E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l451ret6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 11
2
-
ō
Ë.
ō
ž
20
=
0
Ş
2
Ť
<
Ξ.
9
2

DS11910 Rev 4

5

					Та	ble 4. Sl	M32L451xx modes over	view		
	Mode	Regulator ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA & Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
	Run	MR range 1	Yes	ON ⁽⁴⁾	ON	Any	All	N/A	94 µA/MHz	N/A
	Run	MR range2	res	UN.	ON	Any	All except RNG		85 µA/MHz	IN/A
	LPRun	LPR	Yes	ON ⁽⁴⁾	ON	Any except PLL	All except RNG	N/A	95 µA/MHz	to Range 1: 4 μs to Range 2: 64 μs
	Sleep	MR range 1	No	ON ⁽⁴⁾	ON ⁽⁵⁾	Any	All	Any interrupt or	27 µA/MHz	6 cycles
	Sleep	MR range2			UN.	Any	All except RNG	event	27 µA/MHz	o cycles
I	LPSleep	LPR	No	ON ⁽⁴⁾	ON ⁽⁵⁾	Any except PLL	All except RNG	Any interrupt or event 38 μA/MHz		6 cycles
	Stop 0			BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1) USARTx (x=13) ⁽⁶⁾ UART4 ⁽⁶⁾	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) USARTx (x=13) ⁽⁶⁾	125 µA	2.47 µs in SRAM			
		MR Range 2				LSI	LPUART1 ⁽⁶⁾ I2Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	UART4 ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2)	125 µA	4.1 μs in Flash

24/201

STM32L451xx

3.11 Clocks and startup

The clock controller (see *Figure 4*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **RC48 with clock recovery system (HSI48)**: internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\mathbb{B}}$ -M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 37 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines.

hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 4 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 - internal sources: device memory data streams (DMA)
- 2 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode

3.23.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in *Section 3.23.2*) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16)

There are up to three synchronizable general-purpose timers embedded in the STM32L451xx (see *Table 11* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

• TIM2, TIM3

They are full-featured general-purpose timers:

- TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
- TIM3 has 16-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode.

All have independent DMA request generation and support quadrature encoder.

TIM15 and 16

They are general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 has 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.23.3 Basic timer (TIM6)

The basic timer is mainly used for DAC trigger generation. It can also be used as generic 16-bit timebase.

4 Pinouts and pin description

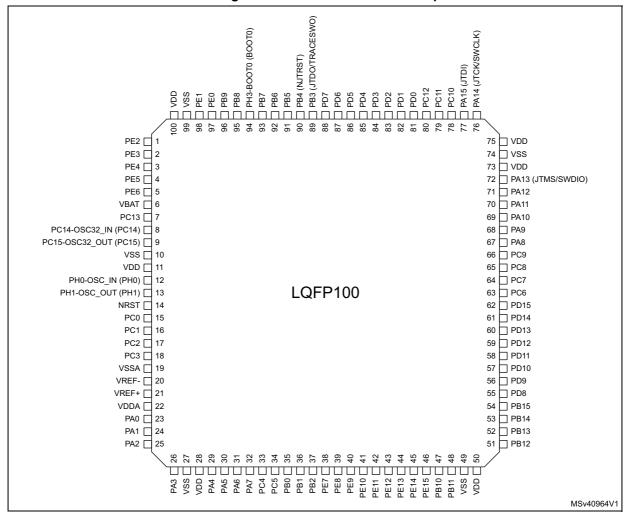


Figure 6. STM32L451Vx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

	I	Pin I	Num	ber	-					n definitions (continued) Pin fund	ctions
UFQFPN48	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX, QUADSPI_BK2_IO1, EVENTOUT	-
-	-	-	-	87	В6	PD6	I/O	FT	-	DFSDM1_DATIN1, USART2_RX, QUADSPI_BK2_IO2, SAI1_SD_A, EVENTOUT	-
-	-	-	-	88	A5	PD7	I/O	FT	-	DFSDM1_CKIN1, USART2_CK, QUADSPI_BK2_IO3, EVENTOUT	-
39	B4	55	A5	89	A8	PB3 (JTDO/ TRACE SWO)	I/O	FT_a	(3)	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, SAI1_SCK_B, EVENTOUT	COMP2_INM
40	A4	56	A4	90	A7	PB4 (NJTRST)	I/O	FT_fa	(3)	NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS, TSC_G2_IO1, SAI1_MCLK_B, EVENTOUT	COMP2_INP
41	C5	57	C4	91	C5	PB5	I/O	FT	-	LPTIM1_IN1, TIM3_CH2, CAN1_RX, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, TSC_G2_IO2, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT	-
42	B5	58	D3	92	B5	PB6	I/O	FT_fa	-	LPTIM1_ETR, I2C1_SCL, I2C4_SCL, USART1_TX, CAN1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT	COMP2_INP
43	A5	59	C3	93	В4	PB7	I/O	FT_fa	-	LPTIM1_IN2, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, EVENTOUT	COMP2_INM, PVD_IN
44	В6	60	B4	94	A4	PH3- BOOT0 (BOOT0)	I/O	-	-	EVENTOUT	BOOT0

Table 16. STM32L451xx pin definitions (continued)

5

Memory mapping

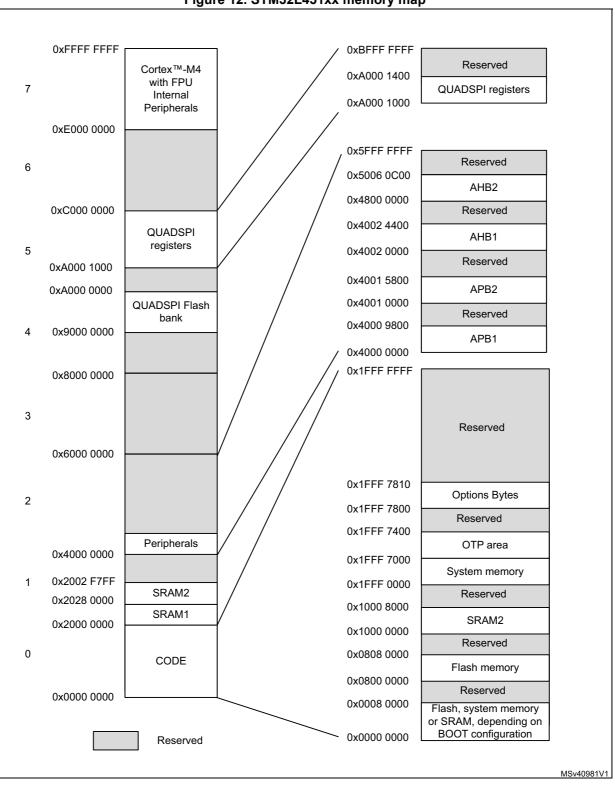


Figure 12. STM32L451xx memory map

DS11910 Rev 4

- 1. When RESET is released functionality is guaranteed down to V_{BOR0} Min.
- 2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between $Min(V_{DD}, V_{DDA})$ +3.6 V and 5.5V.
- 3. For operation with voltage higher than Min (V_{DD} , V_{DDA}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 24* are derived from tests performed under the ambient temperature condition summarized in *Table 23*.

Symbol	Parameter	Conditions	Min	Мах	Unit						
+	V _{DD} rise time rate		0	8	us/V						
t _{VDD}	V _{DD} fall time rate	-	10	8	μ5/ν						
t	V _{DDA} rise time rate	_	0	8	us/V						
^t VDDA	V _{DDA} fall time rate	-	10	8	μ3/ ν						

Table 24. Operating conditions at power-up / power-down

The requirements for power-up/down sequence specified in *Section 3.9.1: Power supply schemes* must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 25* are derived from tests performed under the ambient temperature conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit	
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs	
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V	
VBOR0	brown-out reset threshold o	Falling edge	1.6	1.64	1.69	v	
V _{BOR1}	Brown-out reset threshold 1	Rising edge	2.06	2.1	2.14	V	
	Brown-out reset threshold 1	Falling edge	1.96	2	2.04		
V	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V	
V _{BOR2}	brown-out reset threshold 2	Falling edge	2.16	2.20	2.24		
V	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V	
V _{BOR3}	Brown-out reset threshold 5	Falling edge	2.47	2.52	2.57	v	
N .	Brown-out reset threshold 4	Rising edge	2.85	2.90	2.95	V	
V _{BOR4}	Brown-out reset tilleshold 4	Falling edge	2.76	2.81	2.86	v	

Table 25. Embedded reset and power control block characteristics

		Tabi	e 37. Ci	unent	consun	iption i	i Stop t	,						
Symbol	Parameter	Conditions	ТҮР					MAX ⁽¹⁾					Unit	
	Farameter	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Onit	
I _{DD_ALL} (Stop 0)		Supply	1.8 V	125	150	240	390	645	145	190	350	600	1150	
	current in	2.4 V	125	150	240	390	645	150	195	355	605	1150	uА	
	(Stop 0)	Stop 0 mode,	3 V	125	150	245	395	650	155	195	360	610	1150	μΛ
	RTC disabled	3.6 V	125	155	245	400	655	155	200	365	615	1150 ⁽²⁾		

Table 37. Current consumption in Stop 0

1. Guaranteed by characterization results, unless otherwise specified.

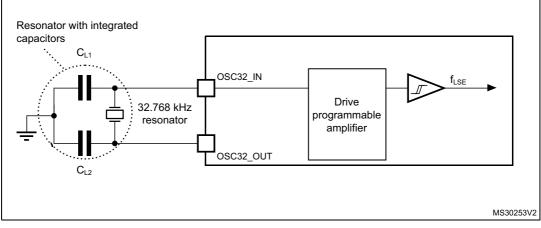
2. Guaranteed by test in production.

N

Ш
e
¥
ö
a
<u>0</u>
ş
T,
ត្តី
ē
Ţ.
Ť.
S

	T	Table 38.	Curre	nt con	sumpti		tanuby	mode						-		
Symbol	Parameter	Conditions				TYP			MAX ⁽¹⁾							
Symbol	Falameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C			
			1.8 V	100	270	1200	3300	8650	205	650	3250	9250	25000	٦		
		na indonandant watabdag	2.4 V	110	305	1400	3850	10000	225	750	3750	11000	29000	-		
	Supply current in Standby	no independent watchdog	3 V	125	360	1650	4550	12000	290	950	4450	13000	33500			
I _{DD ALL}	mode (backup		3.6 V	160	445	2000	5500	14500	355	1150	5250	15000	38500			
(Standby)	registers		1.8 V	265	435	1350	3450	8700	-	-	-	-	-			
	retained), RTC disabled	with independent	2.4 V	335	540	1650	4100	10500	-	-	-	-	-			
		watchdog	3 V	420	655	1950	4850	12500	-	-	-	-	-			
			3.6 V	580	895	2450	5950	14500	-	-	-	-	-			
	Supply current				1.8 V	345	505	1400	3450	8600	720	1150	3750	9550	25000	
		RTC clocked by LSI, no	2.4 V	420	620	1650	4050	10000	875	1450	4400	11500	29000			
			3 V	510	745	2000	4750	12000	1070	1700	5100	13500	34000			
			3.6 V	635	915	2450	5900	14500	1320	2100	6000	15500	39000			
			1.8 V	375	540	1450	3550	8800	-	-	-	-	-			
			2.4 V	490	690	1800	4250	10500	-	-	-	-	-			
			3 V	620	860	2150	5100	12500	-	-	-	-	-			
I _{DD_ALL} (Standby	mode (backup		3.6 V	845	1150	2700	6200	15000	-	-	-	-	-			
with RTC)	registers retained),		1.8 V	395	-	-	-	-	-	-	-	-	-			
	RTC enabled	RTC clocked by LSE	2.4 V	500	-	-	-	-	-	-	-	-	-			
		bypassed at 32768Hz	3 V	625	-	-	-	-	-	-	-	-	-			
			3.6 V	795	-	-	-	-	-	-	-	-	-			
			1.8 V	375	550	1500	3550	8800	-	-	-	-	-			
		RTC clocked by LSE quartz ⁽²⁾ in low drive mode	2.4 V	460	665	1750	4250	10500	-	-	-	-	-	_		
			3 V	565	810	2100	5050	12500	-	-	-	-	-	_		
			3.6 V	720	1000	2600	5900	15000	-	-	-	-	-			

106/201


DS11910 Rev 4

5

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 56*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class	
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-2	3B	
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-4	5A	

Table 56. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit					
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5						
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1						
	Fmax	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz					
	FIIIdX		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10						
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5						
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1						
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25						
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52						
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	nc					
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	ns					
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37						
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110						
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25						
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	7					
	Fmax		C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	MHz					
	Fillax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50						
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15						
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1						
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9						
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16						
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40	20					
	11/11	Output rise and fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	ns					
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9	1					
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21						

Table 63. I/O AC characteristics⁽¹⁾⁽²⁾

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	6.5	
ET	Total		ended	Slow channel (max speed)	-	4	6.5	
	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5	
			Dillerential	Slow channel (max speed)	-	3.5	5.5	
			Single	Fast channel (max speed)	-	1	4.5	
EO	Offset		ended	Slow channel (max speed)	-	1	5	
EU	error		Differential	Fast channel (max speed)	-	1.5	3	
			Dillerential	Slow channel (max speed)	-	1.5	3	
			Single	Fast channel (max speed)	-	2.5	6	
EG Gain error		ended	Slow channel (max speed)	-	2.5	6	LSB	
	_	Differential	Fast channel (max speed)	-	2.5	3.5	LOD	
		Dillerential	Slow channel (max speed)	-	2.5	3.5		
Differential ED linearity		Single	Fast channel (max speed)	-	1	1.5		
		rity ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps, 2 V ≤ V _{DDA}	ended	Slow channel (max speed)	-	1	1.5	-
ED	error		Differential	Fast channel (max speed)	-	1	1.2	
			Differential	Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	1.5	3.5	
EL	Integral			Slow channel (max speed)	-	1.5	3.5	
EL	linearity error		Differential	Fast channel (max speed)	-	1	3	
				Slow channel (max speed)	-	1	2.5	
			Single	Fast channel (max speed)	10	10.5	-	
	Effective		ended	Slow channel (max speed)	10	10.5	-	hita
ENOB	number of bits		Differential	Fast channel (max speed)	10.7	10.9	-	bits
			Differential	Slow channel (max speed)	10.7	10.9	-	
	Oisse al ta		Single	Fast channel (max speed)	62	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66	67.4	-	
	ratio		Differential	Slow channel (max speed)	66	67.4	-	
			Single	Fast channel (max speed)	64	66	-	dB
	Signal-to-		ended	Slow channel (max speed)	64	66	-	1
SNR	noise ratio		Differential	Fast channel (max speed)	66.5	68	-	
			Differential	Slow channel (max speed)	66.5	68	-	

Table 70. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$	Table 70. ADC accurac	v - limited test conditions 2 ⁽¹⁾⁽	(2)(3)
--	-----------------------	---	--------

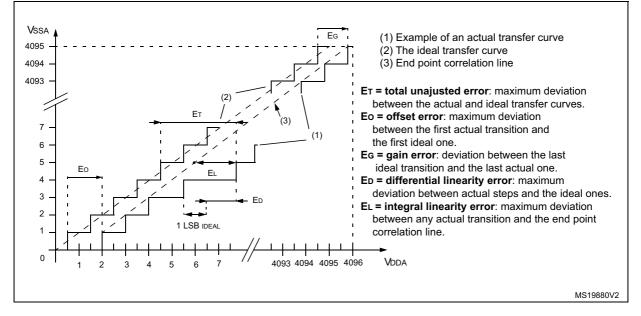

	Table 72. ADC accuracy - minicul test conditions 4. A.A. (continued)							
Sym- bol	Parameter	Conditions ⁽⁴⁾					Max	Unit
	Total 26 MHz, THD harmonic $1.65 V \le V_{DDA} = VREF + \le -$	Single	Fast channel (max speed)	-	-71	-69		
тно		ended	Slow channel (max speed)	-	-71	-69	dB	
		22/1	Differential	Fast channel (max speed)	-	-73	-72	uВ
		Dillerential	Slow channel (max speed)	-	-73	-72		

Table 72. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

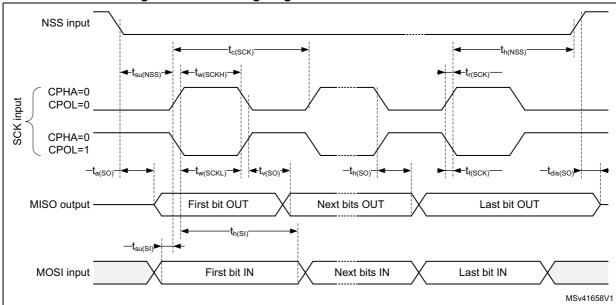
- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when $V_{DDA} < 2.4 \text{ V}$ (BOOSTEN = 1 in the SYSCFG_CFGR1 when $V_{DDA} < 2.4 \text{ V}$). It is disable when $V_{DDA} \ge 2.4 \text{ V}$. No oversampling.

Figure 28. ADC accuracy characteristics

6.3.21 Comparator characteristics

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-		1.62	-	3.6	
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V
V _{BG} ⁽²⁾	Scaler input voltage		-	V _{REFINT}			
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV
	Scaler static consumption	BRG_EN=0 (br	ridge disable)	-	200	300	nA
I _{DDA} (SCALER)	from V _{DDA}	BRG_EN=1 (bi	ridge enable)	-	0.8	1	μA
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
	Comparator startup time to reach propagation delay specification	High-speed	V _{DDA} ≥ 2.7 V	-	-	5	
t _{start}		mode	V _{DDA} < 2.7 V	-	-	7	μs
		Medium mode	V _{DDA} ≥ 2.7 V	-	-	15	
			V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-powe	r mode	-	-	40	
	Propagation delay with 100 mV overdrive	High-speed	V _{DDA} ≥ 2.7 V	-	55	80	20
t _D ⁽³⁾		mode	V _{DDA} < 2.7 V	-	65	100	ns
۲D		Medium mode		-	0.55	0.9	
		Ultra-low-power mode		-	4	7	μs
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV
		No hysteresis		-	0	-	- mV
M	Comparator hysteresis	Low hysteresis		-	8	-	
V _{hys}		Medium hyster	-	15	-		
		High hysteresis	-	27	-		

Table 76. COMP characteristics⁽¹⁾



Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	
^I v(SO) Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1		12.5	24	ns	
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ns
t _{h(MO)}		Master mode	0	-	-	115

Table 85. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

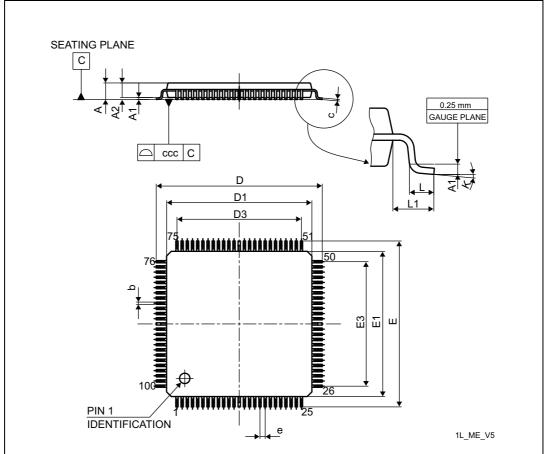


Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059

9 Revision history

Date	Revision	Changes
21-Apr-2017	1	Initial release.
05-May-2017	2	 Updated some power consumptions on cover page. Added Table 4: STM32L451xx modes overview. Updated Table 35: Current consumption in Stop 2 mode. Updated Table 36: Current consumption in Stop 1 mode. Updated Table 38: Current consumption in Standby mode. Updated Table 67: ADC characteristics. Update note below Figure 29: Typical connection diagram using the ADC.
26-May-2017	3	 Added missing LPUART communication interface on cover page. Fixed OPAMP index in <i>Table 4: STM32L451xx modes overview</i>. Replaced RAM2 by SRAM2 in <i>Section 3.9.3: Voltage regulator</i> and <i>Section 3.9.4: Low-power modes</i>. Updated <i>Section 3.7: Boot modes</i>. Added <i>Table 10: DFSDM1 implementation</i>. Updated <i>Table 61: I/O static characteristics</i>. Updated <i>Section 7.2: UFBGA100 package information</i>.
21-May-2018	4	 Updated DAC terminology in all the document for clarification: single DAC instance (= DAC1) with 2 output channels. Added ECOPACK2® information in <i>Features</i>. Updated LPUART bullet in <i>Features</i>. Updated Section 3.9.1: Power supply schemes. Added Figure 3: Power-up/down sequence. Added DFSDM1 in <i>Table</i> 6: STM32L451xx peripherals interconnect matrix. Updated Clock-out capability in Section 3.11: Clocks and startup. Updated Figure 4: Clock tree. Updated Section 3.14.1: Nested vectored interrupt controller (NVIC). Removed a footnote in <i>Table</i> 16: STM32L451xx pin definitions. Updated Section 6.3.2: Operating conditions at power-up / power-down. Updated A_{Coeff} in <i>Table</i> 26: Embedded internal voltage reference. Updated Table 41: Peripheral current consumption.

