (continued)							
Sym- bol	Parameter	C	Conditions ⁽⁴⁾			Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69	
THD	Total harmonic	26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	ended	Slow channel (max speed)	-	-71	-69	dB
	distortion	36V	Differential	Fast channel (max speed)	-	-73	-72	uВ
	Voltage scaling Range 2	Dillerential	Slow channel (max speed)	-	-73	-72		

Table 72. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.


2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when $V_{DDA} < 2.4 \text{ V}$ (BOOSTEN = 1 in the SYSCFG_CFGR1 when $V_{DDA} < 2.4 \text{ V}$). It is disable when $V_{DDA} \ge 2.4 \text{ V}$. No oversampling.

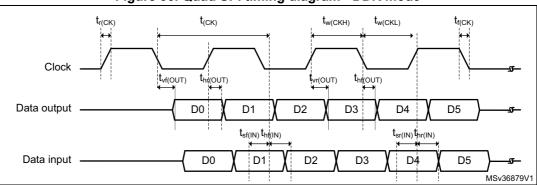
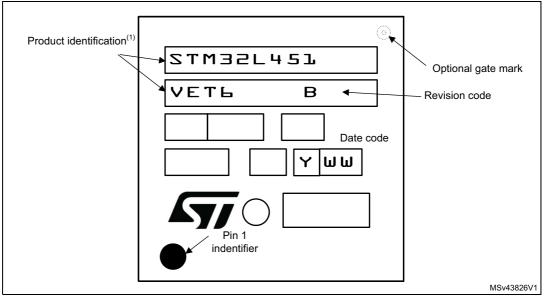


Figure 28. ADC accuracy characteristics



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

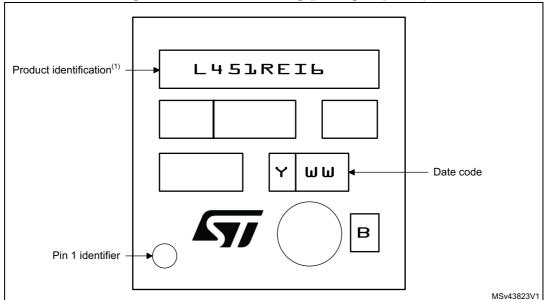
Table 96. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) (continued)

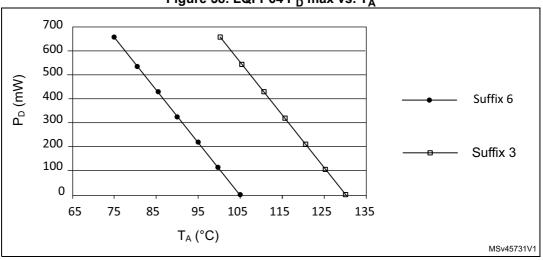
Dimension	Recommended values
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.




Figure 51. UFBGA64 marking (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

In this case, parts must be ordered at least with the temperature range suffix 3 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 58* to select the required temperature range (suffix 6 or 3) according to your ambient temperature or power requirements.

Date	Revision	Changes
21-May-2018	4 (continued)	Added Section 6.3.16: Extended interrupt and event controller input (EXTI) characteristics. Updated Table 61: I/O static characteristics. Updated Table 73: DAC characteristics.

Table 102. Document revision history (continued)

